# Global well-posedness for the non-linear Maxwell-Schrödinger system

Raffaele Scandone (GSSI L'Aquila)

13th ISAAC congress, *Harmonic Analysis and PDEs* Session 4 August 2021

Based on joint work with P. Antonelli and P. Marcati

### Maxwell-Schrödinger system

$$\begin{cases} i\partial_t \psi = -\frac{1}{2} \Delta_A \psi + \phi \psi \\ -\Delta \phi - \partial_t \operatorname{div} A = \rho \\ \Box A + \nabla (\partial_t \phi + \operatorname{div} A) = J \end{cases}$$
 (MS)

in the unknown  $(\psi, \phi, A) : \mathbb{R}_t \times \mathbb{R}^3 \to \mathbb{C} \times \mathbb{R} \times \mathbb{R}^3$ , where

- $\Delta_A := \nabla_A^2 = (\nabla iA)^2$  is the magnetic Laplacian.
- $(\phi, A)$  is the electromagnetic potential.
- $\rho:=|\psi|^2$ ,  $J:=\operatorname{Im}(\overline{\psi}\nabla_A\psi)$  are the *charge* and *current* densities.

Conserved quantities: charge  $\mathcal{Q}:=\|\psi\|_{L^2}^2$ , and energy

$$\mathcal{E}:=\frac{1}{2}\int_{\mathbb{R}^3}|\nabla_{\mathcal{A}}\psi|^2+|\nabla\phi|^2+|\partial_t A|^2+|\mathrm{rot}\,A|^2dx.$$

Gauge invariance:  $(\psi, \phi, A) \mapsto (e^{i\lambda}\psi, \phi - \partial_t\lambda, A + \nabla\lambda), \quad \lambda : \mathbb{R}^3 \to \mathbb{R}.$ 

In the Coulomb gauge, i.e. div A = 0, (MS) takes the form

(MS) 
$$\begin{cases} i\partial_t \psi = -\frac{1}{2} \Delta_A \psi + \phi \psi \\ \Box A = \mathbb{P}J, \end{cases}$$

where  $\phi:=(-\Delta)^{-1}|\psi|^2$  (Hartree potential), and  $\mathbb{P}:=\mathbb{I}-\nabla\operatorname{div}(-\Delta)^{-1}$  is the Helmholtz-Leray projection (div  $\mathbb{P}=0$ ).

$$\mathcal{E} := \frac{1}{2} \int_{\mathbb{R}^3} |\nabla_A \psi|^2 + |\partial_t A|^2 + |\nabla A|^2 + |\nabla \phi|^2 dx.$$

Using  $(\rho, J)$  as unknown (Madelung transform), we formally get (issues: justify the derivation, possible presence of vacuum regions):

(E,B) satisfies Maxwell equations,  $\frac{1}{2}\rho\nabla\left(\frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}\right)$  is the Bohm potential.

# Nonlinear Maxwell-Schrödinger system (Coulomb gauge)

$$(\gamma\text{-MS}) \quad \begin{cases} i\partial_t \psi = -\frac{1}{2} \Delta_A \psi + \phi \psi + |\psi|^{\gamma-1} \psi \\ \Box A = \mathbb{P}J \end{cases}$$

Conserved quantities: charge  $\mathcal{Q}:=\|\psi\|_{L^2}^2$ , and energy

$$\mathcal{E}(t) := \frac{1}{2} \int_{\mathbb{R}^3} |\nabla_A \psi|^2 + |\partial_t A|^2 + |\nabla A|^2 + |\nabla \phi|^2 + \frac{2}{\gamma + 1} |\psi|^{\gamma + 1} dx$$

Using Madelung transform, formally we get the ( $\gamma$ -QMHD) system

$$\begin{cases} \partial_t \rho + \operatorname{div} J = 0 \\ \partial_t J + \operatorname{div} \left( \frac{J \otimes J}{\rho} \right) + \nabla P(\rho) = \rho E + J \wedge B + \frac{1}{2} \rho \nabla \left( \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \right), \end{cases}$$

 $P(\rho) = \frac{\gamma - 1}{\gamma + 1} \rho^{\frac{\gamma + 1}{2}}$  is an isentropic *pressure* term.



Magnetic Sobolev norms:  $\|f\|_{H^s_A}:=\|\mathcal{D}_A^sf\|_{L^2},\ \mathcal{D}_A:=(1-\Delta_A)^{1/2}.$ 

Assume  $A \in \dot{H}^1$ . Then  $H^s_A \approx H^s$  for  $s \in [-2,2]$ .

Energy space:  $(\psi, A, \partial_t A) \in M^{1,1} := H^1 \times H^1 \times L^2$ .

Consider more generally  $M^{s,\sigma}:=H^s\times H^\sigma\times H^{\sigma-1}$ ,  $s\in[1,2]$ ,  $\sigma\geq 1$ .

#### <u>Goals</u>

- Local and global well-posedness in  $M^{s,\sigma}$  for  $(\gamma\text{-MS})$ ;
- Existence and stability of solutions to  $(\gamma$ -QMHD).

#### Main obstacles

- Presence of a time-dependent magnetic Laplacian:

   even the well-posedness of the linear problem is hard!
   lack of Strichartz estimates (even for time independent potential, one needs smallness or spectral assumptions at zero energy).

  Hard to control the pure-power term.
- Derivative term in the current density J.

#### A priori estimates - Part 1

• Koch-Tzvetkov type estimates for Schrödinger equation Let  $\psi$  be a solution to  $i\partial_{\tau}\psi = -\Delta\psi + F$ . Then

$$\|\psi\|_{L^2_T B^{s-\alpha}_{6.2}} \lesssim \|\psi\|_{L^\infty_T H^s} + T^{1/2} \|F\|_{L^2_T H^{s-2\alpha}}, \quad \alpha > 0.$$

- -IDEA: localization of  $\psi$ , F in  $[0,T] imes \widehat{\mathbb{R}^3}$  + Standard Strichartz.
- -When  $\alpha \geq 1/2$ , it allows to handle the *derivative* term  $A \cdot \nabla$  appearing in the expansion of  $\Delta_A$ .
- Koch-Tzvetkov type estimates for magnetic Schrödinger.

Suppose that  $A\in L^q_TW^{1-2/q,r}$ ,  $\forall\, (q,r)$  s.t.  $\frac{1}{q}+\frac{1}{r}=\frac{1}{2}$ ,  $q\in[2,\infty]$ . Let  $s\in[1,2]$ , and  $\psi$  a solution to  $i\partial_t\psi=-\Delta_A\psi+F$ . Then

$$\|\psi\|_{L^2_T B^{s-\alpha}_{6,2}} \lesssim_T C_A \Big( \|\psi\|_{L^\infty_T H^s} + \|F\|_{L^2_T H^{s-2\alpha}} \Big), \quad \alpha \geq 1/2.$$

#### A priori estimates - Part 2

• Strichartz estimates for  $(\Box + 1)A = F$ .

$$\max_{k=0,1} \|\partial_t^k A\|_{L^q_T W^{s-k-2/q,r}} \lesssim \|(A_0,A_1)\|_{H^s \times H^{s-1}} + \|F\|_{L^{q_0'}_T W^{s+2/q_0-1,r_0'}}.$$

Admissible pair:  $\frac{1}{q} + \frac{1}{r} = \frac{1}{2}$ ,  $q \in (2, \infty]$ . The endpoint case  $(q, r) = (2, \infty)$  fails in general. It holds for *radial* data, or as soon as we have some extra *angular regularity*.

• Product estimates. Let  $s \ge 0$ , and  $\frac{1}{p_i} + \frac{1}{q_i} = \frac{1}{p}$ , i = 1, 2. Then

$$\|\mathbb{P}(\overline{\psi}_1 \nabla \psi_2)\|_{W^{s,p}} \lesssim \|\psi_1\|_{W^{s,p_1}} \|\nabla \psi_2\|_{L^{q_1}} + \|\nabla \psi_1\|_{L^{q_2}} \|\psi_2\|_{W^{s,p_2}}.$$

- -IDEA: exploits  $\mathbb{P}\nabla=0$ . Allows to handle the derivative term in  $\mathbb{P}J$ .
- -This idea is **not enough** when there are *pure-curl* currents, like the spin-current in the Maxwell-Pauli system.

# A priori estimates for $(\gamma$ -MS)

Given  $\sigma>1$  Strichartz for Klein Gordon + product estimate gives

$$||A||_{L^2_{\mathcal{T}}L^{\infty}} \lesssim_{\mathcal{T}} \langle ||(\psi, A, \partial_t A)||_{L^{\infty}_{\mathcal{T}}M^{1,1}}^m \rangle \langle ||(A_0, A_1)||_{H^{\sigma} \times H^{\sigma-1}}^m \rangle.$$

(It's enough  $\sigma=1$  with "endpoint initial data"). For  $\gamma\in(1,4)$ 

$$\||\psi|^{\gamma-1}\psi\|_{L^2_TH^{s-1}}\lesssim \|\psi\|_{L^\infty_TH^1}^{\gamma-1}\|\psi\|_{L^2_TW^{1/2-\varepsilon(\gamma),6}\cap L^\infty_TH^1}$$

Hence, by Koch-Tzvetkov estimates, previous bound, and *bootstrap*, we obtain that for  $s \in [1,2], \ \sigma > 1$ 

$$\|\psi\|_{L^{2}_{T}B^{s-1/2}_{6,2}} \lesssim_{T} \langle \|(\psi,A,\partial_{t}A)\|^{n}_{L^{\infty}_{T}M^{1,1}} \rangle \langle \|(A_{0},A_{1})\|^{n}_{H^{\sigma}\times H^{\sigma-1}} \rangle \|\psi\|_{L^{\infty}_{T}H^{s}}.$$

**Consequences:** Let  $(\psi, A)$  a *finite energy*, weak solution to  $(\gamma\text{-MS})$  with  $(u_0, A_0, A_1) \in M^{1,\sigma}$ ,  $\sigma > 1$ . Then

- $\|\psi\|_{L^2_{\tau}B_{6,2}^{1/2}} + \|A\|_{L^2_{\tau}L^{\infty}} \lesssim_{T} 1.$
- The Lorentz force  $F := \rho E + J \wedge B$  is well-defined and belongs to  $L^2_T L^1$  ( $M^{1,1}$  alone is not sufficient).

# Local well-posedness for $(\gamma$ -MS)

- Let  $s \in [\frac{11}{8}, 2]$ ,  $\sigma \in (1, 3)$ ,  $\gamma \in (s, \gamma^*)$ , for  $\gamma^* := \gamma^*(s) \in (3, \infty]$  (when s = 2,  $\gamma \in (1, \infty)$ ). Then  $(\gamma$ -MS) il LWP in  $M^{s, \sigma}$ .
- ullet Holds also when  $\sigma=1$  with "endpoint initial data".
- Relatively easy at high regularity  $(s > \frac{3}{2})$ .
- Exploits a priori estimates at intermediate regularity  $(s \in (\frac{11}{8}, 2))$ .
- Open problem at low regularity, in particular in the energy space  $M^{1,1}$  (existence of **weak** solutions in  $M^{1,1}$ , for  $\gamma \in (1,5)$ , can be proved through a regularization/compactness argument).
- For the linear Maxwell-Schrödinger system, well-posedness in the energy space has been proved in [Bejenaru-Tataru, 2009].
   Extending their analysis to the non-linear case is non-trivial.

# Global well-posedness (Part I)

(Generalized) Brezis-Gallouet inequality:

$$\|f\|_{L^{\infty}} \lesssim 1 + \|f\|_{B^{3/p}_{p,r}} \ln_{+}^{r-1} \|f\|_{W^{3/q+\varepsilon,q}}$$

A standard energy methods yields

$$\|\psi\|_{L^{\infty}_{T}H^{s}} \lesssim_{T} 1 + \int_{0}^{T} \|\psi(t)\|_{L^{\infty}}^{\gamma-1} \|\psi\|_{L^{\infty}_{t}H^{s}}$$

Assume  $s>\frac{3}{2},\ \gamma\in(s,3).$  Brezis-Gallouet for  $B_{6,2}^{1/2}$  yields

$$\|\psi\|_{L^{\infty}_{T}H^{s}} \lesssim_{\mathcal{T}} 1 + \int_{0}^{\mathcal{T}} \|\psi(t)\|_{B^{1/2}_{6,2}}^{\gamma-1} \|\psi\|_{L^{\infty}_{t}H^{s}} \ln_{+}^{\frac{\gamma-1}{2}} \|\psi\|_{L^{\infty}_{t}H^{s}}.$$

Uniform bound on  $L_T^2 B^{1/2,6}$  + Grönwall imply GWP with expexp-bounds.

• The method can be adapted to cover  $s \in (1, \frac{3}{2}]$ , as  $B_{6,2}^{s-1/2} \hookrightarrow L^{\infty}$ .

## Modified higher order energy

Let  $\psi$  be a solution to  $(\gamma\text{-MS})$ ,  $\gamma>2$ . Define

$$\mathcal{E}_2(t) := \int_{\mathbb{R}^3} |\partial_t \psi|^2 - (\gamma - 1)|\psi|^{\gamma - 1}|\nabla |\psi||^2 - \frac{\gamma - 1}{\gamma}|\psi|^{2\gamma} dx$$

Same functional used by [Planchon-Tzvetkov-Visciglia, 2016] to prove polynomial growth of  $H^2$ -norm for sub-cubic NLS on compact manifolds.

•  $\mathcal{E}_2(t)$  is equivalent to  $\|\psi(t,\cdot)\|_{H^2}^2$ 

$$\left| \mathcal{E}_2(t) - \|\psi\|_{H^2_A}^2 \right| \lesssim \langle t \rangle^n \langle \|\psi\|_{H^2} \rangle^{c(\gamma)}, \quad c(\gamma) < 2.$$

ullet Gain of regularity when computing the derivative of  $\mathcal{E}_2$ :

$$\frac{d}{dt}\mathcal{E}_2(t) = c(\gamma) \int_{\mathbb{R}^3} |\psi|^{\gamma-2} \partial_t |\psi| |\nabla_A \psi|^2 dx + \text{"lower order terms"}$$

# Global well-posedness (Part II)

Using the a-priori estimates we find  $\varepsilon(\gamma) > 0$  such that

$$\int_0^T \frac{d}{dt} \mathcal{E}_2(t) dt \lesssim \|\psi\|_{L^2_T B_{6,2}^{1/2}} \|\psi\|_{L^\infty_T H^2}^{2-\varepsilon(\gamma)}, \quad T \in (0,1)$$

Using  $\mathcal{E}_2(t) pprox \|u(t,\cdot)\|_{H^2}^2$  and uniform bound on  $L^2_T B^{1/2,6}$  we get

$$\|u(T,\cdot)\|_{H^2}^2 - \|u(0,\cdot)\|_{H^2}^2 \lesssim \|u\|_{L^\infty_T H^2}^{2-\varepsilon(\gamma)}, \quad T \in (0,1)$$

which yields

$$\sup_{t\in[0,T]}\|u(t,\cdot)\|_{H^2}\lesssim T^{\frac{1}{\varepsilon(\gamma)}},\quad T>0.$$

- GWP in  $M^{2,\sigma}$ , for  $\gamma \in (2,3)$ , with **polynomial** bounds.
- When  $\gamma=3$ , one can get GWP (with exponential bounds) by means of an iteration argument.

#### Refined Strichartz estimates

Let  $\chi_{\alpha}$  a bump function, with  $\chi_{\alpha} \equiv 1$  on the unit cube of center  $\alpha \in \mathbb{Z}^3$ .

• Refined Strichartz for  $(\Box + 1)A = F$ .

$$\max_{k=0,1} \|\chi_{\alpha} \partial_t^k A\|_{\ell^2_{\alpha} L^q_T W^{s-k-2/q,r}} \lesssim \|(A_0,A_1)\|_{H^s \times H^{s-1}} + \|F\|_{L^{q_0'}_T W^{s+2/q_0-1,r_0'}}.$$

Exploits the finite speed of propagation for wave equation.

• Refined Koch-Tzvetkov for  $i\partial_t \psi = -\Delta_{\mathcal{A}} \psi + \mathcal{F}$ .

Suppose that  $\chi_{\alpha}A\in\ell_{\alpha}^{2}L_{T}^{q}W^{1-2/q,r}$ , for all admissible pairs (q,r). Let  $s\in[0,2),\ \theta\in(0,1)$ , and  $m\in\left(\frac{\theta-1}{2},\frac{2\theta-1}{2}\right)$ . Then

$$\|\chi_{\alpha}\mathcal{D}_{A}^{s-\theta}\psi\|_{\ell_{\alpha}^{2}L_{T}^{2}W^{m,6}} \lesssim_{T} C_{A}(\|\psi\|_{L_{T}^{\infty}H^{s}} + \|F\|_{L_{T}^{2}H^{s-2\theta+2m}}).$$

Gain in term of summability w.r.t. spatial localization.



## Local smoothing estimates

• Fix  $\sigma \in (1, \frac{7}{6})$ ,  $\gamma \in (1, 4)$ . Let  $(\psi, A)$  be a solution to  $(\gamma\text{-MS})$ , with initial data  $(\psi_0, A_0, A_1) \in M^{1,\sigma}$ . Then, for every  $\delta \in (1, \sigma - 1)$ , we have the local-smoothing estimate

$$\|\chi_{\alpha}\psi\|_{\ell_{\alpha}^{\infty}L_{T}^{2}H^{1+\delta}} \lesssim_{\mathcal{T}} \langle \|(\psi,A)\|_{L_{T}^{\infty}(H^{1}\times H^{1})}^{n} \rangle \langle \|(A_{0},A_{1})\|_{H^{\sigma}\times H^{\sigma-1}}^{n} \rangle.$$

- IDEA OF THE PROOF:
  - Let h increas., bdd, such h'(t)=1 for  $|t|\geq \frac{1}{2}$ , h'(t)=0 for  $|t|\geq 1$ .
  - -Given  $\alpha \in \mathbb{Z}^3$  and spatial direction j, set  $h_{\alpha,j}(x) := h(x_j \alpha_j)$
  - -define the smoothing operator  $L_{\alpha,j}:=\mathcal{D}_A^{\delta-1}h_{\alpha,j}(\partial_j-iA_j)\mathcal{D}_A^{\delta-1}$  .
  - -Use energy method for the equation satisfied by  $L_{\alpha,j}\mathcal{D}_A\psi$ , together with commutator bounds and the refined Koch-Tzvetkov estimate.
- Local smoothing allows to improve a bit the range of  $(s, \sigma)$  in the LWP for  $(\gamma\text{-MS})$ .

## Existence and stability of solutions to $(\gamma$ -QMHD)

- We are interested in weak solutions, obtained as Madelung transform  $(\rho = |\psi|^2, \ J = Im(\overline{\psi}\nabla_A\psi))$  from  $M^{1,\sigma}$ -solutions to  $(\gamma\text{-MS})$ .
- "Natural" hydrodyn. variables:  $\sqrt{\rho}$  and  $\Lambda:=Im(\overline{\varphi}\nabla_A\psi)$ , where  $\psi=\varphi|\psi|$ . The map  $\psi\mapsto (\sqrt{\rho},\Lambda)$  is continuous from  $H^1$  to  $H^1\times L^2$ .
- We do **not** have GWP in  $M^{1,\sigma}$  for  $(\gamma\text{-MS})$ . Hence we cannot use a standard approximation/stability approach.
- We start from a weak  $M^{1,\sigma}$  solution to  $(\gamma\text{-MS})$ ,  $\sigma>1$ , and we directly manipulate the integral (Duhamel) formulations. A priori estimate allows to justify all the passages, when  $\gamma\in(1,4)$ .
- Weak stability of  $(\sqrt{\rho}, \Lambda)$  obtained using the local smoothing.
- QUESTION: Can we cover  $\gamma \in [4,5)$ ? Can we cover the case  $\sigma = 1$ ? (Same problem arises also in classical MHD model).

Thank you for your attention!