Smoothing effect and Strichartz estimates for some time-degenerate Schrödinger equations

Serena Federico

Ghent University

Joint work with Gigliola Staffilani
Joint work with Michael Ruzhansky

13th ISAAC CONGRESS
August 2-6, 2021, Ghent, Belgium.

Smoothing and Strichartz estimates

Smoothing estimates describe a typical property of dispersive equations consisting in a gain of smoothness of the solution of the IVP with respect to the smoothness of the initial datum and/or of the inhomogeneous term of the equation.
Strichartz estimates describe a gain of integrability of the solution of the IVP with respect to the integrability properties of the initial datum and/or of the inhomogeneous term of the equation.

These estimates are crucial to prove well-posedness results when dealing with nonlinear (smoothing estimates) and semilinear (Strichartz estmates) initial value problems.

Time-degenerate Schrödinger operators

In the sequel we will study the following classes of time-degenerate Schrödinger operators

- $\mathcal{L}_{\alpha, c}=i \partial_{t}+t^{\alpha} \Delta_{x}+c(t, x) \cdot \nabla_{x}, \quad \alpha>0$.
- Local smoothing effect.
- Local well-posedness of the associated nonlinear IVP.
- $\mathcal{L}_{b}:=i \partial_{t}+b^{\prime}(t) \Delta_{x}$.
- Strichartz estimates.
- Local well-posedness of the associated semilinear IVP.

Smoothing for $\mathcal{L}_{\alpha, c}=i \partial_{t}+t^{\alpha} \Delta_{x}+c(t, x) \cdot \nabla_{x}$

Motivation

Schrödinger eq.	Smoothing effect	
Constant coefficients	Homogeneous: \checkmark Inhomogeneous: \checkmark	Kato, Sjölin, Kenig-Ponce-Vega, Caustantin-Saut, Linares-Ponce, Kleinerman and many others..
Space-variable coefficients (elliptic case)	Homogeneous: Inhomogeneous: \checkmark	Doi, Kenig-Ponce-Vega-Rolvung
Non-degenerate time-variable coefficients	Homogeneous: \checkmark Inhomogeneous: X	Sugimoto-Ruzhansky
Degenerate time-variable coefficients	Homogeneous: X Inhomogeneous: X	

Time-degenerate case: known results

Cicognani-Reissig: Local well-posedness of the homogeneous IVP for operators of the form $\mathcal{L}_{\alpha, c}$ both in Sobolev and Gevrey spaces.

Remark

No smoothing and Strichartz estimates are needed here, since the problem under consideration is linear.

Time-degenerate Schrödinger operators

We studied the operator $\mathcal{L}_{\alpha, C}$ in the following cases:

- $c \equiv 0$. By Fourier analysis methods we derived the weighted smoothing effect, both homogeneous and inhomogeneous, with a gain of $1 / 2$ derivative;
- $c \not \equiv 0$. We used the pseudo-differential calculus to get a weighted homogeneous smoothing effect with a gain of $1 / 2$ derivative and a weighted inhomogeneous smoothing effect with a gain of 1 derivative;

Remark. (case $c \equiv 0) \subset($ case $c \not \equiv 0)$

The case $c \equiv 0: \quad \mathcal{L}_{\alpha}=i \partial_{t}+t^{\alpha} \Delta_{x}, \quad \alpha>0$

Let us consider the IVP

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha} u=f \\
u(s, x)=u_{s}(x), \quad s \geq 0 .
\end{array}\right.
$$

By using Fourier analysis methods and Duhamel's principle we get that the function u solving the problem above is
$u(t, x)=W_{\alpha}(t, s) u_{s}(x)+\int_{0}^{t} W_{\alpha}\left(t^{\prime}, s\right) f\left(t^{\prime}, x\right) d t^{\prime}=u_{\text {hom }}+u_{\text {inhom }}$,
where the solution operator $W_{\alpha}(t, s), t, s \geq 0$, is given by

$$
W_{\alpha}(t, s) u_{s}(x):=e^{i \frac{t^{\alpha+1}-s^{\alpha+1}}{\alpha+1} \Delta} u_{s}:=\int_{\mathbb{R}^{n}} e^{-i\left(\frac{t^{\alpha+1}-s^{\alpha+1}}{\alpha+1}|\xi|^{2}-x \cdot \xi\right)} \widehat{u}_{s}(\xi) d \xi
$$

Notation: $W_{\alpha}(t, 0)=: W_{\alpha}(t)$.

The case $c \equiv 0: \quad \mathcal{L}_{\alpha}=i \partial_{t}+t^{\alpha} \Delta_{X}, \quad \alpha>0$

Observe that the solution operator satisfies the following properties.
(i) $W_{\alpha}(t, t)=I$;
(ii) $W_{\alpha}(t, s)=W_{\alpha}(t, r) W_{\alpha}(r, s)$ for every $s, t, r \in[0, T] ;$
(iii) $W_{\alpha}(t, s) \Delta_{x} u=\Delta_{X} W_{\alpha}(t, s) u$.

Moreover it is easy to see that

$$
\left\|W_{\alpha}(t, s) u_{s}\right\|_{H_{x}^{s}}=\left\|u_{s}\right\|_{H_{x}^{s}} .
$$

Notice that for $\alpha=0$ we have the standard Schrödinger group.

Smoothing effect when $c \equiv 0$

By exploiting the properties of $W_{\alpha}(t, s)$ we derived the following smoothing effect for \mathcal{L}_{α}.

Theorem. (F.-Staffilani) Let $W_{\alpha}(t):=W_{\alpha}(t, 0)$, with $\alpha>0$. Then, if $n=1$, for all $\varphi \in L^{2}(\mathbb{R})$,

$$
\begin{equation*}
\sup _{x}\left\|t^{\alpha / 2} D_{x}^{1 / 2} W_{\alpha}(t) \varphi\right\|_{L_{t}^{2}([0, T])}^{2} \lesssim\|\varphi\|_{L^{2}(\mathbb{R})}^{2} ; \tag{1}
\end{equation*}
$$

If $n \geq 2$, on denoting by $\left\{Q_{\beta}\right\}_{\beta \in \mathbb{Z}^{n}}$ the family of non overlapping cubes of unit size such that $\mathbb{R}^{n}=\bigcup_{\beta \in \mathbb{Z}^{n}} Q_{\beta}$, then for all $\varphi \in L_{x}^{2}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\sup _{\beta \in \mathbb{Z}^{n}}\left(\int_{Q_{\beta}} \int_{0}^{T}\left|t^{\alpha / 2} D_{x}^{1 / 2} W_{\alpha}(t) \varphi(x)\right|^{2} d t d x\right)^{1 / 2} \lesssim\|\varphi\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{2}
\end{equation*}
$$

where $D_{x}^{\gamma} \varphi(x)=\left(|\xi|^{\gamma} \widehat{\varphi}(\xi)\right)^{\vee}(x)$.

Theorem. (F.-Staffilani) Let $g \in L_{t}^{1} L_{x}^{2}\left([0, T] \times \mathbb{R}^{n}\right)$. Then, if

 $n=1$,$$
\begin{equation*}
\left\|t^{\alpha / 2} D_{x}^{1 / 2} \int_{0}^{t} W_{\alpha}(t, \tau) g(\tau) d \tau\right\|_{L_{x}^{\infty}(\mathbb{R}) L_{t}^{2}([0, T])} \lesssim\|g\|_{L_{t}^{1} L_{x}^{2}([0, T] \times \mathbb{R})} \tag{3}
\end{equation*}
$$

If $n \geq 2$, denoting by $\left\{Q_{\beta}\right\}_{\beta \in \mathbb{Z}^{n}}$ a family of non overlapping cubes of unit size such that $\mathbb{R}^{n}=\bigcup_{\beta \in \mathbb{Z}^{n}} Q_{\beta}$, then, for all $g \in L_{t}^{1} L_{x}^{2}\left([0, T] \times \mathbb{R}^{n}\right)$,

$$
\begin{gather*}
\sup _{\beta \in \mathbb{Z}^{n}}\left(\int_{Q_{\beta}} \| t^{\alpha / 2} D_{x}^{1 / 2}\right. \tag{4}\\
\left.\int_{0}^{t} W_{\alpha}(t, \tau) g(\tau) d \tau \|_{L_{t}^{2}([0, T])}^{2} d x\right)^{1 / 2} \\
\lesssim\|g\|_{L_{t}^{1} L_{x}^{2}\left([0, T] \times \mathbb{R}^{n}\right)}
\end{gather*}
$$

Local well-posedness result

Theorem. (F.-Staffilani) Let $k \geq 1$, then the IVP

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha} u= \pm u|u|^{2 k} \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

is locally well-posed in H^{s} for $s>n / 2$ and its solution satisfies smoothing estimates.

Remark. The local well-posedness of the Cauchy problem above but with derivative nonlinearities follows from the equivalent result given in the general case $c \not \equiv 0$, which, as we already said, is true even in the particular case $c \equiv 0$.

Strategy of the proof: contraction argument

(1) Consider the metric space

$$
\begin{gathered}
X=\left\{u:[0, T] \times \mathbb{R} \rightarrow \mathbb{C} ;\left\|t^{\alpha / 2} D_{x}^{1 / 2+s} u\right\|_{L_{x}^{\infty} L_{t}^{2}([0, T])}<\infty,\right. \\
\left.\|u\|_{L_{t}^{\infty}([0, T]) H H_{x}^{s}}<\infty\right\},
\end{gathered}
$$

equipped with the distance

$$
\begin{gathered}
d(u, v)=\left\|t^{\alpha / 2} D_{x}^{1 / 2+s}(u-v)\right\|_{L_{x}^{\infty} L_{t}^{2}([0, T])}+\|u-v\|_{L_{t}^{\infty}([0, T]) \dot{H}_{x}^{s}} \\
+\|u-v\|_{L_{t}^{\infty}([0, T]) L_{x}^{2}} .
\end{gathered}
$$

(2) Consider the map

$$
\Phi: X \rightarrow X, \quad \Phi(u)=W_{\alpha}(t) u_{0}+\int_{0}^{t} W_{\alpha}(t, \tau) u|u|^{2 k}(\tau) d \tau
$$

(3) Prove that Φ is a contraction on $B \subset X$ using the smoothing estimates. Finally apply fixed point theorem to get the result.

The case $c \not \equiv 0$. Local weighted smoothing effect

We considered the IVP

$$
\left\{\begin{array}{l}
\partial_{t} u=i t^{\alpha} \Delta_{x} u+i c(t, x) \cdot \nabla_{x} u+f(t, x) \tag{5}\\
u(0, x)=u_{0}(x) .
\end{array}\right.
$$

Theorem. (F.-Staffilani)

Let $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right), s \in \mathbb{R}$. Assume that, for all $j=1, \ldots, n, c_{j}$ is such that $c_{j} \in C\left([0, T], C_{b}^{\infty}\left(\mathbb{R}^{n}\right)\right)$ and there exists $\sigma>1$ such that

$$
\begin{equation*}
\left|\operatorname{Im} \partial_{x}^{\gamma} c_{j}(t, x)\right|,\left|\operatorname{Re} \partial_{x}^{\gamma} c_{j}(t, x)\right| \lesssim t^{\alpha}\langle x\rangle^{-\sigma-|\gamma|}, \quad x \in \mathbb{R}^{n}, \tag{6}
\end{equation*}
$$

and denote by $\lambda(|x|):=\langle x\rangle^{-\sigma}$.
Let also Λ^{s} be the Fourier multiplier $\widehat{\wedge^{s} u}(\xi)=\langle\xi\rangle^{s} \widehat{u}(\xi)$. Then
(i) If $f \in L^{1}\left([0, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right)$ then the IVP (5) has a unique solution $u \in C\left([0, T] ; H^{S}\left(\mathbb{R}^{n}\right)\right)$ and there exist positive constants C_{1}, C_{2} such that

$$
\sup _{0 \leq t \leq T}\|u(t)\|_{s} \leq C_{1} e^{C_{2}\left(\frac{T^{\alpha+1}}{\alpha+1}+T\right)}\left(\left\|u_{0}\right\|_{s}+\int_{0}^{T}\|f(t)\|_{s} d t\right)
$$

(ii) If $f \in L^{2}\left([0, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right)$ then the IVP (5) has a unique solution $u \in C\left([0, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right)$ and there exist two positive constants C_{1}, C_{2} such that

$$
\begin{aligned}
& \sup _{0 \leq t \leq T}\|u(t)\|_{s}^{2}+\int_{0}^{T} \int_{\mathbb{R}^{n}} t^{\alpha}\left|\Lambda^{s+1 / 2} u\right|^{2} \lambda(|x|) d x d t \\
& \quad \leq C_{1} e^{C_{2}\left(\frac{T^{\alpha+1}}{\alpha+1}+T\right)}\left(\left\|u_{0}\right\|_{s}^{2}+\int_{0}^{T}\|f(t)\|_{s}^{2} d t\right)
\end{aligned}
$$

(iii) If $\Lambda^{s-1 / 2} f \in L^{2}\left([0, T] \times \mathbb{R}^{n} ; t^{-\alpha} \lambda(|x|)^{-1} d t d x\right)$ then the IVP (5) has a unique solution $u \in C\left([0, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right)$ and there exist positive constants C_{1}, C_{2} such that

$$
\begin{gathered}
\sup _{0 \leq t \leq T}\|u(t)\|_{s}^{2}+\int_{0}^{T} \int_{\mathbb{R}^{n}} t^{\alpha}\left|\Lambda^{s+1 / 2} u\right|^{2} \lambda(|x|) d x d t \\
\leq C_{1} e^{C_{2} \frac{T^{\alpha+1}}{\alpha+1}}\left(\left\|u_{0}\right\|_{s}^{2}+\int_{0}^{T} \int_{\mathbb{R}^{n}} t^{-\alpha} \lambda(|x|)^{-1}\left|\Lambda^{s-1 / 2} f\right|^{2} d x d t\right) .
\end{gathered}
$$

Remarks on the conditions

We remark that it is natural to require the previous conditions on the term c in order to have the I.w.p. of the IVP. Indeed, even in the nondegenerate case (with $c=c(x)$), decay conditions on Re c are necessary for the local well-posedness of the linear Cauchy problem to hold.
The main problems when proving the smoothing effect for $\mathcal{L}_{\alpha, c}$ are given by the presence of the time degeneracy t^{α} in the second order term and by the presence of the first order term $c \cdot \nabla_{x}$. Due to these considerations it is clear that conditions on $c(t, x)$ are necessary to control the behavior of the operator, and, specifically, conditions relating the coefficient t^{α} and the coefficients $c_{j}(t, x)$. Our strategy aims to control gradient term in the energy estimate by exploiting the form of the second order term and the decay properties of c.

Strategy of the proof

- We use a pseudo-differential weight (given by Doi's Lemma) to define a norm N equivalent to the H^{s}-norm $\|\cdot\|_{s}$.
- We perform an energy estimate in terms of the norm N.
- We use the properies of the pseudo-differential weight to apply the sharp Gårding inequality to absorb the (dangerous) lower order terms.
- We obtain the desired inequalities from which we get existence and uniqness of the solution by means of standard functional analysis arguments.

Local well-posedness of the NLIVP

We then considered the NLIVP

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha, c} u= \pm u|u|^{2 k} \tag{7}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha, c} u= \pm t^{\beta} \nabla u \cdot u^{2 k}, \quad \beta \geq \alpha>0 \tag{8}\\
u(0, x)=u_{0}(x) .
\end{array}\right.
$$

Theorem. (F.-Staffilani) Let $\mathcal{L}_{\alpha, c}$ be such that condition (6) is satisfied. Then the IVP (7) is locally well posed in H^{s} for $s>n / 2$.

Theorem. (F.-Staffilani) Let $\mathcal{L}_{\alpha, c}$ be such that condition (6) is satisfied with $\sigma=2 N$ (thus $\lambda(|x|)=\langle x\rangle^{-2 N}$) for some $N \geq 1$, and $s>n+4 N+3$ such that $s-1 / 2 \in 2 \mathbb{N}$. Let $H_{\lambda}^{s}:=\left\{u_{0} \in H^{s}\left(\mathbb{R}^{n}\right) ; \lambda(|x|) u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)\right\}$, then the IVP (8) with $\beta \geq \alpha>0$, is locally well posed in H_{λ}^{s}.

The class $\mathcal{L}_{b}=i \partial_{t}+b^{\prime}(t) \Delta_{x}$

We now consider operators of the form

$$
\mathcal{L}_{b}:=\partial_{t}+i b^{\prime}(t) \Delta_{x},
$$

where $b \in C^{1}(\mathbb{R})$ is such that $b^{\prime}(0)=0$ and b has either finitely or infinitely many critical points.

Example 1

$$
\mathcal{L}_{b / \alpha, c}=\mathcal{L}_{\frac{t \alpha+1}{\alpha+1} / \alpha, c}=\partial_{t}+i t^{\alpha} \Delta+c(t, x) \cdot \nabla_{x}, \quad \alpha>0 ;
$$

Example 2

$$
\mathcal{L}_{b}=\mathcal{L}_{e^{t}-t-1}=\partial_{t}+i\left(e^{t}-1\right) \Delta ;
$$

Example 3

$$
\mathcal{L}_{b}=\mathcal{L}_{\cos (t)}:=\partial_{t} u-i \sin (t) \Delta
$$

The class $\mathcal{L}_{b}=i \partial_{t}+b^{\prime}(t) \Delta_{x}$

Motivation

Schrödinger equation with ...	Strichartz estimates	
Constant coefficients	\checkmark	Strichartz, Kenig-Ponce-Vega, Linares-Ponce, Ginibre-Velo, Keel-Tao, Walther and others..
Space-variable coefficients (elliptic case)	\checkmark	Staffilani-Tataru, Marzuola, Metcalfe-Tataru and others...
Degenerate space-variable coefficients	\checkmark	Salort
Time-variable coefficients	X	

Strichartz estimates for \mathcal{L}_{b}

Recall that

$$
\mathcal{L}_{b}:=\partial_{t}+i b^{\prime}(t) \Delta_{x},
$$

with $b \in C^{1}(\mathbb{R})$ and such that $b^{\prime}(0)=0$ and b has either finitely or infinitely many critical points. Due to the form of \mathcal{L}_{b} we have that the solution at time t of the IVP

$$
\left\{\begin{array}{l}
\mathcal{L}_{b} u(t, x)=g(t, x) \tag{9}\\
u(s, x)=u_{s}(x)
\end{array}\right.
$$

can be written as

$$
\begin{gathered}
u(t, x)=e^{i(b(t)-b(s)) \Delta} u_{s}(x)+\int_{s}^{t} e^{i(b(\tau)-b(s)) \Delta} g(\tau) d \tau=u_{\text {hom }}+u_{\text {inhom }} \\
e^{i(b(t)-b(s)) \Delta} u_{s}(x):=\int_{\mathbb{R}^{n}} e^{i x \cdot \xi+i(b(t)-b(s))|\xi|^{2}} \widehat{u}_{s}(\xi) d \xi
\end{gathered}
$$

By using the previous formula one can prove the following local in time Strichartz estimates.

Weighted local Strichartz estimates for \mathcal{L}_{b}

Notations. We shall denote by $L_{t}^{q} L_{x}^{p}:=L_{t}^{q}\left(\mathbb{R} ; L_{x}^{p}\left(\mathbb{R}^{n}\right)\right)$, and, when not confusing, we shall use the same notation $L_{t}^{q} L_{x}^{p}:=L_{t}^{q}\left([0, T] ; L_{x}^{p}\left(\mathbb{R}^{n}\right)\right)$ when the time interval is finite.

Definition. (Admissible pairs) Given $n \geq 1$ we shall call a pair of exponents (q, p) admissible if $2 \leq q, p \leq \infty$, and

$$
\frac{2}{q}+\frac{n}{p}=\frac{n}{2}, \quad \text { with } \quad(q, p, n) \neq(2, \infty, 2) .
$$

Theorem. (F.-Ruzhansky) Let $b \in C^{1}([0, T])$ be such that, for any fixed $T, \sharp\left\{t \in[0, T] ; b^{\prime}(t)=0\right\}=k \geq 1$ and $b^{\prime}(0)=0$.
Then, for any (q, p) admissible pair such that $2<q, p<\infty$, the following inequalities hold:
the weighted homogeneous Strichartz estimate

$$
\begin{equation*}
\left\|\left|b^{\prime}(t)\right|^{1 / q} e^{i b(t) \Delta} \varphi\right\|_{L_{t}^{q} L_{x}^{p}} \leq C(n, q, p, k)\|\varphi\|_{L_{x}^{2}\left(\mathbb{R}^{n}\right)}, \tag{10}
\end{equation*}
$$

where

$$
\left\|e^{i b(t) \Delta} \varphi\right\|_{L_{t}^{\infty} L_{x}^{2}} \leq\|\varphi\|_{L_{x}^{2}\left(\mathbb{R}^{n}\right)} ;
$$

the weighted inhomogeneous Strichartz estimate

$$
\begin{equation*}
\left\|\left|b^{\prime}(t)\right|^{1 / q} \int_{0}^{t}\left|b^{\prime}(s)\right| e^{i(b(t)-b(s)) \Delta} g(s) d s\right\|_{L_{i}^{q} L_{x}} \leq C(n, q, p, k)\left\|\left|b^{\prime}\right|^{1 / q^{\prime}} g\right\|_{L_{1}^{q^{\prime}} L_{x}^{\prime} ;} \tag{11}
\end{equation*}
$$

where

$$
\left\|\int_{0}^{t}\left|b^{\prime}(s)\right| e^{i(b(t)-b(s)) \Delta} g(s) d s\right\|_{L_{f}^{L_{x}} L_{x}^{2}} \leq C(n, q, p, k)\left\|\left|b^{\left.\right|^{\prime}}\right|^{1 / q} g\right\|_{L_{q}^{\prime}} L_{L_{x}^{\prime}} .
$$

Local well-posedness of the semilinear problem

Let us consider the semilinear IVP

$$
\left\{\begin{array}{l}
\partial_{t} u+i b^{\prime}(t) \Delta u=\mu\left|b^{\prime}(t)\right||u|^{p-1} u, \quad \mu \in \mathbb{R} \tag{12}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

then the following local well-posedness result holds.
Theorem. (F.-Ruzhansky) Let $1<p<\frac{4}{n}+1$ and
$b \in C^{1}([0,+\infty))$ be such that $\sharp\left\{t \in[0, \tilde{T}] ; b^{\prime}(t)=0\right\}$ is finite for any $\tilde{T}<\infty$ and $b^{\prime}(0)=0$. Then for all $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$ there exists $T=T\left(\left\|u_{0}\right\|_{2}, n, \mu, p\right)>0$ such that there exists a unique solution u of the IVP (12) in the time interval $[0, T]$ with

$$
u \in C\left([0, T] ; L^{2}\left(\mathbb{R}^{n}\right)\right) \bigcap L_{t}^{q}\left([0, T] ; L_{x}^{p+1}\left(\mathbb{R}^{n}\right)\right)
$$

and $q=\frac{4(p+1)}{n(p-1)}$. Moreover the map $u_{0} \mapsto u(\cdot, t)$, locally defined from $L^{2}\left(\mathbb{R}^{n}\right)$ to $C\left([0, T) ; L^{2}\left(\mathbb{R}^{n}\right)\right)$, is continuous.

Application

By the previous theorem we can conclude the local well-posedness for the semilinear IVP associated with:

Example 1

$$
\mathcal{L}_{b / \alpha, 0}=\mathcal{L}_{\frac{t \alpha+1}{\alpha+1}, \Delta}=\partial_{t}+i t^{\alpha} \Delta, \quad \alpha \geq 1
$$

$\sharp\left\{t \in[0, T] ; b^{\prime}(t)=0\right\}=1$ for any $0<T<\infty$.

Example 2

$$
\mathcal{L}_{b}=\mathcal{L}_{e^{t}-t-1}=\partial_{t}+i\left(e^{t}-1\right) \Delta,
$$

$\sharp\left\{t \in[0, T] ; b^{\prime}(t)=0\right\}=1$ for any $0<T<\infty$.

Example 3

$$
\mathcal{L}_{b}=\mathcal{L}_{\cos (t)}:=\partial_{t} u-i \sin (t) \Delta
$$

$\sharp\left\{t \in[0, T] ; b^{\prime}(t)=0\right\}=k \geq 1$ for any $0<T<\infty$.

Remarks

Together with G. Staffilani we have recently considered operators of the form \mathcal{L}_{b} on \mathbb{T}^{d}, with $d=2,1$. We obtained sharp weighted (in time) Strichartz estimates and proved local well-posedness results for the cubic (resp. quintic) semilinear IVP (where the nonlinearity also contains a time-dependent function).

Additionally, still in the toroidal setting, we considered some particular (nondegenerate) space-variable coeffficients Schrödinger operators. In this case we proved local well-posedness results for the cubic (resp. quintic) semilinear IVP by means of the standard sharp Stichartz estimates involving the so-called Bourgain spaces $X^{s, b}\left(\mathbb{R} \times \mathbb{T}^{d}\right)$.

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 838661

