Global well-posedness for the non-linear Maxwell-Schrödinger

 system
Raffaele Scandone (GSSI L'Aquila)

13th ISAAC congress, Harmonic Analysis and PDEs Session 4 August 2021

Based on joint work with P. Antonelli and P. Marcati

Maxwell-Schrödinger system

$$
\left\{\begin{array}{l}
i \partial_{t} \psi=-\frac{1}{2} \Delta_{A} \psi+\phi \psi \tag{MS}\\
-\Delta \phi-\partial_{t} \operatorname{div} A=\rho \\
\square A+\nabla\left(\partial_{t} \phi+\operatorname{div} A\right)=J
\end{array}\right.
$$

in the unknown $(\psi, \phi, A): \mathbb{R}_{t} \times \mathbb{R}^{3} \rightarrow \mathbb{C} \times \mathbb{R} \times \mathbb{R}^{3}$, where

- $\Delta_{A}:=\nabla_{A}^{2}=(\nabla-i A)^{2}$ is the magnetic Laplacian.
- (ϕ, A) is the electromagnetic potential.
- $\rho:=|\psi|^{2}, J:=\operatorname{Im}\left(\bar{\psi} \nabla_{A} \psi\right)$ are the charge and current densities.

Conserved quantities: charge $\mathcal{Q}:=\|\psi\|_{L^{2}}^{2}$, and energy

$$
\mathcal{E}:=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla_{A} \psi\right|^{2}+|\nabla \phi|^{2}+\left|\partial_{t} A\right|^{2}+|\operatorname{rot} A|^{2} d x .
$$

Gauge invariance: $(\psi, \phi, A) \mapsto\left(e^{i \lambda} \psi, \phi-\partial_{t} \lambda, A+\nabla \lambda\right), \quad \lambda: \mathbb{R}^{3} \rightarrow \mathbb{R}$.

In the Coulomb gauge, i.e. $\operatorname{div} A=0,(\mathrm{MS})$ takes the form

$$
(\mathrm{MS})\left\{\begin{array}{l}
i \partial_{t} \psi=-\frac{1}{2} \Delta_{A} \psi+\phi \psi \\
\square A=\mathbb{P} J,
\end{array}\right.
$$

where $\phi:=(-\Delta)^{-1}|\psi|^{2}$ (Hartree potential), and $\mathbb{P}:=\mathbb{I}-\nabla \operatorname{div}(-\Delta)^{-1}$ is the Helmholtz-Leray projection ($\operatorname{div} \mathbb{P}=0$).

$$
\mathcal{E}:=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla_{A} \psi\right|^{2}+\left|\partial_{t} A\right|^{2}+|\nabla A|^{2}+|\nabla \phi|^{2} d x .
$$

Using (ρ, J) as unknown (Madelung transform), we formally get (issues: justify the derivation, possible presence of vacuum regions):
(QMHD) $\left\{\begin{array}{l}\partial_{t} \rho+\operatorname{div} J=0 \\ \partial_{t} J+\operatorname{div}\left(\frac{J \otimes J}{\rho}\right)=\rho E+J \wedge B+\frac{1}{2} \rho \nabla\left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}\right),\end{array}\right.$
(E, B) satisfies Maxwell equations, $\frac{1}{2} \rho \nabla\left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}\right)$ is the Bohm potential.

Nonlinear Maxwell-Schrödinger system (Coulomb gauge)

$$
(\gamma-\mathrm{MS})\left\{\begin{array}{l}
i \partial_{t} \psi=-\frac{1}{2} \Delta_{A} \psi+\phi \psi+|\psi|^{\gamma-1} \psi \\
\square A=\mathbb{P} J
\end{array}\right.
$$

Conserved quantities: charge $\mathcal{Q}:=\|\psi\|_{L^{2}}^{2}$, and energy

$$
\mathcal{E}(t):=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla_{A} \psi\right|^{2}+\left|\partial_{t} A\right|^{2}+|\nabla A|^{2}+|\nabla \phi|^{2}+\frac{2}{\gamma+1}|\psi|^{\gamma+1} d x
$$

Using Madelung transform, formally we get the (γ-QMHD) system

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div} J=0 \\
\partial_{t} J+\operatorname{div}\left(\frac{J \otimes J}{\rho}\right)+\nabla P(\rho)=\rho E+J \wedge B+\frac{1}{2} \rho \nabla\left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}\right),
\end{array}\right.
$$

$P(\rho)=\frac{\gamma-1}{\gamma+1} \rho^{\frac{\gamma+1}{2}}$ is an isentropic pressure term.

Magnetic Sobolev norms: $\|f\|_{H_{A}^{s}}:=\left\|\mathcal{D}_{A}^{s} f\right\|_{L^{2}}, \mathcal{D}_{A}:=\left(1-\Delta_{A}\right)^{1 / 2}$.
Assume $A \in \dot{H}^{1}$. Then $H_{A}^{s} \approx H^{s}$ for $s \in[-2,2]$.
Energy space: $\left(\psi, A, \partial_{t} A\right) \in M^{1,1}:=H^{1} \times H^{1} \times L^{2}$.
Consider more generally $M^{s, \sigma}:=H^{s} \times H^{\sigma} \times H^{\sigma-1}, s \in[1,2], \sigma \geq 1$.

Goals

- Local and global well-posedness in $M^{s, \sigma}$ for (γ-MS);
- Existence and stability of solutions to (γ-QMHD).

Main obstacles

- Presence of a time-dependent magnetic Laplacian: -even the well-posedness of the linear problem is hard! -lack of Strichartz estimates (even for time independent potential, one needs smallness or spectral assumptions at zero energy). Hard to control the pure-power term.
- Derivative term in the current density J.

A priori estimates - Part 1

- Koch-Tzvetkov type estimates for Schrödinger equation Let ψ be a solution to $i \partial_{t} \psi=-\Delta \psi+F$. Then

$$
\|\psi\|_{L_{T}^{2} B_{6,2}^{s-\alpha}} \lesssim\|\psi\|_{L_{T}^{\infty} H^{s}}+T^{1 / 2}\|F\|_{L_{T}^{2} H^{s-2 \alpha}}, \quad \alpha>0
$$

-IDEA: localization of ψ, F in $[0, T] \times \widehat{\mathbb{R}^{3}}+$ Standard Strichartz. -When $\alpha \geq 1 / 2$, it allows to handle the derivative term $A \cdot \nabla$ appearing in the expansion of Δ_{A}.

- Koch-Tzvetkov type estimates for magnetic Schrödinger.

Suppose that $A \in L_{T}^{q} W^{1-2 / q, r}, \forall(q, r)$ s.t. $\frac{1}{q}+\frac{1}{r}=\frac{1}{2}, q \in[2, \infty]$.
Let $s \in[1,2]$, and ψ a solution to $i \partial_{t} \psi=-\Delta_{A} \psi+F$. Then

$$
\|\psi\|_{L_{T}^{2} B_{6,2}^{s-\alpha}} \lesssim T C_{A}\left(\|\psi\|_{L_{T}^{\infty} H^{s}}+\|F\|_{L_{T}^{2} H^{s-2 \alpha}}\right), \quad \alpha \geq 1 / 2
$$

A priori estimates - Part 2

- Strichartz estimates for $(\square+1) A=F$.

$$
\max _{k=0,1}\left\|\partial_{t}^{k} A\right\|_{L_{T}^{q} W^{s-k-2 / q, r}} \lesssim\left\|\left(A_{0}, A_{1}\right)\right\|_{H^{s} \times H^{s-1}}+\|F\|_{L_{T}^{q_{0}^{\prime}} W^{s+2 / q_{0}-1, r_{0}^{\prime}}}
$$

Admissible pair: $\frac{1}{q}+\frac{1}{r}=\frac{1}{2}, q \in(2, \infty]$. The endpoint case $(q, r)=(2, \infty)$ fails in general. It holds for radial data, or as soon as we have some extra angular regularity.

- Product estimates. Let $s \geq 0$, and $\frac{1}{p_{i}}+\frac{1}{q_{i}}=\frac{1}{p}, i=1,2$. Then

$$
\left\|\mathbb{P}\left(\bar{\psi}_{1} \nabla \psi_{2}\right)\right\|_{W^{s, p}} \lesssim\left\|\psi_{1}\right\|_{W^{s, p_{1}}}\left\|\nabla \psi_{2}\right\|_{L^{q_{1}}}+\left\|\nabla \psi_{1}\right\|_{L^{q_{2}}}\left\|\psi_{2}\right\|_{W^{s, p_{2}}} .
$$

-IDEA: exploits $\mathbb{P} \nabla=0$. Allows to handle the derivative term in $\mathbb{P J}$. -This idea is not enough when there are pure-curl currents, like the spin-current in the Maxwell-Pauli system.

A priori estimates for ($\gamma-\mathrm{MS}$)

Given $\sigma>1$ Strichartz for Klein Gordon + product estimate gives

$$
\|A\|_{L_{T}^{2} L^{\infty}} \lesssim T\left\langle\left\|\left(\psi, A, \partial_{t} A\right)\right\|_{L_{T}^{\infty} M^{1,1}}^{m}\right\rangle\left\langle\left\|\left(A_{0}, A_{1}\right)\right\|_{H^{\sigma} \times H^{\sigma-1}}^{m}\right\rangle .
$$

(It's enough $\sigma=1$ with "endpoint initial data"). For $\gamma \in(1,4)$

$$
\left\||\psi|^{\gamma-1} \psi\right\|_{L_{T}^{2} H^{s-1}} \lesssim\|\psi\|_{L_{T}^{\infty} H^{1}}^{\gamma-1}\|\psi\|_{L_{T}^{2} W^{1 / 2-\varepsilon(\gamma), 6} \cap L_{T}^{\infty} H^{1}}
$$

Hence, by Koch-Tzvetkov estimates, previous bound, and bootstrap, we obtain that for $s \in[1,2], \sigma>1$

$$
\|\psi\|_{L_{T}^{2} B_{6,2}^{s-1 / 2}} \lesssim T\left\langle\left\|\left(\psi, A, \partial_{t} A\right)\right\|_{L_{T}^{\infty} M^{1,1}}^{n}\right\rangle\left\langle\left\|\left(A_{0}, A_{1}\right)\right\|_{H^{\sigma} \times H^{\sigma-1}}^{n}\right\rangle\|\psi\|_{L_{T}^{\infty} H^{s}} .
$$

Consequences: Let (ψ, A) a finite energy, weak solution to $(\gamma-\mathrm{MS})$ with $\left(u_{0}, A_{0}, A_{1}\right) \in M^{1, \sigma}, \sigma>1$. Then

- $\|\psi\|_{L_{T}^{2} B_{6,2}^{1 / 2}}+\|A\|_{L_{T}^{2} L^{\infty}} \lesssim T 1$.
- The Lorentz force $F:=\rho E+J \wedge B$ is well-defined and belongs to $L_{T}^{2} L^{1}$ ($M^{1,1}$ alone is not sufficient).

Local well-posedness for (γ-MS)

- Let $s \in\left[\frac{11}{8}, 2\right], \sigma \in(1,3), \gamma \in\left(s, \gamma^{*}\right)$, for $\gamma^{*}:=\gamma^{*}(s) \in(3, \infty]$ (when $s=2, \gamma \in(1, \infty)$). Then ($\gamma-\mathrm{MS}$) il LWP in $M^{s, \sigma}$.
- Holds also when $\sigma=1$ with "endpoint initial data".
- Relatively easy at high regularity $\left(s>\frac{3}{2}\right)$.
- Exploits a priori estimates at intermediate regularity $\left(s \in\left(\frac{11}{8}, 2\right)\right)$.
- Open problem at low regularity, in particular in the energy space $M^{1,1}$ (existence of weak solutions in $M^{1,1}$, for $\gamma \in(1,5)$, can be proved through a regularization/compactness argument).
- For the linear Maxwell-Schrödinger system, well-posedness in the energy space has been proved in [Bejenaru-Tataru, 2009].
Extending their analysis to the non-linear case is non-trivial.

Global well-posedness (Part I)

(Generalized) Brezis-Gallouet inequality:

$$
\|f\|_{L^{\infty}} \lesssim 1+\|f\|_{B_{p, r}^{3 / p}} \ln _{+}^{\frac{r-1}{r}}\|f\|_{W^{3 / q+\varepsilon, q}}
$$

A standard energy methods yields

$$
\|\psi\|_{L_{T}^{\infty} H^{s}} \lesssim T 1+\int_{0}^{T}\|\psi(t)\|_{L^{\infty}}^{\gamma-1}\|\psi\|_{L_{t}^{\infty} H^{s}}
$$

Assume $s>\frac{3}{2}, \gamma \in(s, 3)$. Brezis-Gallouet for $B_{6,2}^{1 / 2}$ yields

$$
\|\psi\|_{L_{T}^{\infty} H^{s}} \lesssim T 1+\int_{0}^{T}\|\psi(t)\|_{B_{6,2}^{1 / 2}}^{\gamma-1}\|\psi\|_{L_{t}^{\infty} H^{s}} \ln _{+}^{\frac{\gamma-1}{2}}\|\psi\|_{L_{t}^{\infty} H^{s} .} .
$$

Uniform bound on $L_{T}^{2} B^{1 / 2,6}+$ Grönwall imply GWP with exp exp-bounds.

- The method can be adapted to cover $s \in\left(1, \frac{3}{2}\right]$, as $B_{6,2}^{s-1 / 2} \hookrightarrow L^{\infty}$.

Modified higher order energy

Let ψ be a solution to ($\gamma-\mathrm{MS}$), $\gamma>2$. Define

$$
\mathcal{E}_{2}(t):=\int_{\mathbb{R}^{3}}\left|\partial_{t} \psi\right|^{2}-(\gamma-1)|\psi|^{\gamma-1}|\nabla| \psi| |^{2}-\frac{\gamma-1}{\gamma}|\psi|^{2 \gamma} d x
$$

Same functional used by [Planchon-Tzvetkov-Visciglia, 2016] to prove polynomial growth of H^{2}-norm for sub-cubic NLS on compact manifolds.

- $\mathcal{E}_{2}(t)$ is equivalent to $\|\psi(t, \cdot)\|_{H^{2}}^{2}$

$$
\left|\mathcal{E}_{2}(t)-\|\psi\|_{H_{A}^{2}}^{2}\right| \lesssim\langle t\rangle^{n}\left\langle\|\psi\|_{H^{2}}\right\rangle^{c(\gamma)}, \quad c(\gamma)<2 .
$$

- Gain of regularity when computing the derivative of \mathcal{E}_{2} :

$$
\frac{d}{d t} \mathcal{E}_{2}(t)=c(\gamma) \int_{\mathbb{R}^{3}}|\psi|^{\gamma-2} \partial_{t}\left|\psi \| \nabla_{A} \psi\right|^{2} d x+\text { "lower order terms" }
$$

Global well-posedness (Part II)

Using the a-priori estimates we find $\varepsilon(\gamma)>0$ such that

$$
\int_{0}^{T} \frac{d}{d t} \mathcal{E}_{2}(t) d t \lesssim\|\psi\|_{L_{T}^{2} B_{6,2}^{1 / 2}}\|\psi\|_{L_{T}^{\infty} H^{2}}^{2-\varepsilon(\gamma)}, \quad T \in(0,1)
$$

Using $\mathcal{E}_{2}(t) \approx\|u(t, \cdot)\|_{H^{2}}^{2}$ and uniform bound on $L_{T}^{2} B^{1 / 2,6}$ we get

$$
\|u(T, \cdot)\|_{H^{2}}^{2}-\|u(0, \cdot)\|_{H^{2}}^{2} \lesssim\|u\|_{L_{T}^{\infty} H^{2}}^{2-\varepsilon(\gamma)}, \quad T \in(0,1)
$$

which yields

$$
\sup _{t \in[0, T]}\|u(t, \cdot)\|_{H^{2}} \lesssim T^{\frac{1}{\varepsilon(\gamma)}}, \quad T>0 .
$$

- GWP in $M^{2, \sigma}$, for $\gamma \in(2,3)$, with polynomial bounds.
- When $\gamma=3$, one can get GWP (with exponential bounds) by means of an iteration argument.

Refined Strichartz estimates

Let χ_{α} a bump function, with $\chi_{\alpha} \equiv 1$ on the unit cube of center $\alpha \in \mathbb{Z}^{3}$.

- Refined Strichartz for $(\square+1) A=F$.

$$
\max _{k=0,1}\left\|\chi_{\alpha} \partial_{t}^{k} A\right\|_{\ell_{\alpha}^{2} L_{T}^{q} W^{s-k-2 / q, r}} \lesssim\left\|\left(A_{0}, A_{1}\right)\right\|_{H^{s} \times H^{s-1}+\|F\|_{L_{T}^{q_{0}^{\prime}} W^{s+2 / q_{0}-1, r_{0}^{\prime}}} . . . ~}
$$

Exploits the finite speed of propagation for wave equation.

- Refined Koch-Tzvetkov for $i \partial_{t} \psi=-\Delta_{A} \psi+F$.

Suppose that $\chi_{\alpha} A \in \ell_{\alpha}^{2} L_{T}^{q} W^{1-2 / q, r}$, for all admissible pairs (q, r). Let $s \in[0,2), \theta \in(0,1)$, and $m \in\left(\frac{\theta-1}{2}, \frac{2 \theta-1}{2}\right)$. Then

$$
\left\|\chi_{\alpha} \mathcal{D}_{A}^{s-\theta} \psi\right\|_{\ell_{\alpha}^{2} L_{T}^{2} W^{m, 6}} \lesssim T C_{A}\left(\|\psi\|_{L_{T}^{\infty} H^{s}}+\|F\|_{L_{T}^{2} H^{s-2 \theta+2 m}}\right) .
$$

Gain in term of summability w.r.t. spatial localization.

Local smoothing estimates

- Fix $\sigma \in\left(1, \frac{7}{6}\right), \gamma \in(1,4)$. Let (ψ, A) be a solution to (γ-MS), with initial data $\left(\psi_{0}, A_{0}, A_{1}\right) \in M^{1, \sigma}$. Then, for every $\delta \in(1, \sigma-1)$, we have the local-smoothing estimate

$$
\left\|\chi_{\alpha} \psi\right\|_{\ell \infty}^{\infty} L_{T}^{2} H^{1+\delta}<T\left\langle\|(\psi, A)\|_{L_{T}^{\infty}\left(H^{1} \times H^{1}\right)}^{n}\right\rangle\left\langle\left\|\left(A_{0}, A_{1}\right)\right\|_{H^{\sigma} \times H^{\sigma-1}}^{n}\right\rangle .
$$

- IDEA OF THE PROOF:
- Let h increas., bdd, such $h^{\prime}(t)=1$ for $|t| \geq \frac{1}{2}, h^{\prime}(t)=0$ for $|t| \geq 1$.
-Given $\alpha \in \mathbb{Z}^{3}$ and spatial direction j, set $h_{\alpha, j}(x):=h\left(x_{j}-\alpha_{j}\right)$ -define the smoothing operator $L_{\alpha, j}:=\mathcal{D}_{A}^{\delta-1} h_{\alpha, j}\left(\partial_{j}-i A_{j}\right) \mathcal{D}_{A}^{\delta-1}$. -Use energy method for the equation satisfied by $L_{\alpha, j} \mathcal{D}_{A} \psi$, together with commutator bounds and the refined Koch-Tzvetkov estimate.
- Local smoothing allows to improve a bit the range of (s, σ) in the LWP for ($\gamma-\mathrm{MS}$).

Existence and stability of solutions to ($\gamma-$ QMHD)

- We are interested in weak solutions, obtained as Madelung transform ($\rho=|\psi|^{2}, J=\operatorname{Im}\left(\bar{\psi} \nabla_{A} \psi\right)$) from $M^{1, \sigma}$-solutions to (γ-MS).
- "Natural" hydrodyn. variables: $\sqrt{\rho}$ and $\Lambda:=\operatorname{Im}\left(\bar{\varphi} \nabla_{A} \psi\right)$, where $\psi=\varphi|\psi|$. The map $\psi \mapsto(\sqrt{\rho}, \Lambda)$ is continuous from H^{1} to $H^{1} \times L^{2}$.
- We do not have GWP in $M^{1, \sigma}$ for (γ-MS). Hence we cannot use a standard approximation/stability approach.
- We start from a weak $M^{1, \sigma}$ solution to ($\gamma-\mathrm{MS}$), $\sigma>1$, and we directly manipulate the integral (Duhamel) formulations. A priori estimate allows to justify all the passages, when $\gamma \in(1,4)$.
- Weak stability of $(\sqrt{\rho}, \Lambda)$ obtained using the local smoothing.
- QUESTION: Can we cover $\gamma \in[4,5)$? Can we cover the case $\sigma=1$? (Same problem arises also in classical MHD model).

Thank you for your attention!

