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Maxwell-Schrédinger system

104 = —5 Da + ¢
—Ap—0rdivA=0p (MS)
DA + V(0 + div A) = J
in the unknown (1, #, A) : Ry x R® — C x R x R3, where
o Ay = V3 = (V —iA)? is the magnetic Laplacian.
@ (¢,A) is the electromagnetic potential.

o p:= Y%, J:=Im(yyV 1)) are the charge and current densities.

Conserved quantities: charge Q := ||¢||2,, and energy

1
¢ ;:2/ VAl + [V + [0 AP + [rot AP dx.
R3

Gauge invariance: (¢, ¢, A) — (e, ¢ — N, A+ VA), X:R® =R,
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In the Coulomb gauge, i.e. divA =0, (MS) takes the form

(MS) i0¢) 5 DAy + QY
DA = PJ,

where ¢ := (—A)_1|1/)|2 (Hartree potential), and P:=1 — Vdiv(—A)_1 is

the Helmholtz-Leray projection (divP = 0).

8'1

=5 [ IVAVR + 0P + VAR + Vo2
R

Using (p, J) as unknown (Madelung transform), we formally get
(issues: justify the derivation, possible presence of vacuum regions):

(QHD) {&p+dNJ:0
H J®J) _ 1 A/p
(E, B) satisfies Maxwell equations, %pV(%) is the Bohm potential.
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Nonlinear Maxwell-Schrédinger system (Coulomb gauge)

; __1 v—1
sy 00 = 3 Ba0 oty
OA=PJ
Conserved quantities: charge Q := ||¢||2,, and energy
2
£(e) = 5 [ IVAUP + 10:AF + VAP + Vol + [ dx

Using Madelung transform, formally we get the (v~-QMHD) system

9eJ + div (J®J) Y VP(p)=pE+JAB+ 2pv<7f)

-1 aft . . .
P(p) = %p 2 is an isentropic pressure term.
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Magnetic Sobolev norms: [|f|[ys := [ D4f| (2, Da = (1 — AQ)Y/2
Assume A € H'. Then H5 ~ H* for s € [-2,2].

Energy space: (¢, A, 0;A) € MY .= H! x H x [2.

Consider more generally M7 := H® x H x Ho 1 se [1,2], 0 > 1.

Goals
@ Local and global well-posedness in M*? for (7-MS);
e Existence and stability of solutions to (y-QMHD).

Main obstacles

@ Presence of a time-dependent magnetic Laplacian:
-even the well-posedness of the linear problem is hard!
-lack of Strichartz estimates (even for time independent potential, one
needs smallness or spectral assumptions at zero energy).
Hard to control the pure-power term.

@ Derivative term in the current density J.
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A priori estimates - Part 1

@ Koch-Tzvetkov type estimates for Schrddinger equation
Let ¢ be a solution to i) = —AyY + F. Then

[0z e < Il + T2l 20, 0> 0.

-IDEA: localization of %, F in [0, T] x R3 + Standard Strichartz.
-When « > 1/2, it allows to handle the derivative term A -V
appearing in the expansion of A4.

o Koch-Tzvetkov type estimates for magnetic Schrddinger.
Suppose that A L‘;-Wlfz/‘”, V(q,r) s.t. % + % = % g € [2,00].
Let s € [1,2], and 9 a solution to i0;t) = —Ap) + F. Then

10l 2 gae ST Ca(lllisrs + I Flliz ez ) @ =172
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A priori estimates - Part 2

@ Strichartz estimates for (0 4+ 1)A = F.

k
I[Q%ﬁ [10¢ A||L‘7TW5*’<*2/‘N S 11(Aos A s xps—1 + HFHL"T‘IJ wst2/a—1rg"

Admissible pair: + = 2, q € (2,00]. The endpoint case
(q,r) = (2,00) fa|Is in general. It holds for radial data, or as soon as
we have some extra angular regularity.

@ Product estimates. Let s > 0, and % + % =1 j=1,2. Then

P

P V2)llwse S [¥nllwse [Vi2llin + [[Vellie [vallwse..

-IDEA: exploits PV = 0. Allows to handle the derivative term in PJ.
-This idea is not enough when there are pure-curl currents, like the
spin-current in the Maxwell-Pauli system.
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A priori estimates for (-MS)

Given o > 1 Strichartz for Klein Gordon + product estimate gives

1Al iz 100 ST (15 A, O AN 2 pp1) (1l (Aos An) I o s pro 1)
(It's enough o = 1 with "endpoint initial data"). For v € (1,4)
1P lliz s S 10N b1l 2wz sz s

Hence, by Koch-Tzvetkov estimates, previous bound, and bootstrap, we
obtain that for s € [1,2], 0 > 1

10l 2 g1z ST (15 A OeAN e a1 (Aos An)llEser s pro-2) 1950 -
Consequences: Let (1, A) a finite energy, weak solution to (y-MS) with
(up, Ao, A1) € MY, 5 > 1. Then

© [[¥l5 522 + Al ST L

@ The Lorentz force F := pE + J A B is well-defined and belongs to
L2 (MY alone is not sufficient).
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Local well-posedness for (7-MS)

Let s € [§,2], 0 € (1,3), v € (s,7"), for v* := 7*(s) € (3, ]
(when s =2, v € (1,00)). Then (7-MS) il LWP in M*°.

Holds also when o = 1 with "endpoint initial data".
Relatively easy at high regularity (s > %)
Exploits a priori estimates at intermediate regularity (s € (%, 2)).

Open problem at low regularity, in particular in the energy space M1:!
(existence of weak solutions in MY, for v € (1,5), can be proved
through a regularization/compactness argument).

For the linear Maxwell-Schrédinger system, well-posedness in the
energy space has been proved in [Bejenaru-Tataru, 2009].
Extending their analysis to the non-linear case is non-trivial.
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Global well-posedness (Part |)

(Generalized) Brezis-Gallouet inequality:

r—1
1l S 1+ 1Fll g3 Ini” [1Flwsrgees

A standard energy methods yields
T -1
[l e Sr 3 [ IO e
Assume s > 3, v € (s, 3). Brezis-Gallouet for 837/22 yields
T
[llsens ST 1+/0 [9(t )|!71/2||1/1||L°°H5|n+ %1l oo bs.
62

Uniform bound on L2TBl/2’6 + Gronwall imply GWP with exp exp-bounds.

@ The method can be adapted to cover s € (1, 2] as BS V2 oy [,
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Modified higher order energy

Let ¢ be a solution to (y-MS), v > 2. Define

= [, 10 = = DD Tl — T

Same functional used by [Planchon-Tzvetkov-Visciglia, 2016] to prove

polynomial growth of H?-norm for sub-cubic NLS on compact manifolds.

o &(t) is equivalent to ||v(t, )%,

| &a(t) = [9lIF2 | < (1) Yl ll2) 0, e(y) < 2.

e Gain of regularity when computing the derivative of &;:

d
dt
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—&(t) = C(’}/)/ 977204 |1||V a1 ?dx + "lower order terms"
R3
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Global well-posedness (Part Il)

Using the a-priori estimates we find £(y) > 0 such that

.

d

| S0yt S 10l s a0, T e
0

Using &>(t) = [|u(t, )2 and uniform bound on L2 B1/26 we get

2
la(T )3 = (0, e S lulizis T e(0.1)

which yields
1
sup |lu(t,")|[pz < T=®), T >0.
tel0,T]
e GWP in M2, for v € (2,3), with polynomial bounds.

@ When v = 3, one can get GWP (with exponential bounds) by means
of an iteration argument.
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Refined Strichartz estimates

Let o a bump function, with xo = 1 on the unit cube of center o € Z3.

o Refined Strichartz for (O + 1)A = F.

k
n;?)?(l ||XaatA||€§LqTW5*k*2/q»r S ”(A07A1)||H5><H5—1+”FHL<7T{, w2/ -1

Exploits the finite speed of propagation for wave equation.
o Refined Koch-Tzvetkov for i0ip = —Aap + F.

Suppose that xoA € (2L9 W1=2/9" for all admissible pairs (g, r).
Let s €[0,2), 0 € (0,1), and m € (9 L, 2621) Then

IXa D5 Ul iz wms ST Ca(lllezps + IFl 2 20020 )

Gain in term of summability w.r.t. spatial localization.
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Local smoothing estimates

o Fix o € (1,%), v € (1,4). Let (¥, A) be a solution to (y-MS), with
initial data (1o, Ag, A1) € MY9. Then, for every § € (1,0 — 1), we
have the local-smoothing estimate

IXaWllege g pmes ST s AN Lo 1y ) 1 (Aos An) [ o pro—1)-

o IDEA OF THE PROOF:
- Let h increas., bdd, such H'(t) =1 for |t| > 5, K'(t) =0 for |t| > 1.
-Given « € Z3 and spatial direction j, set h, j(x) := h(x; — o))
-define the smoothing operator L, := D5 *ha (0 — iA;) DY .
-Use energy method for the equation satisfied by L, jDa), together
with commutator bounds and the refined Koch-Tzvetkov estimate.

@ Local smoothing allows to improve a bit the range of (s, o) in the
LWP for (v-MS).
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Existence and stability of solutions to (y-QMHD)

o We are interested in weak solutions, obtained as Madelung transform
(p = |¥)? J = Im(xV a10)) from M'2-solutions to (-MS).

o "Natural" hydrodyn. variables: \/p and A := Im(@V 1)), where
¥ = ¢|¢|. The map ¢ — (/p,\) is continuous from H' to H' x 2.

e We do not have GWP in M%7 for (4-MS). Hence we cannot use a
standard approximation/stability approach.

o We start from a weak M solution to (y-MS), o > 1, and we
directly manipulate the integral (Duhamel) formulations. A priori
estimate allows to justify all the passages, when v € (1,4).

o Weak stability of (\/p,\) obtained using the local smoothing.

@ QUESTION: Can we cover y € [4,5)7 Can we cover the case 0 =17
(Same problem arises also in classical MHD model).
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Thank you for your attention!

R. Scandone (GSSI) Non-linear Maxwell-Schrédinger August 4, 2021 16 / 16



