Well-posedness of Hardy-Hénon parabolic equation

Noboru Chikami (Nagoya Institute of Technology) Masahiro Ikeda (RIKEN / Keio University) Koichi Taniguchi (Tohoku University)

August 3, 2021 ISAAC Harmonic Analysis and Partial Differential Equations

Noboru CHIKAMI (NITech)

Hardy-Hénon parabolic equation

August 3, 2021 ISAAC Harmonic Analysis an

Hardy-Hénon parabolic equation

We consider the following Cauchy problem:

$$\begin{cases} \partial_t u - \Delta u = |\mathbf{x}|^{\gamma} |u|^{\alpha - 1} u, \quad t > 0, \ \mathbf{x} \in \mathbb{R}^d, \\ u(0) = u_0 \in L^q_s(\mathbb{R}^d), \end{cases}$$
(HH

where, $d \ge 1$, $\gamma > -\min\{2, d\}$ and $\alpha > 1 + \frac{2+\gamma}{d}$.

Properties of (HH) when $\gamma \neq 0$ No translation invariance. No classical solution when $\gamma < 0$.

Weighted Lebesgue space $s \in \mathbb{R}, 1 \le q \le \infty$,

$$L_{s}^{q}(\mathbb{R}^{d}) := \left\{ f \in \mathcal{M}(\mathbb{R}^{d}) \, ; \, \|f\|_{L_{s}^{q}} = \left(\int_{\mathbb{R}^{d}} (|x|^{s} |f(x)|)^{q} \, dx \right)^{\frac{1}{q}} < \infty \right\}$$

Scaling transform (HH) is invariant under the transformation

$$u_{\lambda}(t,x) := \lambda^{\frac{2+\gamma}{\alpha-1}} u(\lambda^2 t, \lambda x), \quad \lambda > 0.$$

Critical scale | Under the scaling transform,

$$\|u_{\lambda}(0)\|_{L^{q}_{s}} = \lambda^{-s + \frac{2+\gamma}{\alpha - 1} - \frac{d}{q}} \|u(0)\|_{L^{q}_{s}}$$

Let $s_c := \frac{2+\gamma}{\alpha-1} - \frac{d}{\alpha}$. We say that $u_0 \in L^q_s(\mathbb{R}^d)$ is

• scale-subcritical when $s < s_c$, i.e., $-s + \frac{2+\gamma}{\alpha-1} - \frac{d}{\alpha} > 0$.

scale-critical when $s = s_c$, i.e., $-s + \frac{2+\gamma}{\alpha-1} - \frac{d}{\alpha} = 0$. ٥

• scale-supercritical when
$$s > s_c$$
, i.e., $-s + \frac{2+\gamma}{\alpha-1} - \frac{d}{q} < 0$.

Fujita exponent $\gamma > -\min\{2, d\}$

separates the generation of global solutions and finite-time blowup solutions (Qi 1998).

 $1 + \frac{2+\gamma}{d}$

- $\alpha \le 1 + \frac{2+\gamma}{d}$: For any initial data, if there exists a positive solution, then it blows up in finite time.
- $\alpha > 1 + \frac{2+\gamma}{d}$: For reasonably smooth data, there exists a global solution.

Aim

A unified local theory treating all cases of Hardy, Fujita and Hénon. Sharp conditions for the well-posedness / ill-posedness of the problem.

Results

In what follows q is a suitable real number.

Theorem (C.-Ikeda-Taniguchi, arXiv:2104.14166)

- Let $\gamma > -\min(2, d)$ and $\alpha > 1 + \frac{2+\gamma}{d}$.
 - (i) If $s \leq s_c = \frac{2+\gamma}{\alpha-1} \frac{d}{q}$ (Scale-critical or subcritical), then (HH) is locally WP in $L_s^q(\mathbb{R}^d)$.
 - (ii) $s > s_c$ (Scale-supercritical), there exists some function u_0 in $L_s^q(\mathbb{R}^d)$ such that (HH) with initial data u_0 does not have a local solution.

Known results on the LWP

- Wang (1993): $\gamma \in \mathbb{R}$, α : Sobolev-super, LWP in $C_B(\mathbb{R}^d)$.
- Ben Slimene-Tayachi-Weissler (2017): $-2 < \gamma < 0$, LWP in $L^p(\mathbb{R}^d)$.
- Madjoub (2020): $\gamma \in \mathbb{R}$, LWP in $C_B(\mathbb{R}^d)$.
- Tayachi (2020): $-2 < \gamma < 0$, Unconditional uniqueness/non-uniqueness.

Auxiliary norm (Kato norm)

$$||u||_{\mathcal{K}^{s}(T)} := \sup_{0 \le t \le T} t^{\frac{s_{c}-s}{2}} ||u||_{L_{s}^{q}}, \quad s_{c} = \frac{2+\gamma}{\alpha-1} - \frac{d}{q}$$

$$u(t,x) = e^{t\Delta}u_0(x) + \int_0^t e^{(t-\tau)\Delta} \left\{ |\cdot|^{\gamma} |u(\tau,\cdot)|^{\alpha-1} u(\tau,\cdot) \right\} (x) d\tau.$$

 $T_m = T_m(u_0) := \sup \left\{ T > 0 \, ; \begin{array}{l} \text{There exists a unique solution } u \text{ of (HH)} \\ \text{in } C([0,T]; L^q_{\vec{s}}(\mathbb{R}^d)) \cap Y \text{ with initial data } u_0 \end{array} \right\}.$

LWP in $\overline{L^q_{s_c}(\mathbb{R}^d)}$

Let $\gamma \in \mathbb{R}$ and $\alpha \in \mathbb{R}$ be such that, $\gamma > -\min(2, d)$ and $\alpha > 1 + \frac{2+\gamma}{d}$. Let $q \in \mathbb{R}$ and $s \in \mathbb{R}$ be such that

$$0 < \frac{1}{q} < \min\left\{\frac{1}{\alpha}, \frac{2}{d(\alpha-1)}, \frac{1}{\alpha-1}\left(1 - \frac{2+\gamma}{d(\alpha-1)}\right)\right\}$$
$$\frac{s_c + \gamma}{\alpha} \le s < \min\left\{\frac{d+\gamma}{\alpha} - \frac{d}{q}, s_c\right\}.$$

Then

(i) (Existence) For any $u_0 \in L^q_{s_c}(\mathbb{R}^d)$ with $q < \infty$ there exist a positive number T and an $L^q_{s_c}(\mathbb{R}^d)$ -mild solution u to (HH) satisfying

$$||u||_{\mathcal{K}^{s}(T)} \leq 2||e^{t\Delta}u_{0}||_{\mathcal{K}^{s}(T)}.$$

LWP in $L^q_{s_c}(\mathbb{R}^d)$

- (ii) (Uniqueness) Let T > 0. If $u, v \in \mathcal{K}^s(T)$ satisfy (HH) with $u(0) = v(0) = u_0 \in L^q_{sc}(\mathbb{R}^d)$, then u = v on [0, T].
- (iii) (Continuous dependency) the solution map $\Phi: L^q_{s_c}(\mathbb{R}^d) \to C([0,T); L^q_{s_c}(\mathbb{R}^d)) \cap \mathcal{K}^s(T)$ is Lipschitz continuous.
- (iv) (Blow-up criterion) If u is an $L^q_{s_c}(\mathbb{R}^d)$ -mild solution constructed in the assertion (i) and $T_m < \infty$, then $\|u\|_{\mathcal{K}^s(T_m)} = \infty$.
- (v) (SDGE and dissipation) There exists $\varepsilon_0 > 0$ depending only on d, γ, α, q and s such that if $u_0 \in \mathcal{S}'(\mathbb{R}^d)$ satisfies $\|e^{t\Delta}u_0\|_{\mathcal{K}^s} < \varepsilon_0$, then $T_m = \infty$ and $\|u\|_{\mathcal{K}^s} \le 2\varepsilon_0$. Moreover, the solution u is dissipative. In particular, if $\|u_0\|_{L^p_{sc}}$ is sufficiently small, then $\|e^{t\Delta}u_0\|_{\mathcal{K}^s} < \varepsilon_0$.

Key estimate (Kobayashi-Kubo(2013), Tsutsui (2014), others)

Let $d \ge 1, 1 \le p \le q \le \infty, -\frac{d}{q} < s' \le s < d\left(1 - \frac{1}{p}\right) \cdots (C)$. In addition, $s \le 0$ when p = 1 and $0 \le s'$ when $q = \infty$. Then

$$\|e^{t\Delta}f\|_{L^{q}_{s'}} \le Ct^{-\frac{d}{2}(\frac{1}{p}-\frac{1}{q})-\frac{s-s'}{2}}\|f\|_{L^{p}_{s}}.$$

Moreover, condition (C) is optimal.

Sketch of proof of Optimality Optimality of $s < d\left(1 - \frac{1}{p}\right)$: Let $d\left(1 - \frac{1}{p}\right) < s$.

$$f(x) := \begin{cases} |x|^{-d}, & |x| \le 1 \\ 0, & \text{else}, \end{cases} \in L^p_s(\mathbb{R}^d) & \because p(d-s) < d \end{cases}$$

but $f \notin L^1_{loc}(\mathbb{R}^d)$; $e^{t\Delta}f$ does not make sense. (Same argument for $s = d\left(1 - \frac{1}{p}\right)$)

Optimality of $-\frac{d}{q} < s'$: Suppose that the inequality holds when $s' \leq -\frac{d}{q}$. We have $g \in L^q_{s'}(\mathbb{R}^d) \Longrightarrow \liminf_{|x|\to 0} |x|^{\frac{d}{q}+s'} |g(x)| = 0$. In particular, $\liminf_{|x|\to 0} |g(x)| = 0$.

$$f(x) := \begin{cases} C, & |x| \le 1 \\ 0, & \text{else}, \end{cases} \in L^p_s(\mathbb{R}^d) \quad \because \ 0 < \frac{d}{p} + s < d \end{cases}$$

However, clearly $\liminf_{|x|\to 0} |e^{t\Delta}f(x)| \neq 0$. $\therefore e^{t\Delta}f \notin L^q_{s'}(\mathbb{R}^d)$.

Sketch of proof of LWP (i) (Existence)

- Banach's fixed point theorem allows us to find a solution in $\mathcal{K}^{s}(T)$.
- By using the $\mathcal{K}^{s}(T)$ -regularity, we then show $u \in C([0,T); L^{q}_{s_{c}}(\mathbb{R}^{d}))$.

Sketch of proof

Well-definedness of $\mathcal{K}^{s}(T)$:

• We only show the estimate for the Duhamel term. Let $\sigma := \alpha s - \gamma$. By $L_{\sigma}^{\frac{\alpha}{\alpha}} - L_{s}^{q}$ estimate,

$$\begin{aligned} \|N(u)(t)\|_{L^{q}_{s}} &\leq \int_{0}^{t} \|e^{(t-\tau)\Delta}\left\{|\cdot|^{\gamma}F(u(\tau))\right\}\|_{L^{q}_{s}}d\tau \\ &\leq C\int_{0}^{t} (t-\tau)^{-\frac{d(\alpha-1)}{2q} - \frac{1}{2}\left\{(\alpha-1)s - \gamma\right\}} \||\cdot|^{\gamma}F(u(\tau))\|_{L^{\frac{q}{\alpha}}_{\sigma}}d\tau \end{aligned}$$

•
$$||| \cdot |^{\gamma} F(u)||_{L^{\frac{q}{\alpha}}_{\sigma}} = ||| \cdot |^{\sigma+\gamma} F(u(\tau))||_{L^{\frac{q}{\alpha}}_{s}} = ||| \cdot |^{\alpha s} |u|^{\alpha}||_{L^{\frac{q}{\alpha}}_{\alpha}} = ||| \cdot |^{s} |u||^{\alpha}_{L^{q}} = ||u||^{\alpha}_{L^{q}_{s}}$$

 $\therefore ||N(u)(t)||_{L^{q}_{s}} \le Ct^{-\frac{s_{c}-s}{2}} ||u||^{\alpha}_{\mathcal{K}^{s}(T)}.$

Remark In known results the crux of the matter has been the handling of $|x|^{\gamma}$. • If $\gamma < 0$, then one may see the it as $|x|^{\gamma} \in L^{\frac{d}{-\gamma},\infty}(\mathbb{R}^d)$ (Ben Slimene et al. (2017)) $|x|^{\gamma} \in \dot{B}_{p,\infty}^{\frac{d}{p}+\gamma}(\mathbb{R}^d)$ (Chikami (2019))

• In this work, we treat $|x|^{\gamma}$ as an increase/decrease of the weights in $L_s^q(\mathbb{R}^d)$ -norms, allowing us to treat the Hénon case $\gamma > 0$.

Noboru CHIKAMI (NITech)

Hardy-Hénon parabolic equation

August 3, 2021 ISAAC Harmonic Analysis an

Forward self-similar solutions A forward self-similar solution is a solution such that $u_{\lambda} = u$ for all $\lambda > 0$, where $u_{\lambda} = \lambda^{\frac{2+\gamma}{\alpha-1}} u(\lambda^2 t, \lambda x)$.

Existence of forward self-similar solutions

Let $d \in \mathbb{N}$, $\gamma \in \mathbb{R}$ and $\alpha \in \mathbb{R}$ satisfy $\alpha > 1 + \frac{2+\gamma}{d}$. Let $\varphi(x) := \omega(x)|x|^{-\frac{2+\gamma}{\alpha-1}}$, where $\omega \in L^{\infty}(\mathbb{R}^d)$ is homogeneous of degree 0 and $\|\omega\|_{L^{\infty}}$ is sufficiently small so that $\|e^{t\Delta}\varphi\|_{\mathcal{K}^s} < \varepsilon_0$. Then there exists a self-similar solution $u_{\mathcal{S}}$ of (HH) with the initial data φ such that $u_{\mathcal{S}}(t) \to \varphi$ in $\mathcal{S}'(\mathbb{R}^d)$ as $t \to 0$.

Known results

- Wang (1993) Radially symmetric self-similar solutions for d ≥ 3, γ > −2 and α ≥ 1 + ^{2(2+γ)}/_{d−2}.
- Hirose (2008) Radially symmetric self-similar solutions for $d \ge 3$, $1 + \frac{2+\gamma}{d} < \alpha < 1 + \frac{2(2+\gamma)}{d-2}, \gamma \le 0$ for $d \ge 4$ and $\gamma \le \sqrt{3} - 1$ for d = 3.
- Ben Slimene et al. (2017) Non-radially symmetric self-similar solutions for α > 1 + ^{2+γ}/_d, but only for the Hardy case γ < 0.

Nonexistence

Weak solution T > 0. We call a function $u : [0,T) \times \mathbb{R}^d \to \mathbb{R}$ a weak solution to (HH) if u belongs to $L^{\alpha}(0,T; L^{\alpha}_{\frac{\gamma}{\alpha},loc}(\mathbb{R}^d))$ and if it satisfies the equation (HH) in the distributional sense, i.e.,

$$\int_{\mathbb{R}^d} u(T', x)\eta(T', x) \, dx - \int_{\mathbb{R}^d} u_0(x)\eta(0, x) \, dx$$

=
$$\int_{[0,T']\times\mathbb{R}^d} u(t, x)(\Delta\eta + \eta_t)(t, x) + |x|^{\gamma}u(t, x)^{\alpha} \, \eta(t, x) \, dx \, dt \qquad (1)$$

for all $T' \in [0,T]$ and for all $\eta \in C^{1,2}([0,T] \times \mathbb{R}^d)$ such that $\operatorname{supp} \eta(t, \cdot)$ is compact.

Nonexistence for supercritical data : $s > s_c$

Let $d \in \mathbb{N}$ and $\gamma \in \mathbb{R}$. Assume that $q \in [1, \infty]$, $\alpha \in \mathbb{R}$ and $s \in \mathbb{R}$ satisfy $\alpha > \max(1, \alpha_F(d, \gamma))$ and $s > s_c$. Then there exists an initial data $u_0 \in L_s^q(\mathbb{R}^d)$ such that the problem (HH) with $u(0) = u_0$ has no local positive weak solution.

Sketch of proof

• Test function method. (cf. Ikeda-Inui (2015)).

Noboru CHIKAMI (NITech)

Hardy-Hénon parabolic equation

Sketch of test function method

$$\eta(t) := \begin{cases} 1, & 0 \le t \le \frac{1}{2}, \\ 0, & t \ge 1, \end{cases} \quad \text{and} \quad \phi(x) := \begin{cases} 1, & |x| \le \frac{1}{2}, \\ 0, & |x| \ge 1. \end{cases}$$

Let $\psi_T(t,x) := \eta\left(\frac{t}{T}\right) \phi\left(\frac{x}{\sqrt{T}}\right)$ Multiplying (HH) by ψ_T^l $(l \in \mathbb{Z}_+)$ and integrating over $[0,T) \times \{|x| < \sqrt{T}\}$ we obtain

$$\begin{split} \int_{[0,T)\times\{|x|<\sqrt{T}\}} \partial_t u \psi_T^l \, dt dx &- \int_{[0,T)\times\{|x|<\sqrt{T}\}} \Delta u \psi_T^l \, dt dx \\ &= \int_{[0,T)\times\{|x|<\sqrt{T}\}} |x|^{\gamma} |u|^{\alpha-1} u \psi_T^l \, dt dx =: I(T). \end{split}$$

By Integration by parts, $|\partial_t \psi_T^l(t,x)| \leq \frac{C}{T} \psi_T^{l-1}$ and $|\partial_{x_j}^2 \psi_T^l(t,x)| \leq \frac{C}{T} \psi_T^{l-1}$,

$$\begin{split} I(T) + \int_{|x| < \sqrt{T}} u_0(x) \phi^l\left(\frac{x}{\sqrt{T}}\right) \, dx &= -\int_{[0,T) \times \{|x| < \sqrt{T}\}} u(\partial_t \psi^l_T + \Delta \psi^l_T) \, dt dx \\ &\leq \frac{C}{T} \int_{[0,T) \times \{|x| < \sqrt{T}\}} |u| \psi^{\frac{l}{\alpha}}_T \, dt dx, \end{split}$$

Sketch of test function method

Then there exists C > 0 independent of u and T such that

$$\begin{split} \int_{|x|<\sqrt{T}} u_0(x)\phi^l\left(\frac{x}{\sqrt{T}}\right) \, dx &\leq \frac{C}{T} \int_{[0,T)\times\{|x|<\sqrt{T}\}} |u|\psi_T^{\frac{1}{\alpha}} \, dt dx - I(T) \\ &\leq \cdots (\text{H\"older and Young's inequalities}) \cdots \\ &\leq CT^{-\alpha'+1} \int_{|x|<\sqrt{T}} |x|^{-\frac{\gamma}{\alpha-1}} \, dx \\ &\leq CT^{-\frac{2+\gamma}{2(\alpha-1)}+\frac{d}{2}}. \end{split}$$

Let

$$\begin{split} u_0(x) &= \begin{cases} |x|^{-\beta} & |x| \le 1, \\ 0 & \text{otherwise} \end{cases} \in L^q_s(\mathbb{R}^d) \quad \left(\frac{2+\gamma}{\alpha-1} < \beta < s + \frac{d}{q}\right) \\ &\implies \int_{|x| < \sqrt{T}} u_0(x) \phi^l\left(\frac{x}{\sqrt{T}}\right) \, dx = CT^{-\frac{\beta-d}{2}}. \\ &\implies 0 < C \le T^{\frac{\beta}{2} - \frac{2+\gamma}{2(\alpha-1)}} \to 0 \quad \text{as } T \to 0. \end{split}$$

Summary

0

(Hardy-Hénon parabolic equation)

$$\begin{cases} \partial_t u - \Delta u = |x|^{\gamma} |u|^{\alpha - 1} u, \quad t > 0, \ x \in \mathbb{R}^d, \\ u|_{t=0} = u_0 \in L^q_{s_c}(\mathbb{R}^d). \end{cases}$$

LWP in weighted spaces $L^q_s(\mathbb{R}^d)$

-) (Main results) $\gamma > -\min(2,d), \, lpha > 1 + rac{2+\gamma}{d}$
 - (i) If $s \leq s_c$ then (HH) is LWP $L_s^q(\mathbb{R}^d)$.
 - (ii) If $s > s_c$ then there exists $u_0 \in L^q_s(\mathbb{R}^d)$ such that (HH) with $u(0) = u_0$ does not have a weak solution.
- (Further possible works in relation to Harmonic Analysis)
 - Compactness/noncompactness properties of the space $L^q_{s,rad}(\mathbb{R}^d)$.
 - Global dynamics of the equation in energy spaces.
 - Analysis in hyperbolic spaces.

Thank you for your attention!

Noboru CHIKAMI (NITech)

Hardy-Hénon parabolic equation

August 3, 2021 ISAAC Harmonic Analysis an