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Problem Under Consideration

Consider the following Cauchy problem of wave
equation with time or space dependent dampingutt −∆u +

µ

(1 + t)α(1 + |x |)β
ut = |u|p, (t , x) ∈ [0,T )× Rn,

u(x ,0) = εf (x), ut (x ,0) = εg(x), x ∈ Rn,
(0.1)

where µ > 0, α, β ∈ R are constants and n ≥
2, the initial data f (x),g(x) are compactly sup-
ported.



Why these problems?

System (0.1) can be used to model the wave travel
in a nonhomogeneous gas with damping, and the time or
space dependent coefficients imply that the friction may
vary with time or position, see Ikawa(2000, Monographs)
and Ikehata-Todorova-Yordanov(2009).

The equation admits both “wave"(hyperbolic) and “heat"
(parabolic) phenomenon, people want to figure out the ex-
act asymptotic behavior.

If we consider the compressible Euler equation with
space or time dependent damping, a similar equation for
the density can be obtained, so it is possible to apply the
method for this problem.



Linear Case

utt −∆u +
µ

(1 + |x |)β
ut = 0, in [0,T )× Rn,

u(x ,0) = f (x), ut (x ,0) = g(x), x ∈ Rn.
(0.2)

Based on the known results, we may classify the
linear problem (0.2) into three cases, due to the
value of decay rate β

β ∈ (−∞, 1) effective solution behaves like
that of heat equation

β = 1 scaling invariant
weak damping

the asymptotic behavior
depends on µ

β ∈ (1,∞) scattering solution behaves like that
of wave equation without damping

Ikehata, Takeda, Todorova, Yordanov, Mochizuki,
Radu, Wakasugi,· · · .



Different From Time Dependent
Case

utt −∆u +
µ

(1 + t)β
ut = 0, in [0,T )× Rn,

u(x ,0) = f (x), ut (x ,0) = g(x), x ∈ Rn.
(0.3)

β ∈ (−∞,−1) overdamping solution does not
decay to zero

β ∈ [−1, 1) effective solution behaves like
that of heat equation

β = 1 scaling invariant
weak damping

the asymptotic behavior
depends on µ

β ∈ (1,∞) scattering solution behaves like that
of wave equation without damping

Hosono, Ogawa, Marcati, Nishihara, Wirth(04-
08), · · · .



Two Critical Powers for Small Data
Cauchy Problem

Critical power pc(n): if p > pc(n), all small data
solutions are global; while if 1 < p ≤ pc(n),
small data(positive) solutions will blow up in a fi-
nite time.

• Strauss exponent pS(n) ⇒ utt − ∆u = |u|p,
the positive root of the quadratic equation

γ(p,n) = 2 + (n + 1)p − (n − 1)p2 = 0.

• Fujita exponent pF (n) = 1+2
n ⇒ ut−∆u+utt =

|u|p.



"Strauss"(wave) or "Fujita"(heat)

Forutt −∆u +
µ

(1 + t)α(1 + |x |)β
ut = |u|p, (t , x) ∈ [0,T )× Rn,

u(x ,0) = εf (x), ut (x ,0) = εg(x), x ∈ Rn,
(0.4)

if the critical power equals to or at least is related
to pS(n), we say the equation admits Strauss or
“wave" exponent, while if it has only connection
to pF (n), we then say the problem admits Fujita
or “heat" exponent.



Known Results

The study of such problem has a boardline 2015:
before this year, people focus on the “heat" phe-
nomenon, while after that “wave" phenomenon
attracts more and more attention.
• µ

(1+t)α ut (β = 0) and α ∈ [−1,1), the critical power is pF (n) = 1+
2
n , see D’Abbicco-Lucente-Reissig(2013), Li-Zhou(1995), Lin-
Nishihara-Zhai(2012), Todorova-Yordanov(2001), Zhang(2001),
· · · . Sharp lifespan estimate for α = 0: Li-Zhou(1995), Nishi-
hara(2003), Ikeda-Ogawa(2016), Lai-Zhou(2019, JMPA).

• µ
(1+t)α ut (β = 0), α = 1 and µ is large, thus µ ≥ 5/3(n =

1),3(n = 2),n + 2(n ≥ 3), the critical power is still pF (n) =
1 + 2

n , see D’Abbicco(2015), D’Abbicco-Lucente(2013), Waka-
sugi(2014), · · · .



Known Results

• µ
(1+t)α ut (β = 0), α = 1 and µ = 2, the critical power is pS(n +2),

see D’Abbicco-Lucente(2015), D’Abbicco-Lucente-Reissig(2015),

Kato-Sakuraba(2019), Lai(2020, Advanced Studies in Pure Math-

ematics), Palmieri(2019), Wakasa(2016), · · · .
Fujita� Strauss, what will happen if µ be-
comes smaller?

• µ
(1+t)α ut (β = 0), α = 1 and 0 < µ < n2+n+2

2(n+2) , the solution blows
up for 1 < p < pS(n + 2µ), see Lai-Takamura-Wakasa(2017,
JDE), which was improved(to 1 < p < pS(n + µ),0 < µ <
n2+n+2

n+2 ) by Ikeda-Sobajima(2018), Tu-Lin(2019), Palmieri-Reissig(2019),
Lai-Schiavone-Takamura(2020, JDE), · · · ,.

• µ
(1+t)α ut (β = 0), α = 1 and 3

2 ≤ µ < 2, there exists global radial
solution in 3− D, see Lai-Zhou(2021, NA).

• µ
(1+t)α ut (β = 0), α = 1, what about the “middle value" µ?



Known Results

• µ
(1+t)α ut (β = 0), α > 1, we are “almost" sure that the critical power is pS(n),
see Lai-Takamura(2018, Nonlinear Anal.), Wakasa-Yordanov(2019), Liu-Wang(2020),
· · · .

• µ
(1+t)α ut (β = 0), α < −1, there are global solutions for all p > 1, see Ikeda-
Wakasugi(2020).

• µ
(1+|x|)β ut (α = 0), β < 1, the critical power is pc(n) = 1 + 2

n−β , see Ikehata-
Todorova-Yordanov(2009), Nishihara(2010), Nishihara-Sobajima-Wakasugi(2018),
· · · .

• µ
(1+|x|)β ut (α = 0), β = 1 and µ is large, the critical power is pc(n) = 1 +

2
n−1 (Fujita type), see Li(2013) for µ ≥ n.

• µ
(1+|x|)β ut (α = 0), β = 1 and µ is small, the critical power will move to (Strauss

type), see the blow-up result by Ikeda-Sobajima(2020)( µ|x|ut ) for n ≥ 3, 0 ≤ µ <
(n−1)2

n+1 and n
n−1 < p ≤ pS(n + µ).



Known Results

• Georgiev-Kubo-Wakasa(2019) showed that the critical power for the radial so-
lutions is the shifted Strauss exponent p = pS(3 + 2) in R3, with damping(D(r))
and potential(v(r)) coefficients satisfying: D(r) is a positive decreasing func-
tion in C([0,∞)) ∩ C1(0,∞) and D(r) = 2/|x | for r ≥ r0 > 0, V (r) =
−D′(r)/2 + D2(r)/4.

• Dai-Kubo-Sobajima(2021) obtained the upper bound of the lifespan with scale-
invariant “critical” damping and potential D(x) = d∞

|x| ,V (x) = v∞
|x|2 for 0 ≤ d∞ <

n − 1 + 2ρ(v∞), v∞ > −(n − 2)2/4 and

n + ρ(v∞)

n + ρ(v∞)− 1
< p ≤ pc = max(pS(n + d∞), pG(n + ρ(v∞))),

where ρ(v∞) :=
√( n−2

2

)2
+ v∞ − n−2

2 .



Known Results

What will happen if β > 1 and α = 0?

• In Ikehata-Todorova-Yordanov(2009):

• In Nishihara-Sobajima-Wakasugi(2018):



Known Results

• The only known result for this case is due
to Metcalfe-Wang(2017), in which they ob-
tained global existence result for p > pS(n)(n =
3,4) if β > 1 and µ is small enough.



Main Results for β > 2

µ
(1+|x |)βut(α = 0) and β > 2.

Theorem (Lai-Tu(2020 JMAA))
Let β > 2 and 1 < p < pS(n),n ≥ 3. Assume that both f ∈ H1(Rn)
and g ∈ L2(Rn) are non-negative and do not vanish identically. Then
there exists a constant ε0 = ε0(f ,g,n,p, µ, β) > 0 such that T has to
satisfy

T ≤

{
Cε−

2(p−1)
n+1−(n−1)p for 1 < p ≤ n

n−1 ,

Cε−2p(p−1)/γ(p,n) for n
n−1 < p < pS(n)

(0.5)

for 0 < ε ≤ ε0.
If p = pS(n), then

T ≤ exp
(

Cε−p(p−1)
)

(0.6)

for 0 < ε ≤ ε0.



Energy Solution

we say that u is an energy solution of (0.1) on [0,T ) if

u ∈ C([0,T ),H1(Rn)) ∩ C1([0,T ),L2(Rn)) ∩ Lp
loc(Rn × (0,T ))

satisfies u(0, x) = εf (x),ut (0, x) = εg(x) and

ε

∫
Rn

g(x)Ψ(0, x)dx + ε

∫
Rn

µ

(1 + |x |)β
f (x)Ψ(0, x)dx

+

∫ T

0

∫
Rn
|u|pΨ(t , x)dxdt

=−
∫ T

0

∫
Rn

ut (t , x)Ψt (t , x)dxdt +

∫ T

0

∫
Rn
∇u(t , x) · ∇Ψ(t , x)dxdt

−
∫ T

0

∫
Rn

µ

(1 + |x |)β
u(t , x)Ψt (t , x)dxdt

(0.7)

for any Ψ(t , x) ∈ C∞0 ([0,T )× Rn).



Main Idea of Proof

A key observation:
if we have φ(x) such that

∆φ− µ

(1 + |x |)β
φ = φ, (0.8)

which was first introduced by Yordanov-Zhang(2005), then Φ(t , x) =
e−tφ(x) solves

∂2
t Φ−∆Φ− µ

(1 + |x |)β
∂t Φ = 0.



Proof of (0.5)

Case 1. n
n−1 < p < pS(n)

• Choose the test function Ψ = η2p′

T (t) with

η(t) =

 1 for t ≤ 1
2 ,

decreasing for 1
2 < t < 1,

0 for t ≥ 1

and

ηT (t) = η

(
t
T

)
, T ∈ (1,Tε).

to get

ε

∫
Rn

g(x)dx + ε

∫
Rn

µ

(1 + |x |)β
f (x)dx +

∫ T

0

∫
Rn
|u|pη2p′

T dxdt

=

∫ T

0

∫
Rn

u∂2
t η

2p′

T dxdt −
∫ T

0

∫
Rn

µ

(1 + |x |)β
u∂tη

2p′

T dxdt



Proof of (0.5)

and furthermore

Cε+

∫ T

0

∫
Rn
|u|pη2p′

T dxdt ≤ CT n−1− 2
p−1 . (0.9)

• Two Lemmas
Lemma

If β > 0, then for any α ∈ R and a fixed constant R, we have∫ t+R

0
(1 + r)αe−β(t−r)dr ≤ C(t + R)α. (0.10)



Proof of (0.5)

Lemma

(Lemma 3.1 in Yordanov and Zhang(2005)). Assuming that β > 2,
then the following equation

∆φ(x)− µ

(1 + |x |)β
φ(x) = φ(x), x ∈ Rn (0.11)

admits a solution satisfying

0 < φ(x) ≤ C(1 + |x |)−
n−1

2 e|x|. (0.12)



Proof of (0.5)

• Choose the test function Ψ(t , x) = η2p′

T (t)e−tφ(x) to get

ε

∫
Rn

g(x)φ(x)dx + ε

∫
Rn

(
1 +

µ

(1 + |x |)β

)
f (x)φ(x)dx

+

∫ T

0

∫
Rn
|u|pη2p′

T Φdxdt

=

∫ T

0

∫
Rn

u
(
∂2

t η
2p′

T Φ + 2∂tη
2p′

T ∂t Φ−
µ

(1 + |x |)β
∂tη

2p′

T Φ

)
dxdt

and furthermore

Cε ≤ CT−1+(n− n−1
2 p′) 1

p′

(∫ T

0

∫
Rn
η2p′

T |u|
pdxdt

) 1
p

,

which is actually

(Cε)p T n− n−1
2 p ≤

∫ T

0

∫
Rn
η2p′

T |u|
pdxdt . (0.13)



Proof of (0.5)

Case 2. 1 < p ≤ n
n−1

• Choose the test function Ψ(t , x) = η2p′

T (t)e−tφ(x) to get

ε

∫
Rn

g(x)φ(x)dx + ε

∫
Rn

(
1 +

µ

(1 + |x |)β

)
f (x)φ(x)dx

+

∫ T

0

∫
Rn
|u|pη2p′

T Φdxdt

≤CT−1+ n+1
2p′

(∫ T

0

∫
Rn
η2p′

T Φ|u|pdxdt

) 1
p

≤CT−p′+ n+1
2 +

1
2

∫ T

0

∫
Rn
η2p′

T Φ|u|pdxdt ,

this yields

T ≤ Cε−
2(p−1)

n+1−(n−1)p , for 1 < p <
n + 1
n − 1

. (0.14)



Proof of (0.6)

• Lemma

Assuming
V (x) =

µ

(1 + |x |)β

and β > 2. Then for given η ∈ [0,1], there exists function ψη ∈ C2(Rn)
satisfying

∆ψη − ηVψη = η2ψη (0.15)

such that

ψη(x) ∼ ϕη(x) :=

∫
Sn−1

eηxωdω(∼ |ηx |
1−n

2 e|ηx|). (0.16)

The proof of the above lemma is parallel to that of Lemma 3.1
in Yordanov and Zhang(2005).



Proof of (0.6)

• Choose the test function

bq(t , x) =

∫ 1

0
e−ηtψη(x)ηq−1dη, q > 0

with
Lemma
(i) bq(t , x) satisfies following identities

∂

∂t
bq(t , x) = −bq+1(t , x),

∂2

∂t2
bq(t , x) = bq+2(t , x)

∆bq(t , x) = V · bq+1(t , x) + bq+2(t , x),

∂2
t bq −∆bq − V∂t bq = 0.

(ii)

bq(t , x) ∼
{

(t + R + |x |)−q for 0 < q < n−1
2 ,

(t + R + |x |)
−n+1

2 (t + R − |x |)
n−1

2 −q for q > n−1
2 .



Proof of (0.6)

• Introduce

θ(t) =

{
0 for t < 1

2 ,
η(t) for t ≥ 1

2 ,
θM(t) := θ(

t
M

).

For M ∈ (1,T ), as above one can get∫ T

0

∫
Rn
θ2p′

M |u|
pdxdt ≥

∫ M

0

∫
Rn
θ2p′

M |u|
pdxdt ≥ CεpMn− n−1

2 p.

(0.17)



Proof of (0.6)

• Set

Y [w ](M) =

∫ M

1

(∫ T

0

∫
Rn

w(t , x)θ2p′
σ (t)dxdt

)
σ−1dσ,

then for q = n−1
2 −

1
p we have

M
d

dM
Y [|u|pbq(t , x)] (M) =

∫ T

0

∫
Rn
θ2p′

M bq |u|pdxdt

≥CM−( n−1
2 −

1
p )
∫ T

0

∫
Rn
θ2p′

M |u|
pdxdt

≥Cεp,
(0.18)

where we used the fact

n − n − 1
2

p =
n − 1

2
− 1

p
for p = pS(n).



Proof of (0.6)

• A key inequality

Y p(M) ≤C
∫ T

0

∫
Rn
η2p′

M bq |u|pdxdt

=C
∫ T

0

∫
Rn

(
∂2

t u −∆u +
µ

(1 + |x |)β
∂tu
)

bqη
2p′

M

≤C
∫ T

0

∫
Rn

u
(

2∂tbq∂tη
2p′

M + bq∂
2
t η

2p′

M − µ

(1 + |x |)β
bq∂tη

2p′

M

)
≤CM (log M)p−1 Y ′(M).

(0.19)



Proof of (0.6)

• Using the following lemma with p1 = p2 = p and δ = εp

Lemma

(Lemma 3.10 in Ikeda-Sobajima-Wakasa(2019)). Let 2 < t0 < T .
0 ≤ φ ∈ C1([t0,T )). Assume that{

δ ≤ K1tφ′(t), t ∈ (t0,T ),

φ(t)p1 ≤ K2t(log t)p2−1φ′(t), t ∈ (t0,T )

with δ,K1,K2 > 0 and p1,p2 > 1. If p2 < p1 + 1, then there exists
positive constants δ0 and K3(independent of δ) such that

T ≤ exp
(

K3δ
− p1−1

p1−p2+1

)
when 0 < δ < δ0.



Main Results for β > 1

Theorem (Lai-Liu-Tu-Wang, arXiv:2102.10257)

The above result can be generalized to β > 1
and Rn(n ≥ 2).



The Key Point for the Proof

Lemma (Lai-Liu-Tu-Wang, arXiv:2102.10257)

Let n ≥ 2, β > 1, µ ≥ 0. Suppose D(x) = µ
(1+|x|)β . Then there exists

c1 ∈ (0,1) such that for any 0 < λ ≤ 1, there is a C2 solution of

∆φλ − λD(x)φλ = λ2φλ (0.20)

satisfying

c1〈λ|x |〉−
n−1

2 eλ|x| < φλ(x) < c−1
1 〈λ|x |〉

− n−1
2 eλ|x|. (0.21)

Remark

Actually, the above lemma holds for D(x) = D(|x |) ∈ C(Rn) ∩ Cα(Bδ)
for some α, δ > 0 and 0 ≤ D(x) ≤ µ

(1+|x|)β .



Proof of the Key Lemma

We finish the proof by dividing Rn into two parts:
B1/λ and Rn \ B1/λ, and setting φλ(1/λ) = 1.
Case 1. Inside the ball B1/λ
Consider the Dirichlet problem within B1/λ{

∆φλ − λD(x)φλ = λ2φλ, x ∈ B1/λ,

φλ|∂B1/λ = 1.
(0.22)

Prove uniform lower bound for φλ in B1/λ by two main steps.

• Upper bound estimates for ∂r fλ = ∂rφλ(x/λ), which can be done
directly by using the equation.

• Convergence of fλ, which will be done by using Arzela-Ascoli
theorem.



Proof of the Key Lemma

Case 2. Outside the ball B1/λ
Let φλ = r−

n−1
2 y , then y satisfies

y ′′ − λ2y −
( (n − 1)(n − 3)

4r2 + λD(r)
)

y = 0,

y(
1
λ

) = λ−
n−1

2 ,

y ′(
1
λ

) =
n − 1

2
λ−

n−3
2 + λ−

n−1
2 φ′(

1
λ

) ∈
(
0,C2λy(

1
λ

)
)
.

(0.23)

Then using the lemma by Liu-Wang(stated below) with K = 1, ε =
1, λ0 = 1 we may get

y w λ−
n−1

2 eλr , rλ ≥ 1,

and hence
φλ w (λ|x |)−

n−1
2 eλ|x|, λ|x | ≥ 1.



Proof of the key Lemma

Lemma (Lemma 3.1 in Liu-Wang(2019))

Let λ ∈ (0, λ0], δ0 ∈ (0, 1), ε > 0, y0 > 0, K ∈ (δ0, δ
−1
0 ),

‖K ′‖L1([ελ−1
0 ,∞))

≤ δ−1
0 , ‖G‖L1([ελ−1,∞)) ≤ δ

−1
0 λ,∀λ ∈ (0, λ0].

{
y ′′ − λ2K 2(r)y + G(r)y = 0, r > ελ−1,

y(ελ−1) = y0, y ′(ελ−1) = y1 ∈ (0, δ−1
0 λy0),

(0.24)

Then for any solution y with y , y ′ > 0, we have the following uniform estimates,
independent of λ ∈ (0, λ0],

y ' y0eλ
∫ r
ε/λ K (τ)dτ

, r ≥ ελ−1.

Assume in addition 1− λ−2K−2G ∈ (δ0, δ
−1
0 ), then the solution y to (0.24) satisfies

y , y ′ > 0 and we have

y ′ ' y1 + y0λ(eλ
∫ r
ε/λ K (τ)dτ − 1).



Global Existence Result for
α = 1, β = 0 in 3-D

Theorem (Lai-Zhou(2021 Nonlinear Analysis))

Consider the Cauchy problem (0.1) with
α = 1, β = 0 in 3-D. There exists global radial
solution for p > pS(3 + µ) and 3/2 ≤ µ < 2.

Remark

In some sense, by combining the known
blow-up results for α = 1, β = 0, we may confirm
that pS(3 + µ) is indeed the critical power at
least for 3/2 ≤ µ ≤ 2 in 3-D.



Key Steps of Proof

• By appropriate transformation, the original equation(radial) can
be rewritten as

φuū +
µ(2− µ)φ

4(u + ū)2 =
|φ|p

(u − ū)p−1(u + ū)
µ(p−1)

2

, G(u, ū), (0.25)

where
u =

t + 2 + r
2

,u =
t + 2− r

2
.



Key Steps of Proof

• Lemma (Energy Estimate)

We have for (0.25)

sup
1
2≤ū≤Ū

(∫ +∞

max(ū,2−ū)

φu
2du

) 1
2

.ε
(
‖ψ0‖2

H1(R3) + ‖ψ1‖2
L2(R3)

) 1
2

+

∫ Ū

1
2

(∫ +∞

max(ū,2−ū)

G2du

) 1
2

dū.

(0.26)



Key Steps of Proof

• Lemma (Morawetz Type Estimate)

We have for (0.25)

sup
1
2≤ū≤Ū

(∫ +∞

max(ū,2−ū)

u3(u − ū)φu
2du

) 1
2

.ε
(
‖ψ0‖2

H1(R3) + ‖ψ1‖2
L2(R3)

) 1
2

+

∫ Ū

1
2

(∫ +∞

max(ū,2−ū)

u3(u − ū)G2du

) 1
2

dū.

(0.27)

This can be proved by a multiplier (u − ū)φu and establishing a Hardy
type inequality ∫ +∞

max(ū,2−ū)

φ2udu .
∫ +∞

max(ū,2−ū)

u3φu
2du.



Key Steps of Proof

• Lemma (Weighted L2 − L2 Estimate)

We have for (0.25)

sup
1
2≤ū≤Ū

(∫ +∞

max(ū,2−ū)

u3s(u − ū)s
φu

2du

) 1
2

.ε
(
‖ψ0‖2

H1(R3) + ‖ψ1‖2
L2(R3)

) 1
2

+

∫ Ū

1
2

(∫ +∞

max(ū,2−ū)

u3s(u − ū)sG2du

) 1
2

dū,

(0.28)
where 0 ≤ s ≤ 1.

This can be proved by interpolating between energy estimate and

Morawetz type estimate.



Key Steps of Proof

• Take s = 1
4 + 1

2p and denote

M(φ)(ū) =

(
1
2

∫ +∞

max(ū,2−ū)

u3s(u − ū)sφu
2du
) 1

2

.

We then show M(φ)(ū) is bounded for p >
pS(3 + µ) and 3/2 ≤ µ < 2.



Thank You for Your Attention!


