Department of Electronics and Information Systems - Research Group NaM ${ }^{2}$

Inverse Source Problems in Fractional Dual-Phase-Lag heat conduction

Frederick Maes

13th ISAAC Congress
Session 8: Harmonic Analysis and PDEs
Ghent, August 2-6, 2021
frederick.maes@UGent.be

Overview

1 Introduction
[2 Preliminaries
3 Main result
4 Modified models

圊 F. Maes, M. Slodička. Some Inverse Source Problems of Determining a Space Dependent Source in Fractional-Dual-Phase-Lag Type Equations
Mathematics (2020), 8(8), 1291

Introduction
 Classical Theory

- Classical Heat Equation:

$$
\rho c \partial_{t} T+\nabla \cdot(-\boldsymbol{k} \nabla T)=g
$$

follows from:

- the Fourier law

$$
\boldsymbol{q}(\mathbf{x}, t)=-\boldsymbol{k}(\mathbf{x}) \nabla T(\mathbf{x}, t)
$$

- the energy balance

$$
\rho c \partial_{t} T(\mathbf{x}, t)+\nabla \cdot \boldsymbol{q}(\mathbf{x}, t)=g(\mathbf{x}, t)
$$

- Physical problem: infinite speed of propagation.
- How to resolve? Use a non-Fourier type law.

Introduction

CV - J models

- Cattaneo-Vernotte equation

$$
\boldsymbol{q}(\mathbf{x}, t)+\tau \partial_{t} \boldsymbol{q}(\mathbf{x}, t)=-\boldsymbol{k} \nabla T(\mathbf{x}, t)
$$

leads to the (hyperbolic) heat transport equation

$$
\rho c\left(1+\tau \partial_{t}\right) \partial_{t} T+\nabla \cdot(-\boldsymbol{k} \nabla T)=\left(1+\tau \partial_{t}\right) g
$$

where τ is the thermal relaxation time.

- Jeffreys-type heat flux equation

$$
\boldsymbol{q}(\mathbf{x}, t)+\tau_{q} \partial_{t} \boldsymbol{q}(\mathbf{x}, t)=-\boldsymbol{k}(\mathbf{x})\left(\nabla T(\mathbf{x}, t)+\tau_{T} \partial_{t} \nabla T(\mathbf{x}, t)\right)
$$

leads to

$$
\rho c\left(1+\tau_{q} \partial_{t}\right) \partial_{t} T+\nabla \cdot\left(-\boldsymbol{k}\left(1+\tau_{T} \partial_{t}\right) \nabla T\right)=\left(1+\tau_{q} \partial_{t}\right) g
$$

where τ_{q} and τ_{T} are delay times.

Introduction
 Tzou's model

- Dual-Phase-Lag model

$$
\boldsymbol{q}\left(\mathbf{x}, t+\tau_{q}\right)=-\boldsymbol{k} \nabla T\left(\mathbf{x}, t+\tau_{T}\right)
$$

- Interpretation:
- τ_{T} caused by micro-structural interactions
- τ_{q} relaxation time due to fast transient effects of thermal inertia
- Generalizes CV and J type equations
- Gives rise to new models by Taylor approximation, e.g.

$$
\left(1+\tau_{q} \partial_{t}+\frac{\tau_{q}^{2}}{2} \partial_{t t}\right) \boldsymbol{q}(\mathbf{x}, t)=-\boldsymbol{k}\left(1+\tau_{T} \partial_{t}\right) \nabla T(\mathbf{x}, t)
$$

R. D. Tzou. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales J. Heat Transf., 1995, 117, 8-16

R D.S. Chandrasekharaiah. Hyperbolic thermoelasticity: A review of recent literature Appl. Mech. Rev., 51 (12), 705-729, 1998
R. R. Quintanilla, R. Racke. Qualitative aspects in dual-phase-lag heat conduction Proc. R. Soc. A (2007) 463, 659-674

Introduction
 Fractional Dual-Phase-Lag

- Fractional version

$$
\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right) \boldsymbol{q}(\mathbf{x}, t)=-\boldsymbol{k}(\mathbf{x})\left(1+\tau_{T}^{\beta} \mathrm{D}_{t}^{\beta}\right) \nabla T(\mathbf{x}, t)
$$

where D_{t}^{α} is the Caputo fractional derivative

$$
\left({ }_{a}^{C} \mathrm{D}_{t}^{\alpha} f\right)(t):=\left({ }_{a} I_{t}^{n-\alpha} \mathrm{D}_{t}^{n} f\right)(t)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t}(t-\tau)^{n-1-\alpha} f^{(n)}(\tau) \mathrm{d} \tau
$$

$$
\text { for } n-1 \leq \alpha<n, \text { and }{ }_{a}^{c} \mathrm{D}_{t}^{\alpha}=\mathrm{D}_{t}^{n} \text { for } \alpha=n
$$

- Fractional Dual-Phase-Lag Heat Equation $(0<\alpha, \beta<1)$

$$
\begin{aligned}
\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right)\left(\rho c \partial_{t} T(\mathbf{x}, t)\right)+\nabla \cdot[-\boldsymbol{k}(\mathbf{x})(1+ & \left.\left.\tau_{T}^{\beta} \mathrm{D}_{t}^{\beta}\right) \nabla T(\mathbf{x}, t)\right] \\
& =\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right) g(\mathbf{x}, t)
\end{aligned}
$$

- In some practical situations (e.g. bioheat, thermal therapy of skin tissue),

$$
\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right) g(\mathbf{x}, t)=F(\mathbf{x})+f(\mathbf{x}) h(t)-a\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right) T(\mathbf{x}, t), \quad a \geq 0
$$

© J. Singh, P.K. Gupta, K.N. Rai. Solution of fractional bioheat equations by finite difference method and HPM Math. Comput. Model. 54 (2011) 2316-2325)

Introduction
 FDPL: final form

- Bounded domain $\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}$ with $\partial \Omega$ Lipschitz continuous.
- Final time $\mathcal{T}>0$.

For $(\mathbf{x}, t) \in \Omega \times(0, \mathcal{T}]$ consider

$$
\begin{align*}
\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right)(& \left(\rho c \partial_{t} T(\mathbf{x}, t)\right)+a\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right) T(\mathbf{x}, t) \\
& +\nabla \cdot\left[-\boldsymbol{k}(\mathbf{x})\left(1+\tau_{T}^{\beta} \mathrm{D}_{t}^{\beta}\right) \nabla T(\mathbf{x}, t)\right]=F(\mathbf{x})+f(\mathbf{x}) h(t) \tag{1}
\end{align*}
$$

with initial data

$$
\begin{equation*}
T(\mathbf{x}, 0)=T_{0}(\mathbf{x}) \quad \text { and } \quad \partial_{t} T(\mathbf{x}, 0)=V_{0}(\mathbf{x}), \quad \mathbf{x} \in \Omega \tag{2}
\end{equation*}
$$

and boundary condition

$$
\begin{equation*}
T(\mathbf{x}, t)=T_{\Gamma}(\mathbf{x}, t), \quad(\mathbf{x}, t) \in \partial \Omega \times(0, T] \tag{3}
\end{equation*}
$$

Goal: Study uniqueness of a solution $(T(\mathbf{x}, t), f(\mathbf{x}))$ to the ISP, given final time observation $T(\mathbf{x}, \mathcal{T}), \mathbf{x} \in \Omega$.

Preliminaries

- Caputo Derivative

$$
\left(\mathrm{D}_{t}^{\alpha} f\right)(t)=\left(g_{1-\alpha} * \partial_{t} f\right)(t)=\int_{0}^{t} g_{1-\alpha}(t-\tau) \partial_{t} f(\tau) \mathrm{d} \tau
$$

- Riemann-Liouville kernel $g_{1-\alpha} \in \mathrm{L}_{\text {loc }}^{1}(0, \infty)$

$$
g_{1-\alpha}(t)=\frac{t^{-\alpha}}{\Gamma(1-\alpha)}, \quad t>0, \quad 0<\alpha<1
$$

satisfies $g_{1-\alpha}^{\prime} \not \equiv 0$ and is strongly positive definite, i.e.

$$
\int_{0}^{t}\left(g_{1-\alpha} * y\right)(s) y(s) \mathrm{d} s \geq 0
$$

Lemma

Let $0<\alpha<1$ and $\partial_{t} v \in \mathrm{~L}_{\text {loc }}^{2}\left((0, \infty), \mathrm{L}^{2}(\Omega)\right)$ with $v(0)=0$. Then for any $\xi \geq 0$, we have

$$
\int_{0}^{\xi}\left(\left(\mathrm{D}_{t}^{\alpha} v\right)(s), v(s)\right) \mathrm{d} s \geq 0
$$

Preliminaries

Lemma

Let $0<\beta<1$ and $\mathcal{T}>0$. Consider functions $v, r, z \in \mathrm{C}([0, \mathcal{T}])$, and $\alpha \in \mathrm{C}^{1}((0, \mathcal{T}])$ with $\alpha^{\prime} \in \mathrm{L}^{1}(0, \mathcal{T})$. Assume that α obeys

$$
z(t) \alpha^{\prime}(t)+\mathrm{D}^{\beta} \alpha(t)+r(t) \alpha(t)=v(t) \quad t \in[0, \mathcal{T}],
$$

along with

$$
\alpha(0)=\alpha(\mathcal{T})=0, \quad 0 \leq r(t), z(t), \quad t \in[0, \mathcal{T}] .
$$

If $v(t) \leq 0$ for $t \in[0, \mathcal{T}]$, then $\alpha(t) \leq 0$ for $t \in[0, \mathcal{T}]$.

Preliminaries

Let $\lambda>0$ and consider

$$
\mathrm{D}^{\beta} v(t)+\lambda v(t)=\sigma(t), \quad v(0)=0 .
$$

The solution is given by

$$
v(t)=\int_{0}^{t}(t-s)^{\beta-1} E_{\beta, \beta}\left(-\lambda(t-s)^{\beta}\right) \sigma(s) \mathrm{d} s
$$

where

$$
E_{\mu, \gamma}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\mu k+\gamma)}
$$

is the Mittag-Leffler function. Note that for $\mu, \gamma>0$, the function $E_{\mu, \gamma}(-t), t>0$, is completely monotonic iff. $0<\mu \leq 1$, and $\mu \leq \gamma$.
\& I. Podlubný. Fractional Differential Equations (1998)
Q T.M. Atanacković, S. Pilipović, B. Stanković, D. Zorica. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. (2014)

目 F. Mainardi, R. Gorenflo. Time-fractional derivatives in relaxation processes: A tutorial survey Fract. Calc. Appl. Anal., 10 (3), 2007
(K.S. Miller, S.G. Samko A note on the complete monotonicity of the gernalized Mittag-Leffler function Real Anal. Exch., (23) 753-756, 1999

Main result

Problem description

Consider the homogeneous problem (1)-(2)-(3):

$$
\left\{\begin{array}{rlrl}
\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right)\left(\rho c \partial_{t} T(\mathbf{x}, t)\right)+a\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right) T(\mathbf{x}, t) & & \\
+\nabla \cdot\left[-\boldsymbol{k}(\mathbf{x})\left(1+\tau_{T}^{\beta} \mathrm{D}_{t}^{\beta}\right) \nabla T(\mathbf{x}, t)\right] & & =f(\mathbf{x}) h(t) & \\
\text { in } \Omega \times(0, \mathcal{T}] \\
T(\mathbf{x}, t) & =0 & & \text { in } \partial \Omega \times(0, \mathcal{T}] \\
T(\mathbf{x}, 0) & =0 & & \text { in } \Omega \\
\partial_{t} T(\mathbf{x}, 0) & =0 & & \text { in } \Omega \tag{4}\\
T(\mathbf{x}, \mathcal{T}) & =0 & & \text { in } \Omega
\end{array}\right.
$$

Goal: $T(\mathbf{x}, t)=0=f(\mathbf{x})$ a.e.

Main result

Theorem

Let $0<\alpha, \beta<1$. Assume $\boldsymbol{k}(\mathbf{x})$ satisfies,

$$
\left\{\begin{aligned}
\boldsymbol{k}(\mathbf{x}) & =\left(k_{i, j}(\mathbf{x})\right)_{i, j=1, \ldots, d}, \boldsymbol{k}=\boldsymbol{k}^{\top}, & & \mathbf{x} \in \Omega \\
k_{i, j} & \in \mathrm{~L}^{\infty}(\Omega) & & i, j=1, \ldots, d \\
\boldsymbol{\xi}^{\top} \cdot \boldsymbol{k} \boldsymbol{\xi} & =\sum_{i, j=1}^{d} k_{i, j}(\mathbf{x}) \xi_{i} \xi_{j} \geq \underline{k}|\boldsymbol{\xi}|^{2}, & & \underline{k}>0, \forall \boldsymbol{\xi} \in \mathbb{R}^{d} .
\end{aligned}\right.
$$

Let $\rho, c>0$ and $a, \tau_{q}^{\alpha}, \tau_{T}^{\beta} \geq 0$. Moreover suppose that $h \in \mathrm{C}([0, \mathcal{T}])$ and $h^{\prime} \in \mathrm{C}((0, \mathcal{T}])$ with

$$
h(t)>0, \quad h^{\prime}(t) \geq 0
$$

If (T, f) is a solution to (4) with

$$
T \in \mathrm{C}\left([0, \mathcal{T}], \mathrm{H}_{0}^{1}(\Omega)\right), \quad \partial_{t} T \in \mathrm{~L}^{2}\left((0, \mathcal{T}), \mathrm{H}_{0}^{1}(\Omega)\right), \quad f \in \mathrm{~L}^{2}(\Omega)
$$

then $T(\mathbf{x}, t)=0=f(\mathbf{x})$ a.e.

Main result
 Sketch of the proof

- Proof is based on the variational technique.
- The crucial observation is here

$$
\int_{0}^{\mathcal{T}}\left(f, \partial_{t} T(s)\right) \mathrm{d} s=(f, T(\mathcal{T})-T(0))=0
$$

- Let $H(t)=1 / h(t)$. Then we have

$$
\begin{aligned}
\rho c & \int_{0}^{\mathcal{T}} H(s)\left\|\partial_{t} T(s)\right\|^{2} \mathrm{~d} s+\rho c \tau_{q}^{\alpha} \int_{0}^{\mathcal{T}} H(s)\left(\mathrm{D}_{t}^{\alpha+1} T(s), \partial_{t} T(s)\right) \mathrm{d} s \\
& \quad+\int_{0}^{\mathcal{T}} H(s)\left(a T(s), \partial_{t} T(s)\right) \mathrm{d} s+\tau_{q}^{\alpha} \int_{0}^{\mathcal{T}} H(s)\left(a \mathrm{D}_{t}^{\alpha} T(s), \partial_{t} T(s)\right) \mathrm{d} s \\
+ & \int_{0}^{\mathcal{T}} H(s)\left(\boldsymbol{k} \nabla T(s), \nabla \partial_{t} T(s)\right) \mathrm{d} s+\tau_{T}^{\beta} \int_{0}^{\mathcal{T}} H(s)\left(\boldsymbol{k} \mathrm{D}_{t}^{\beta} \nabla T(s), \nabla \partial_{t} T(s)\right) \mathrm{d} s=0 .
\end{aligned}
$$

- Standard estimation procedure yields

$$
\int_{0}^{\mathcal{T}} H(s)\left\|\partial_{t} T(s)\right\|^{2} \mathrm{~d} s=0
$$

Main result

Remark

- Conclusion is false if h, h^{\prime} change sign.

Example

Let $\Omega=(0, \pi)$ and $\mathcal{T}=1$. Consider

$$
\left\{\begin{aligned}
\left(1+\tau_{q}^{\alpha} \mathrm{D}_{t}^{\alpha}\right)\left(\partial_{t} T(x, t)\right)-\left(1+\tau_{T}^{\beta} \mathrm{D}_{t}^{\beta}\right) \Delta T(x, t) & =f(x) h(t) & & \text { in } \Omega \times(0, \mathcal{T}] \\
T(x, t) & =0 & & \text { in } \partial \Omega \times(0, \mathcal{T}] \\
T(x, 0)=T(x, \mathcal{T}) & =0 & & \text { in } \Omega .
\end{aligned}\right.
$$

Set $T(x, t)=v(t) g(x)$, and $f(x)=g(x)$ with $-\Delta g=\lambda g, g(0)=g(\pi)=0$, and $v \in \mathrm{C}^{2}(0,1)$ with $v(0)=v(1)$. Then

$$
h(t)=\tau_{q}^{\alpha}\left(g_{1-\alpha} * v^{\prime \prime}\right)(t)+\lambda \tau_{T}^{\beta}\left(g_{1-\beta} * v^{\prime}\right)(t)+v^{\prime}(t)+\lambda v(t)
$$

Modified models

Model 1: $\tau_{T}>\tau_{q}$

- Let $\tau:=\tau_{T}-\tau_{q}>0$ and consider

$$
\boldsymbol{q}(\mathbf{x}, t)=-\boldsymbol{k}(\mathbf{x}) \nabla T(\mathbf{x}, t+\tau)
$$

- First order Taylor expansion and the fractional version yields

$$
\rho c \partial_{t} T(\mathbf{x}, t)+\nabla \cdot\left[-\boldsymbol{k}(x)\left(1+\tau^{\beta} \mathrm{D}_{t}^{\beta}\right) \nabla T(\mathbf{x}, t)\right]=g(\mathbf{x}, t)
$$

- Take $g(\mathbf{x}, t)=F(\mathbf{x})+f(\mathbf{x}) h(t)-a T(\mathbf{x}, t)$.
- Behavior is dominated by the parabolic terms.
- ISP: Find $T(\mathbf{x}, t)$ and $f(\mathbf{x})$ obeying

$$
\left\{\begin{array}{rlrl}
\rho c \partial_{t} T(\mathbf{x}, t)+a T(\mathbf{x}, t) & & \\
+\nabla \cdot\left[-\boldsymbol{k}(\mathbf{x})\left(1+\tau^{\beta} \mathrm{D}_{t}^{\beta}\right) \nabla T(\mathbf{x}, t)\right] & =F(\mathbf{x})+f(\mathbf{x}) h(t) & & \text { in } \Omega \times(0, \mathcal{T}] \tag{5}\\
T(\mathbf{x}, t) & =T_{\Gamma}(\mathbf{x}, t) & & \text { in } \partial \Omega \times(0, \mathcal{T}] \\
T(\mathbf{x}, 0) & =T_{0}(\mathbf{x}) & & \text { in } \Omega \\
T(\mathbf{x}, \mathcal{T}) & =\Psi(\mathbf{x}) & & \text { in } \Omega .
\end{array}\right.
$$

(R. Y. Luchko Maximum Principle and Its Application for the Time-Fractional Diffusion Equations Fract. Calc. Appl. Anal. (2011), 14, 110-124

Modified models

Theorem

Let $0<\beta<1$, assume the same conditions on \boldsymbol{k} and the coefficients as before. Suppose now that $h \in C((0, \mathcal{T}])$, with $h \geq 0$ and $h \not \equiv 0$. Then there exists at most one couple $(T(\mathbf{x}, t), f(\mathbf{x}))$ solving the ISP (5) such that

$$
T \in \mathrm{C}\left([0, \mathcal{T}], \mathrm{L}^{2}(\Omega)\right), \quad T \in \mathrm{~L}^{2}\left((0, \mathcal{T}), \mathrm{H}_{0}^{1}(\Omega)\right), \quad f \in \mathrm{~L}^{2}(\Omega)
$$

and for some $0<\delta<1$,

$$
|h(t)|+\left\|T_{t}(t)\right\| \leq C\left(1+t^{-\delta}\right) \quad \text { for any } t \in(0, \mathcal{T}]
$$

- Technique is by separation of variables and spectral analysis of $A v:=\nabla \cdot[-\boldsymbol{k} \nabla v]$ acting on $\mathrm{H}_{0}^{1}(\Omega)$.

Modified models

Model 1: $\tau_{T}>\tau_{q}-$ Sketch

- Consider the homogeneous problem.
- Let $e_{j} \in \mathrm{H}_{0}^{1}(\Omega)$ be an orthonormal base in $\mathrm{L}^{2}(\Omega)$ of eigenfunctions of A with $A e_{j}=\lambda_{j} e_{j}$. Here $0<\lambda_{j} \rightarrow \infty$.
- Let

$$
T(t)=\sum_{j=0}^{\infty} \alpha_{j}(t) e_{j} \quad \text { and } \quad f=\sum_{j=0}^{\infty}\left(f, e_{j}\right) e_{j}
$$

then $\alpha_{j}(0)=0=\alpha_{j}(\mathcal{T})$ for all j and w.l.o.g. $\left(f, e_{j}\right) \geq 0$.

- The governing fractional partial differential equation then gives

$$
\frac{\rho c}{\tau^{\beta} \lambda_{j}} \alpha_{j}^{\prime}(t)+\frac{a+\lambda_{j}}{\tau^{\beta} \lambda_{j}} \alpha_{j}(t)+\left(\mathrm{D}_{t}^{\beta} \alpha_{j}\right)(t)=\frac{h(t)}{\tau^{\beta} \lambda_{j}}\left(f, e_{j}\right) \quad \text { for all } j
$$

- By the lemma $\alpha_{j}(t) \geq 0$ for all j.

Modified models

Model 1: $\tau_{T}>\tau_{q}-$ Sketch

Governing fractional partial differential equation, $\alpha_{j}(t) \geq 0$,

$$
\frac{\rho c}{\tau^{\beta} \lambda_{j}} \alpha_{j}^{\prime}(t)+\frac{a+\lambda_{j}}{\tau^{\beta} \lambda_{j}} \alpha_{j}(t)+\left(\mathrm{D}_{t}^{\beta} \alpha_{j}\right)(t)=\frac{h(t)}{\tau^{\beta} \lambda_{j}}\left(f, e_{j}\right) \quad \text { for all } j
$$

- Here, we can express $\alpha_{j}(t)$ in terms of $E_{\beta, \beta}$.

$$
\begin{aligned}
\alpha_{j}(t) & =\frac{\left(f, e_{j}\right)}{\tau^{\beta} \lambda_{j}} \int_{0}^{t}(t-s)^{\beta-1} E_{\beta, \beta}\left(-\frac{a+\lambda_{j}}{\tau^{\beta} \lambda_{j}}(t-s)^{\beta}\right) h(s) \mathrm{d} s \\
& -\frac{\rho c}{\tau^{\beta} \lambda_{j}} \int_{0}^{t}(t-s)^{\beta-1} E_{\beta, \beta}\left(-\frac{a+\lambda_{j}}{\tau^{\beta} \lambda_{j}}(t-s)^{\beta}\right) \alpha_{j}^{\prime}(s) \mathrm{d} s
\end{aligned}
$$

- Using several monotonicity properties of the Mittag-Leffler function we find

$$
\alpha_{j}(s)=0=h(s)\left(f, e_{j}\right) \quad \text { in }(0, \mathcal{T}] .
$$

Modified models

Model 2: $\tau_{T}<\tau_{q}$

- Let $\tau:=\tau_{q}-\tau_{T}>0$ and consider (single-phase-lag)

$$
\boldsymbol{q}(\mathbf{x}, t+\tau)=-\boldsymbol{k}(\mathbf{x}) \nabla T(\mathbf{x}, t)
$$

- First order Taylor expansion and fractional version yields

$$
\left(1+\tau^{\alpha} \mathrm{D}_{t}^{\alpha}\right)\left(\rho c \partial_{t} T(\mathbf{x}, t)\right)+\nabla \cdot[-\boldsymbol{k}(\mathbf{x}) \nabla T(\mathbf{x}, t)]=\left(1+\tau^{\alpha} \mathrm{D}_{t}^{\alpha}\right) g(\mathbf{x}, t) .
$$

- Take $\left(1+\tau^{\alpha} \mathrm{D}_{t}^{\alpha}\right) g(\mathbf{x}, t)=F(\mathbf{x})+f(\mathbf{x}) h(t)-a\left(1+\tau^{\alpha} \mathrm{D}_{t}^{\alpha}\right) T(\mathbf{x}, t)$.
- Fractional Cattaneo-Vernotte type equation
- The result as in Model 1, cannot be proved for this system.
- Example showing positivity of h is not sufficient for uniqueness.

Modified models

Model 2: $\tau_{T}<\tau_{q}$

Example

Let $\mathcal{T}=2 \pi$ and consider

$$
\left\{\begin{array}{rlrl}
\left(1+\mathrm{D}_{t}^{\alpha}\right) \partial_{t} T(\mathbf{x}, t)-\Delta T(\mathbf{x}, t) & =f(\mathbf{x}) h(t) & & \text { in } \Omega \times(0, \mathcal{T}] \\
T(\mathbf{x}, 0) & =0 & & \mathbf{x} \in \Omega \\
T_{t}(\mathbf{x}, 0) & =0 & & \mathbf{x} \in \Omega \\
T(\mathbf{x}, t) & & =0 & \\
(\mathbf{x}, t) \in \partial \Omega \times(0, \mathcal{T}]
\end{array}\right.
$$

with final time measurement $T(\mathbf{x}, \mathcal{T})=0$.

- The ISP for determining the missing $f(\mathbf{x})$ has the trivial solution $(T(\mathbf{x}, t), f(\mathbf{x}))=(0,0)$.
- Construction of a non-trivial solution $\left(\alpha=\frac{1}{2}\right)$:
(1) set $f=e$ with $-\Delta e=\lambda e$ with $e \in \mathrm{H}_{0}^{1}(\Omega)$
(2) set $T(\mathbf{x}, t)=v(t) e(\mathbf{x})$
(3) $v^{\prime}(t)+\left(D_{t}^{\alpha} v^{\prime}\right)+\lambda v(t)=h(t), \quad v(0)=0=v^{\prime}(0), \quad v(\mathcal{T})=0$
(4) consider $v(t)=1-\cos (t)$
(5) determine h

Modified models

Model 2: $\tau_{T}<\tau_{q}$

Example

Consider

$$
\left\{\begin{aligned}
\left(1+\mathrm{D}_{t}^{\alpha}\right) \partial_{t} T(\mathbf{x}, t)-\Delta T(\mathbf{x}, t) & =f(\mathbf{x}) h(t) & & \text { in } \Omega \times(0, \mathcal{T}] \\
T(\mathbf{x}, 0) & =0 & & \mathbf{x} \in \Omega \\
T_{t}(\mathbf{x}, 0) & =0 & & \mathbf{x} \in \Omega \\
T(\mathbf{x}, t) & =0 & & (\mathbf{x}, t) \in \partial \Omega \times(0, \mathcal{T}]
\end{aligned}\right.
$$

with final time measurement $T(\mathbf{x}, \mathcal{T})=0$.

- Construction of a non-trivial solution:
(5) determine h,

$$
h(t)=\sin (t)+\lambda(1-\cos (t))+\sqrt{2}\left[\cos (t) \mathcal{C}\left(\sqrt{\frac{2 t}{\pi}}\right)+\sin (t) \mathcal{S}\left(\sqrt{\frac{2 t}{\pi}}\right)\right]
$$

choose $\lambda>0$ sufficiently large. Then $h \geq 0, h \not \equiv 0$ and h^{\prime} changes sign.
6 $(T(\mathbf{x}, t), f(\mathbf{x}))=((1-\cos (t)) e(\mathbf{x}), e(\mathbf{x}))$ is a non-trivial solution.

Thank you!

