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Fractional calculus

What is fractional calculus? The main idea is to generalize the order of
di↵erentiation and integration outside just the set of whole numbers.

For an n-fold integral there is a well known formula
Z x

a

Z x1

a
. . .

Z xn�2

a

Z xn�1

a
'(xn)dxndxn�1 . . . dx1 =

1

�(n)

Z x

a
(x�t)n�1'(t)dt.

Hence it was formulated the RL fractional integral

I
↵
a+f (x) =

1

�(↵)

Z x

a
(x � t)↵�1

f (t)dt, 0 < ↵ < 1,

and the inverse operator, i.e. RL fractional derivative as

D
↵
a+f (x) =

1

�(1� ↵)

d

dx

Z x

a
(x � t)�↵

f (t)dt, 0 < ↵ < 1,

while the Caputo fractional derivative is C
D

↵
a+f (x) = I

1�↵
a+ f

0(x).
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General definitions

Let ↵ 2 C, Re(↵) > 0, �1 6 a < b 6 +1. Let g be an integrable
function on [a, b], and let ' 2 C

1[a, b] be such that '0(t) > 0 for all
t 2 [a, b]. The left-sided RL fractional integral of a function g with
respect to another function ' is defined by

I↵,'a+ g(x) =
1

�(↵)

Z x

a
'0(t)('(x)� '(t))↵�1

g(t)dt.

While, the left-sided RL fractional derivative of a function g with respect
to another function ' is defined by

D↵,'
a+ g(x) =

✓
1

'0(x)

d

dx

◆n �
In�↵,'
a+ g

�
(x),

where ' 2 C
n[a, b] with '0(t) > 0 for all t 2 [a, b] and n = bRe(↵)c+ 1.
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Some classical books on the field

Some sources:

S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and
Derivatives: Theory and Ap- plications, Gordon Breach Science
Publishers, Yverdon, 1993. Translated from Russian: Nauka i Tekhnika,
Minsk, 1987.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of
Fractional Di↵erential Equations, Elsevier, Amsterdam, 2006.

Another introductory textbook:
K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and
Fractional Di↵erential Equations, Wiley, New York, 1993.
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Starting point

Several researchers have investigated fundamentals solutions of the
multidimensional fractional di↵usion–wave equation (a = 0)

( CD�
t + a

C
D

↵
t � c

2�x)h(x , t) = 0,

h(x , 0) = �(x),

h(x , 0)

@t
= �(x),

and time-fractional telegraph equation (a > 0), where x 2 Rn, t > 0,
0 < ↵ 6 1, 1 < � 6 2, a > 0, c > 0, �x =

Pn
k=1 @

2
xk , �(x) =

Qn
i=1 �(xi )

is the distributional Dirac delta function in Rn.
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Starting point

Notice that:

1 C
D

�
t � c

2�x becomes (� = 0) to the Helmholtz operator I � c
2�x .

2 C
D

�
t � c

2�x becomes (� = 1) to the Heat operator @t � c
2�x .

3 C
D

�
t � c

2�x becomes (� = 2) to the wave operator @2
tt � c

2�x .

For some related works, see e.g.:

1 W.R.Schneider, W. Wyss. Fractional di↵usion and wave equations. J.
Math. Phys., 30(1), (1989), 134–144.

2 A. Hanyga, Multidimensional solutions of time-fractional
di↵usion-wave equations, Proc. R. Soc. Lond., Ser. A, Math. Phys.
Eng. Sci., 458, (2002), 933–957.
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Recent related works

Recent results gave explicit solutions in a close form by using some special
functions:

1 Y.Luchko. Multi-dimensional fractional wave equation and some
properties of its fundamental solution. Commun. Appl. Ind. Math.,
6(1), (2014) # 485, 21p.

2 M. Ferreira, N. Vieira. Fundamental solutions of the time fractional
di↵usion–wave and parabolic Dirac operators. J. Math. Anal. Appl.,
447(1), (2017), 329–353.
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New applications in Cli↵ord Analysis

1 Ferreira M, Rodrigues MM, Vieira N. Fundamental solution of the
time–fractional telegraph Dirac operator. Math. Meth. Appl. Sci.
40(18), (2017), 7033–7050.

2 Ferreira M, Rodrigues MM, Vieira N. First and Second Fundamental
Solutions of the Time–Fractional Telegraph Equation with Laplace or
Dirac Operators. Adv. Appl. Cli↵ord Algebras. 28(42), (2018).
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Base questions: Published works and future works

1 ( CD�
t � c

2�x)h(x , t) = 0 Done for RL and Caputo! Open for some
other fractional di↵erential operators like Prabhakar !

2 ( CD�
t + a

C
D

↵
t � c

2�x)h(x , t) = 0 Done for RL and Caputo ! Open
for some other fractional di↵erential operators like Prabhakar !

For (1) and (2), a classical approach is applied the space-Fourier transform
in Rn to get a fractional initial-value problem of constant coe�cients in
the time-variable, whose solution is known 1. And then, taking the inverse
Fourier transform. The “most di�cult” and “interesting” part is obtained
a close form of the solutions.

1Y. Luchko, R. Gorenflo. An operational method for solving fractional di↵erential
equations with the Caputo derivatives. Acta Math Vietnam. 24(2), (1999), 207–233.
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Base questions: Published works and future works

1 ( CD�0
t + a1

C
D

�1
t + · · ·+ am

C
D

�m
t � c

2�x)h(x , t) = 0
Partially known! The main problem is to obtain a close solution.
Similar approach ! New objects to be analyzed ! Use di↵erent
fractional operators, like Prabhakar !

2 ( CD�0
t + a1(t) CD

�1
t + · · ·+ am(t) CD

�m
t � c

2�x)h(x , t) = 0
Under study! Let us now discuss it...
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A classical way for the solution

We give the main steps for getting a “first approach” of a “suitable
solution”2 of the following space-time fractional Cauchy problem:

( CD�0
t + a1(t)

C
D

�1
t + · · ·+ am(t)

C
D

�m
t � c

2�x)h(x , t) = 0.

By applying the space-Fourier transform we get:

( CD�0
t + a1(t)

C
D

�1
t + · · ·+ am(t)

C
D

�m
t + c

2|s|2)F(h)(s, t) = 0.

2well-posed: Uniquely determined solution that depends continuously on its data
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So, we have to solve an ordinary FDE with variable coe�cients ! For
instance, for fractional derivatives with respect to another function,
explicit solutions were published in:

1 J.E. Restrepo, M. Ruzhansky, D. Suragan, “Explicit solutions for
linear variable-coe�cient fractional di↵erential equations with respect
to functions”, Appl. Math. Comput., 403, # 126177, (2021).

2 J.E. Restrepo, D. Suragan, “Hilfer-type (with respect to functions)
fractional di↵erential equations with variable coe�cients”, Chaos
Solitons Fractals, 143, # 111146, (2021).

Therefore, we get a solution by applying the inverse space-Fourier
transform. Still some open questions here with respect to a close form of
the solution !
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Form of the solutions for FDEs with variable coe�cients

C
D

�0,�
0+ x(t) +

mX

i=1

⇥i (t)
C
D

�i ,�
0+ x(t) = h(t), t 2 [0,T ], m 2 N, (1)

under the initial conditions
✓

1

�0(t)

d

dt

◆k

x(t)|t=+0 = 0, k = 0, 1, . . . , n0 � 1, (2)

where �i 2 C, Re(�i ) > 0, Re(�0) > Re(�1) > . . . > Re(�m) > 0 and
ni � 1 6 Re(�i ) < ni , ni = bRe�ic+ 1, i = 0, 1, . . . ,m.

Theorem

Let h,⇥i 2 C [0,T ], i = 1, . . . ,m. Then the initial value problem (1) and
(2) has a unique solution x 2 C

n0�1,�0 [0,T ] and it is given by the formula

x(t) =
+1X

k=0

(�1)k I �0,�
0+

 
mX

i=1

⇥i (t)I
�0��i ,�
0+

!k

h(t).
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Space-time fractional Cauchy problem

We consider the following space-time fractional Cauchy problem (FCP):

C@�0,�
t w(x , t) +

m�1X

i=1

⇥i (t)
C@�i ,�

t w(x , t)+⇥m(t)(��)�w(x , t)

= h(x , t), t 2 (0,T ], x 2 Rn,

w(x , t)|
t=0

= w0(x),

@tw(x , t)|
t=0

= w1(x),

...

@n0
t w(x , t)|

t=0
= wn0�1(x),

where 0 < � 6 1, �i 2 C, ⇥i (t) 2 C [0,T ], ni = bRe�ic+ 1, i = 1, . . . ,m,
and Re(�0) > Re(�1) > . . . > Re(�m�1 ) > 0. Here h(t, ·) 2 C [0,T ].
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Solution of the FCP

Theorem (FCP)

The (FCP) has a unique solution given by
a
:

w(x , t) =
n0�1X

j=0

wj(x)
t
j

j!

+
n0�1X

j=0

Z

Rn

�
F�1
s Hj(t, |s|2,⇥1, . . . ,⇥m)

�
(x � y)wj(y)dy .

aJ.E. Restrepo, D. Suragan, “Direct and inverse Cauchy problems for
generalized space-time fractional di↵erential equations”, Adv. Di↵erential
Equations, 26(7–8), (2021), 305–339.

In the case of one variable coe�cient, a di↵erent expression for the
solution is established in: A. Fernandez, J.E. Restrepo, D. Suragan, “A
new representation for the solutions of fractional di↵erential equations
with variable coe�cients”, arXiv:2105.00870v1, 2021.
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The classical heat equation

We begin with the initial value problem for the heat equation on Rn :
(
wt(x , t) = �xw(x , t), x 2 Rn, t > 0,

w(x , t)|
t=0+

= g(x),

where g , bg 2 L
1(Rn). The classical solution of this equation can be found

by applying the space Fourier transform and then solving the transform
equation, which is an ordinary di↵erential equation with respect to the
variable t. So, the solution is given by:

w(x , t) =
1

(2⇡)n

Z

Rn
bg(y)e�|y |2t

e
�ix ·y

dy .
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The classical heat equation (using our approach)

On the other hand, by Theorem FCP with �0 = 1, ⇥i (t) ⌘ 0 for
i = 1, . . . ,m � 1, ⇥m(t) = 1, h(x , t) ⌘ 0 and w(x , t)|

t=0+
= g(x), we

have that the solution of the heat equation is given by:

w(x , t) = g(x) +
1

(2⇡)n

Z

Rn
e
�ix ·y

K0(t, |s|2, 1)(y)bg(y)dy ,

where

K0(t, |s|2, 1) =
+1X

k=0

(�1)k+1
⇣
I
1
0+

�
|s|2I 10+

�k⌘
(|s|2t0)

=
+1X

k=1

(�|s|2)k t
k

k!
= �1 +

+1X

k=0

(�|s|2t)k

k!
= �1 + e

�|s|2t .
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The classical heat equation (using our approach)

This implies

w(x , t) = g(x) +
1

(2⇡)n

Z

Rn
e
�ix ·y (�1 + e

�|y |2t)bg(y)dy

= g(x)� g(x) +
1

(2⇡)n

Z

Rn
e
�ix ·y

e
�|y |2tbg(y)dy ,

which coincides with the classical one.
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The classical wave equation

We now focus on the initial value problem for the wave equation on Rn :

8
><

>:

@2
ttw(x , t) = �xw(x , t), x 2 Rn, t > 0,

w(x , t)|
t=0+

= f (x),

@tw(x , t)|
t=0+

= g(x),

where f , g , bf , bg 2 L
1(Rn) such that bf (y) cos(|y |t), bg(y) sin(|y |t)|y | 2 L

1(Rn)
for any y 2 Rn and t > 0. The solution of wave equation can be found by
applying the space Fourier transform, and hence solving an ordinary
di↵erential equation in the variable t. Indeed, the solution is represented
by:

w(x , t) =
1

(2⇡)n

Z

Rn
e
�ix ·y

✓
bf (y) cos(|y |t) + bg(y)sin(|y |t)|y |

◆
dy .
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The classical heat equation (using our approach)

By using Theorem FCP with �0 = 2, ⇥i (t) ⌘ 0 for i = 1, . . . ,m � 1,
� = 1, ⇥m(t) = 1, h(x , t) ⌘ 0, w(x , t)|

t=0+
= f (x) and

@tw(x , t)|
t=0+

= g(x), we obtain

w(x , t) = f (x) + g(x)t +

Z

Rn
F�1

�
K0(t, |s|2, 1)

�
(x � y)f (y)dy

+

Z

Rn
F�1

�
K1(t, |s|2, 1)

�
(x � y)g(y)dy

= f (x) + g(x)t +
1

(2⇡)n

Z

Rn
e
�ix ·y

K0(t, |s|2, 1)(y)bf (y)dy

+
1

(2⇡)n

Z

Rn
e
�ix ·y

K1(t, |s|2, 1)(y)bg(y)dy ,
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The classical wave equation (using our approach)

where

K0(t, |s|2, 1) =
+1X

k=0

(�1)k+1
⇣
I
2
0+

�
|s|2I 20+

�k⌘
(|s|2t0)

=
+1X

k=0

(�|s|2)k+1 t
2(k+1)

(2(k + 1))!
= �1 +

+1X

k=0

(�|s|t)2k

(2k)!
= �1 + cos(|s|t),

and

K1(t, |s|2, 1) =
+1X

k=0

(�1)k+1
⇣
I
2
0+

�
|s|2I 20+

�k⌘
(|s|2t1)

=
+1X

k=0

(�|s|2)k+1 t
2(k+1)+1

(2(k + 1) + 1)!

= �t +
1

|s|

+1X

k=0

(�1)k(|s|t)2k+1

(2k + 1)!
= �t +

sin(|s|t)
|s| .
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The classical wave equation (using our approach)

It yields

w(x , t) = f (x)+g(x)t +
1

(2⇡)n

Z

Rn
e
�ix ·y (�1 + cos(|y |t))bf (y)dy

+
1

(2⇡)n

Z

Rn
e
�ix ·y

✓
�t +

sin(|y |t)
|y |

◆
bg(y)dy ,

= f (x) + g(x)t � f (x) +
1

(2⇡)n

Z

Rn
e
�ix ·y cos(|y |t)bf (y)dy

� tg(x) +
1

(2⇡)n

Z

Rn
e
�ix ·y sin(|y |t)

|y |
bg(y)dy

which coincides with the classical one.
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Example 1

Let us consider the fractional initial value problem of wave type

C@�0
t w(x , t) + t

�0(��)�w(x , t) = 0,

w(x , t)|
t=0+

= w0(x),

@tw(x , t)|
t=0+

= w1(x),

where 1 < �0 6 2 and 0 < � 6 1. The solution of the above equation is

w(x , t) = w0(x)�
Z

Rn

�
F�1

I
�0
0+

�
|s|2�t�0E

�0
1,2�0,�0

(�|s|2�t2�0)
��
(x � y)w0(y)dy

+ w1(t)t �
Z

Rn

�
F�1

I
�0
0+

�
|s|2�t�0+1

E
�0
1,2�0,�0+1(�|s|2�t2�0)

�
(x � y)w1(y)dy .
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Main sources
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28(11), (2020), 1–9.
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generalized space-time fractional di↵erential equations”, Adv.
Di↵erential Equations, 26(7–8), (2021), 305–339. Fractional case

3 J.E. Restrepo, M. Ruzhasky, D. Suragan, “Generalized time-fractional
Dirac type operators and Cauchy type problems”,
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Thank you!
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