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Problem Under Consideration

Consider the following Cauchy problem of wave
equation with time or space dependent damping

(14t (1 + |x])
u(x,0) =ef(x), w(x,0)=¢eg(x), xeR"

{UIZ‘AU+ a ;’3UT:|u|pa (t,X)E[O, T)Xan (01)

where 1 > 0,a,3 € R are constants and n >
2, the initial data f(x), g(x) are compactly sup-
ported.



Why these problems?

System (0.1) can be used to model the wave travel
in a nonhomogeneous gas with damping, and the time or
space dependent coefficients imply that the friction may
vary with time or position, see lkawa(2000, Monographs)

and lkehata-Todorova-Yordanov(2009).
The equation admits both “wave"(hyperbolic) and “heat"

(parabolic) phenomenon, people want to figure out the ex-
act asymptotic behavior.

If we consider the compressible Euler equation with
space or time dependent damping, a similar equation for
the density can be obtained, so it is possible to apply the
method for this problem.



Linear Case

7 .
U —Au+ ————u;=0, in[0,T)xR",
{ A 0. 7)

u(x,0) = f(x), u(x,0)=g9g(x), xeR"

(0.2)

Based on the known results, we may classify the
linear problem (0.2) into three cases, due to the
value of decay rate

. solution behaves like
B € (=o0,1) effective that of heat equation
51 scaling invariant the asymptotic behavior
B weak damping depends on p
Be(1,00) scattering solution bghaw_es like that .
’ of wave equation without damping

Ikehata, Takeda, Todorova, Yordanov, Mochizuki,
Radu, Wakasugi,- - -.



Different From Time Dependent
Case

(1+1)7 (0.3)

uy — AU+ Lut =0, in[0,T)xR",
u(x,0) = f(x), w(x,0)=g(x), xeR"

. solution does not
B € (—o0,—1) overdamping decay to zero
. solution behaves like
pel=1.1) effective that of heat equation
5=1 scaling invariant the asymptotic behavior
o weak damping depends on p
. solution behaves like that
pe(1,00) scattering of wave equation without damping

Hosono, Ogawa, Marcati, Nishihara, Wirth(04-
08), - - -.



Two Critical Powers for Small Data
Cauchy Problem

Critical power pg(n): if p > pc(n), all small data
solutions are global; while if 1 < p < pg(n),
small data(positive) solutions will blow up in a fi-
nite time.

o Strauss exponent ps(n) = uy — Au = |u|P,
the positive root of the quadratic equation

v(p,n) =2+ (n+1)p—(n—1)p*=0.

o Fujita exponent ps(n) = 1+2 = u—Au+uy =
ulP.



"Strauss'(wave) or "Fujita"(heat)

For
H _ n
Uy — Au + A+0°(1 7 xX))7 ur = |ulP, (t,x)e[0,T)xR", 0.4)
u(x,0) =ef(x), w(x,0)=¢eg(x), xeR",

if the critical power equals to or at least is related
to ps(n), we say the equation admits Strauss or
“wave" exponent, while if it has only connection
to pr(n), we then say the problem admits Fujita
or “heat" exponent.



Known Results

The study of such problem has a boardline 2015:
before this year, people focus on the “heat" phe-
nomenon, while after that “wave" phenomenon
attracts more and more attention.

M) -u (8 =0)and a € [-1, 1), the critical power is ps(n) = 1+

see D’Abbicco-Lucente-Reissig(2013), Li-Zhou(1995), Lin-

ishihara-Zhai(2012), Todorova-Yordanov(2001), Zhang(2001),

. Sharp lifespan estimate for & = 0: Li-Zhou(1995), Nishi-
hara(2003) Ikeda-Ogawa(2016), Lai-Zhou(2019, JMPA).

° (1“)” u(B = 0), « = 1 and p is large, thus p > 5/3(n =
1),3(n = 2),n+ 2(n > 3), the critical power is still pe(n) =
1+ 2, see D'Abbicco(2015), D’Abbicco-Lucente(2013), Waka-
sugi(2014), - - -.

ﬁ
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Known Results

® aip=u(B =0), a=1andp=2,the critical power is ps(n+2),
see D’Abbicco-Lucente(2015), D’Abbicco-Lucente-Reissig(2015),
Kato-Sakuraba(2019), Lai(2020, Advanced Studies in Pure Math-
ematics), Palmieri(2019), Wakasa(2016), - - -
Fujita— Strauss, what will happen if i be-
comes smaller?

* (8 =0),a=1and0<pu< "2(;1;2 the solution blows

up for 1 < p < ps(n + 2u), see Lai-Takamura-Wakasa(2017,
JDE), which was improved(to 1 < p < ps(n+ p),0 < u <
%) by Ikeda-Sobajima(2018), Tu-Lin(2019), Palmieri-Reissig(201¢
Lai-Schiavone-Takamura(2020, JDE), - - -,.

° Wut(ﬁ =0),a=1and 2 < < 2, there exists global radial
solution in 3 — D, see Lai-Zhou(2021, NA).

° (1+,)Q ui(B = 0), « = 1, what about the “middle value" u?




Known Results

® (H,) ut(B = 0), « > 1, we are “almost" sure that the critical power is pg(n),
see Lai-Takamura(2018, Nonlinear Anal.), Wakasa-Yordanov(2019), Liu-Wang(2020),

° u(B = 0), a < —1, there are global solutions for all p > 1, see lkeda-

(1+t)a
Wakasugi(2020).
° W t(a = 0), B < 1, the critical power is pc(n) = 1+ = B' see lkehata-

Todorova-Yordanov(2009), Nishihara(2010), Nishihara-Sobajima-Wakasugi(2018),

L Wu,(a = 0), 8 = 1 and p is large, the critical power is pc(n) = 1 +
~2-(Fuijita type), see Li(2018) for s > n.
L Wu;(a =0), 8 = 1and p is small, the critical power will move to (Strauss

type), see the bIow-up result by lkeda-Sobajima(2020)(-£- u;) forn > 3,0 < p <

IxI

(=9 and 210 < p < ps(n+ u).



Known Results

® Georgiev-Kubo-Wakasa(2019) showed that the critical power for the radial so-
lutions is the shifted Strauss exponent p = ps(3 + 2) in R3, with damping(D(r))
and potential(v(r)) coefficients satisfying: D(r) is a positive decreasing func-
tion in C([0,00)) N C'(0,00) and D(r) = 2/|x| for r > g > 0, V(r) =
—D'(r)/2 + D?(r)/4.

® Dai-Kubo-Sobajima(2021) obtained the upper bound of the Ilfespan with scale-
invariant “critical” damping and potential D(x) = V(x) = =% for0 < doo <

n—1+2p(Voo), Voo > —(n —2)?/4 and

o \X\’

n+p(voo)
N+ p(Voo) — 1

where p(Veo) := 1/ ("%2)2 + Voo — 152,

< p < pe = max(ps(n+ doo), Pa(N + p(Ves))),



Known Results

What will happen if 5 > 1 and « = 0?
® |n Ikehata-Todorova-Yordanov(2009):

as t — oo if V(z) = O(|z|717°) with 6 > 0. In this case we expect that equation (1.1)
loses its “parabolicity” asymptotic effects and turns back to the regime of pure wave equation.
Respectively, we expect that the critical exponent p.(N,a) of the damped wave equation in

the case of fast decaying potential & > 1 jumps to the critical exponent of the wave equation—
Strauss’ number p,, (N). Namely, p.(N,a) = py(N) for any o > 1. The proof of both parts —

e |n Nishihara-Sobajima-Wakasugi(2018):

Conjecture

(i) For o < min{2, N}, 8 > —1 with o + 8 < 1, the critical exponent is
pe=1+ NZ_(Y .
(ii) For a, 8 € R with ao+ 8 = 1, the equation has scale-invariance and the
critical exponent will depend on ag.
(iii) For o, 8 € R with a+ 3 > 1, the critical exponent is given by the Strauss
number p. = pg(N).




Known Results

e The only known result for this case is due
to Metcalfe-Wang(2017), in which they ob-
tained global existence result for p > ps(n)(n =
3,4)if 5 > 1 and p is small enough.



Main Results for 5 > 2

arapUila=0)and 5 > 2.

Theorem (

Let3 >2 and1 < p < ps(n),n > 3. Assume that both f ¢ H'(R")
and g € L?(R") are non-negative and do not vanish identically. Then
there exists a constant ey = eo(f, g, n, p, , 8) > 0 such that T has to
satisfy

T < Ce™ " for1 <p< I, 05)
| Ce 2P0/ for Lo < p < pg(n) '

for0 < e < gg.
If p = ps(n), then

T < exp (ce—mp-”) (0.6)

for0 < e < gg.



Energy Solution

we say that u is an energy solution of (0.1) on [0, T) if

ue ([0, T), H'(R") N C'([0, T), LA(R™)) N L

loc

(R" x (0, T))

satisfies u(0, x) = ef(x), ux(0, x) = eg(x) and
W
E/Rn g(x)V¥(0, x)dx + a/Rn Wf(x)\ll(o,x)dx

;
+/ / |ulPW(t, x)dxdt
0 R

T T
:—/ / U[(t,X)Wt(t,X)dth+/ / Vu(t, x) - VV(t, x)dxdt
0 R 0 R"

;
—/O /Rn Wu(t,x)\vt(t,x)dxdt

for any W(t, x) € C5° ([0, T) x R").

(0.7)



Main Idea of Proof

A key observation:
if we have ¢(x) such that

(1 +1[x)? +|X\)

which was first introduced by Yordanov-Zhang(2005), then &(t, x) =
e~ !p(x) solves

24 _ H —
R A



Proof of (0.5)

Case 1. -= < p < ps(n)
® Choose the test function ¥ = nTp'(t) with

1 for ¢t <
n(t)= ¢ decreasing for} <t<1,
0 fort>1

and
nr(t) =1 (;) . Te(,T).

to get
gxdx+5/ fxdx+/ / ulPn 2”dxdt‘
) R" (1+\ )? ( l

ud2n® dxdt — / / P uom? dxdt
/ / e wr (T4 x0T



Proof of (0.5)

and furthermore

.
Ce + / / Py dxdt < CT" =57, (0.9)
0 R7

e Two Lemmas

Lemma

If B > 0, then for any o € R and a fixed constant R, we have

t+R
/ (14 r)*e PU="dr < C(t + R)". (0.10)
0



Proof of (0.5)

Lemma

(Lemma 3.1 in Yordanov and Zhang(2005)). Assuming that 5 > 2,
then the following equation

Adn—(?ﬁﬂﬁﬂm:¢u%xeR” (0.11)

admits a solution satisfying

0 < p(x) < C(1 +|x|)~"= el (0.12)



Proof of (0.5)

e Choose the test function W(t, x) = nsz/(t)e—%(x) to get

: [ atotaan+z [ (1 ; (H“'X)ﬁ) F(x)0(x)0x

.
+/ ulPny 20 ¢ dxdt

/ /,1 <8t 777- (D + 281‘777- atq) matn?-p,¢> axdt

and furthermore

C- < T ="y (/ / 7P |u|pdxdt> 7

which is actually

;
(Ce)P Tn-"2'P g/ / 7727’0 |u|Pdxdt. (0.13)
0 R



Proof of (0.5)

n
Case2. 1 <p< -5
e (Choose the test function W(t, x) = n'f;p,(t)e‘%(x) to get

i
[ atstadc+e [ (14 ot ) footds

T /
+ / |u|Pn ddxdt
0 R?

1
T P
<cT % < / / n2Tp<D|u|dedt>
0 Rn

;
<CT P+ +% / / 1 ®|ulPdxdt,
0 n

this yields

T < Cemioam, forl<p< % (0.14)



Proof of (0.6)

[} Lemma

Assuming

o
= e

and j3 > 2. Then for givenn € [0, 1], there exists function ¢,, € C?(R")
satisfying
A¢n - 77V¢n = 7727/)7] (0.15)
such that
P (X) ~ ©n(X) ;:/ e duw(~ nx| 2" el™). (0.16)

sn—1

The proof of the above lemma is parallel to that of Lemma 3.1
in Yordanov and Zhang(2005).



Proof of (0.6)

® Choose the test function

1
ba(t, x) = / e, ()9 dy, g >0
0

with

Lemma

(i) bq(t, x) satisfies following identities

5] g
abq(f: X) = 7bq+1(t7 X)7 ﬁbq(tr X) = bq+2(t7 X)

Abg(t, x) = V - bgyq(t, X) + bgr2(t, x),
82bg — Abg — Vdibg = 0.

(i)
(t+R+|x])"9for0<q< 23,

bg(t, x) ~ _ ’
a(t, %) {(t+R+|x|) T (t+R—|x)'T 9forg> 5L




Proof of (0.6)

¢ Introduce

00 ={ % oS o) = o)

For M € (1, T), as above one can get

T M , .
/ / 6% |u|Pdxdt > / / 62 |ulPxdt > CePM™="z"P.
0 R" 0 Rn
(0.17)



Proof of (0.6)

e Set

Y[wW](M) = (/T/ W(t,x)af,p/(t)dxdt>a 1

then for g = 251 — 15 we have
d 2p' P
Y[|u|pbq (t,x)] 9 bg|ulPdxat
>CM- ";‘*% / 62°' |ufPdixalt
Rﬂ
>CeP,
(0.18)

where we used the fact
n—1 n-1 1

n——%rFP=7>% "5

for p = ps(n).



Proof of (0.6)

e A key inequality

.
M) <C / / 15> bg|ulPdxdt
—C/ / <82u Au+( | i c’?tu> ban

2p 2 2p
SC‘/O /n u (25¢bq3mM + bqat 77/\/7 - mbqaﬂ'] >

<CM (log M)P~" Y'(M).
(0.19)



Proof of (0.6)

e Using the following lemma with py = po = pand § = P

Lemma

(Lemma 3.10 in Ikeda-Sobajima-Wakasa(2019)). Let2 < f{p < T.
0<¢eC'([t, T)). Assume that

0 < K; t(b/(t), te (to, T),
P(1)P < Kat(log )¢/ (t), te (fo, T)

with 0, Ky, Ko > 0 and py,p> > 1. If po < py + 1, then there exists
positive constants 6y and Kz (independent of §) such that

T <exp (K3§ p1p1pz1+1)

when 0 < § < dg.



Main Results for 5 > 1

The above result can be generalized to § > 1
andR"(n > 2).




The Key Point for the Proof

Lemma (

Letn>2,8>1,u>0. Suppose D(x) = W Then there exists
€ (0,1) such that for any 0 < \ < 1, there is a C? solution of

Adx — AD(x)pr = N2¢ (0.20)
satisfying

(X)) @M < 3 (x) < o TAIx]) T (0.21)

Remark

Actually, the above lemma holds for D(x) = D(|x|) € C(R") N C*(Bs)

for some o, 6 > 0 and 0 < D(x) < (1_+IW



Proof of the Key Lemma

We finish the proof by dividing R” into two parts:
Bi,» and R™\ By /), and setting ¢,(1/)) = 1.

Case 1. Inside the ball B,
Consider the Dirichlet problem within B;

{ D¢y — AD(X)pr = Mgy, X € By, (0.22)

Pxlo,,, =1
Prove uniform lower bound for ¢, in By, by two main steps.

e Upper bound estimates for 9,f, = 9,¢(x/X), which can be done
directly by using the equation.

e Convergence of f,, which will be done by using Arzela-Ascoli
theorem.



Proof of the Key Lemma

Case 2. Outside the ball B; ),
Let ¢, = r—"z"y, then y satisfies

y' =Ny - (—(n - 14)r(2n = AD(r))y =0,

y(%) =\, (0.23)

— n—3 n—1 1 1
y/(x) = AT 7+ )\_T¢/(X) € (0, CzM’(x))-

Then using the lemma by Liu-Wang(stated below) with K = 1,¢ =
1, A0 = 1 we may get

yorxmeN > 1,

and hence i
ox = (Nx))" 7 X Ax| > 1.



Proof of the key Lemma

Lemma (Lemma 3.1 in Liu-Wang(2019))
Let X € (0,)0], 6 € (0,1), >0, 5 > 0, K € (80,55 "),

||K/HL1 At oo S 6617 NGl (er—1,00)) < 561A,VA € (0, Ao]-
([exg 500)) ( )

{y“ — NK3(r)y + G(r)y = 0,r > ex™", (0.24
YT = 10,7 (A7) = 31 € (0,55 Wo), '
Then for any solution y with y, y’ > 0, we have the following uniform estimates,
independent of X € (0, o],

v~ et Jeyx K(mydr ,r>ex.

Assume in addition 1 — A=2K=2G € (6o, 6y 1), then the solution y to (0.24) satisfies
y,y’ > 0 and we have

Y~y + yor(eMea KT gy,



Global Existence Result for
a=1,6=0in3-D

Theorem (

Consider the Cauchy problem (0.1) with
a=1,8=0in 3-D. There exists global radial
solution for p > ps(3 + ) and3/2 < < 2.

Remark

In some sense, by combining the known
blow-up results for « = 1, 3 = 0, we may confirm
that ps(3 + p) is indeed the critical power at
least for3/2 < i < 2 in 3-D.



Key Steps of Proof

e By appropriate transformation, the original equation(radial) can
be rewritten as

bun + w2 — o ¢

: 2 G(u,T), (0.25)
4u+0® (u-oP o) T

where
u_t—|—2+rU_t—|-2—r
o 2 T 2 '




Key Steps of Proof

Ll Lemma (Energy Estimate)

We have for (0.25)

+0o0o
sup / pu2du
1<u<U max(u,2—0)
2 2 % u e 2 —
Se (HwO”H%R:") + (|91 ”L2(]R3)> +ﬁ / G adu | du.
3

max(u,2—u)

1

2

(0.26)

[SE



Key Steps of Proof

3 Lemma (Morawetz Type Estimate)

We have for (0.25)

+oo
/ ud(u— D)qbuzdu)
max(u,2—0)

2 2 : v
§5<||¢0||H1(R3)+ ||w1||L2(R3)> +/ (

1
2

This can be proved by a multiplier (u — )¢, and establishing a Hardy
type inequality

“+o0 o0
/ P2udu < / uBo2du.

max(u,2—u) max(U,2—0)



Key Steps of Proof

¥ Lemma (Weighted L? — [? Estimate)

We have for (0.25)

1
2

+oo
sup / u*S(u — 0)°p,%du
1<o<U \/max(0,2-10)
2 2 % U +oco s % _
SE <||1/10||H1(R3) + ||7/’1||L2(R3)> +[ (/ ) U (u— 1) szu> au,
3 max(u,2—0
(0.28)

where0 < s < 1.

This can be proved by interpolating between energy estimate and

Morawetz type estimate.



Key Steps of Proof

« Take s = § + 5; and denote

M()(T) = (% / T s D)S¢u2du)2.

max(u,2—u)

We then show M(¢)(u) is bounded for p >
ps(3+p)and 3/2 < u < 2.



Thank You for Your Attention!



