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Introduction: The situation on Rn

The Kohn-Nirenberg quantization OpRn : a 7→ OpRn (a) is defined by

OpRn (a)ϕ(x) =

∫
Rn

e2πi〈ξ,x〉a(x , ξ)ϕ̂(ξ) dξ , for ϕ ∈ S (Rn) , a ∈ S (R2n) .

The Schrödinger representation of the Heisenberg group H is defined by

ρ(t, x , x ′) = e2πitTx/2Mx′Tx/2 ∈ L(L2(Rn)) ,

in which

Txϕ(y) = ϕ(y + x) and Mx′ϕ(y) = e2πi〈y,x′〉ϕ(y)

for (t, x , x ′) ∈ H ' R× Rn × Rn, y ∈ Rn and ϕ ∈ L2(Rn).

For the symbol class S0
0,0(Rn ×Rn) = {a ∈ C∞(R2n) | ∀α∈N2n

0
: ∂αa ∈ L∞(R2n)}:

Theorem (Beals, Cordes)

a ∈ S0
0,0(Rn × Rn) if and only if for A := OpRn (a)

z 7→ Adρ(z)A := ρ(z)A ρ(z)−1 is in E (H;L(L2(Rn))).



Introduction: Situation on compact Lie groups G

For a compact Lie group G the quantization OpG : a 7→ OpG (a) is defined by

OpG (a)ϕ(x) =
∑

[π]∈Ĝ

Tr[π(x) a(x , π) ϕ̂(π)] · (dimHξ) .

B∞(Ĝ) is defined as the set of symbols σ ∈
∏
π∈Rep(G) L(Hπ) with

1 σ(UπU−1) = Uσ(π)U−1 for each unitary U on Hπ

2 ‖σ‖B∞(Ĝ) := supπ ‖σ(π)‖L(Hπ ) < ∞

Let L2(x)ϕ(y) = ϕ(x−1y) for ϕ ∈ L2(G).

Theorem (Connolly, Fischer)

a ∈ E (G ;B∞(Ĝ)) iff x 7→ AdL2
(x)A := L2(x)AL2(x)−1 is in E (G ;L(L2(G))) for

A = OpG (a).

Here S0
0,0(G × Ĝ) = E (G ;B∞(Ĝ)).

Theorem (Cabral, Melo)

a ∈ A (Tn;B∞(T̂n)) iff x 7→ AdL2
(x)A = L2(x)AL2(x)−1 is in A (Tn;L(L2(Tn))) for

A = OpG (a) and the torus Tn = Rn/Zn.



Function spaces and vectors of generalized regularity

Definition

Let G be a Lie group. We call a continuously embedded subspace F (G) ⊂ C (G) a

C (G)-function space.

For locally convex spaces E ,F the product E εF is defined as

F εE := Lε(E ′c ;F ) ,

in which E ′c is the dual space of E equipped with the topology of uniform convergence

on compact absolutely convex sets and Lε(E ′c ;F ) is equipped with the topology of

uniform convergence on equicontinuous subsets of E ′c .

Definition

If (π,E) is a representation of G on E , then define

F (G ;E) : = {f : G → E | [e′ 7→ e′ ◦ f ] ∈ F (G) εE} ' F (G) εE

and F (π) : = {e ∈ E | π(·)e ∈ F (G ;E)}

equipped with initial topology via the embedding F (π) ↪→ F (G ;E).

Lemma

If F (G) = lim←−α Fα(G) =
⋂
α Fα(G), then F (π) = lim←−α Fα(π) =

⋂
α Fα(π).



Adjoint representations

1 (π,E) is said to be locally equicontinuous, if π(K) ⊂ L(E) is equicontinuous for

any compact K ⊂ G .

2 (π,E) is locally equicontinuous and strongly continuous, iff C (π) = E .

Definition

Adπ is the representation of G on Lb(E) defined by Adπ(x)T = π(x)Tπ(x)−1. Here

Lb(E) carries the topology of uniform convergence on bounded sets.

3 If (π,E) is locally equicontinuous, then (Adπ ,Lb(E)) is locally equicontinuous.

4 For any leftinvariant differential operator P the operator π(P)e := Pxπ(x)e|x=1

on E (π) is well defined.

5 For a left invariant vector field X and T ∈ E (Adπ) the commutator

Adπ(X )T = π(X )T − Tπ(X ) ∈ L(E) is well defined.



Spaces of ultradifferentiable functions

Let M ∈ RN0
+ be a weight sequence with

M0 = 1 ≤ M1 , ∀n≥1 : M2
n ≤ Mn−1Mn+1 and sup

k

(
Mk+1

Mk

) 1
k

<∞

Sporadically we will also use

(nQA)
∑
n

Mn−1

nMn
<∞

Let D = (D1, . . . ,Dn) be an analytic frame on G . Denote D0 := 1,

S := {a ∈ {0, . . . , n}N | |a| := # supp a <∞} and Da := · · ·Da3Da2Da1

Definition

For regular compact K ⊂ G (e.g. a compact submanifold of codimension 0 and

smooth boundary) we define the Banach space

E M
D (K) :=

{
f ∈ E (K)

∣∣∣∣ lim
|a|→∞

‖Daf ‖∞
M|a| |a|!

= 0

}
with norm ‖f ‖D,M := sup

a∈S

‖Daf ‖∞
M|a| |a|!

.

And also the limit spaces

E {M}(K) := lim−→
h→0

E M
hD(K) , F (G) := lim←−

reg. comp. K

F (K) , for F ∈ {E M
D , E {M}}



Description of spaces of ultradifferentiable functions and vectors

1 E {M}(G) does not depend D (see also [Dasgupta, Ruzhansky, 2016]) and is

nuclear and complete

2 If 1 := (1, 1, 1, . . . ), then E {1}(G) = A (G) is the space of analytic functions.

As a direct consequence of the work of [Komatsu, 1982] we have the following.

3 E {M}(G) = lim←−λ∈Λ
E λMD (G) for Λ := {(c0 · · · cn)n∈N0

| cn ↗∞} as linear spaces.

4 If (nQA) holds, then the identity also holds for the topologies.

If E is complete, then the following holds.

5 If (π,E) is locally equicontinuous and P(E) the set of continuous seminorms on

E and D ⊂ g a basis of left invariant vector fields, then

E M
D (π) =

{
e ∈ E (π)

∣∣∣∣ ∀p∈P(E) lim
|a|→∞
a∈S

p(π(Da)e)

M|a| |a|!
= 0

}
.

6 For f ∈ C (E) we have f ∈ E {M}(G ;E) iff ∀e′∈E ′ e′ ◦ f ∈ E {M}(G).

7 Also

E {M}(π) = lim←−
λ∈Λ

E λMD (π)

as linear spaces. If M fulfils (nQA), then the above holds topologically.



Spectrally invariant subalgebras with ultradifferential orbits

We have the following two easy lemmata.

Lemma

Suppose π is unitary on a Hilbert space E and the pointwise complex conjugation is

continuous from F (G) to itself. Then F (Adπ) is a ∗-subalgebra of L(E).

Lemma

Let A× be the group of invertible elements for an algebra A. Suppose F (G ;Lb(E)) is

an algebra for the pointwise multiplication. Furthermore, suppose f ∈ F (G ;Lb(E))×,

iff f ∈ F (G ;Lb(E)) and ∀x : f (x) ∈ Lb(E)×. Then

F (Adπ)× = F (Adπ) ∩ Lb(E)×

The following Lemma is a consequence of a theorem from [Klotz, 2014].

Lemma

Suppose A is any Banach algebra and f ∈ E {M}(G ;A) fulfils f (x) ∈ A× for all

x ∈ G . Then [x 7→ f (x)−1] is in E {M}(G ;A).

Proposition

If π is any unitary representation on a Hilbert space E , then E {M}(Adπ) is a

spectrally invariant ∗-subalgebra of Lb(E).



Spectrally invariant subalgebras with ultradifferential orbits cont.

Let R resp. L be the right resp. left translation on C (G). For any R-invariant C (G)

space F (G), denote by π �F the restriction of π to F (π).

1 If G (G) is another C (G)-space with G (G) = G (R �F ), then G (π) = G (π �F ).

2 If (nQA) holds, then E
{M}
D (G) = E {M}(R �E ) = E {M}(R �C k ) = E {M}(L). If

(nQA) does not hold, then the identity still holds in the sense of linear spaces.

Proposition

Suppose π is a representation on a Banach space E , then E {1}(Adπ) and thus

E {M}(Adπ) is dense in E (Adπ).

Proof.

1 For any k, Adπ �C k is a strongly continuous representation on the Banach space

C k (Adπ).

2 Thus the analytic vectors E {1}(Adπ �C k ) are dense in C k (Adπ) by [Nelson,

1959].

3 Now we use E {1}(Adπ �C k ) = E {1}(Adπ) as linear spaces.

4 And we finish by using E (Adπ) = lim←−k
C k (Adπ).



Symbols of algebras with ultradifferentiable orbits (compact case)

Proposition

Suppose G is compact and L2 is the left regular representation of G on L2(G). The

Kohn-Nirenberg quantization induces a linear homeomorphism

OpG : F (G ;B∞(Ĝ))→ F (AdL2
)

for any C (G)-function space F (G) with F (G) = F (R �E ) = F (L).

This holds especially for F (G) = E {M}(G), if M fulfils (nQA). Without (nQA) and

with F (G) = E {M}(G) the above is still a bijection.

Proof.

1 Let L̃ be the left-translation on C (G ;B∞(Ĝ)).

2 Then OpG is an isomorphism from E (L̃) onto E (AdL2
) (e.g. [Fischer, 2015])

3 OpG restricts to an isomorphism F (L̃ �E )→ F (AdL2
�E ), since

OpG L̃ = AdL2
OpG .

4 By F (G) = F (R �E ) we have F (L̃) = F (L̃ �E ) and F (AdL2
) = F (AdL2

�E ).

5 F (G) = F (L) leads to F (G ;B∞(Ĝ)) = F (L̃).

6 Finally, even if (nQA) does not hold, the C (G)-function space

F (G) := lim←−λ∈Λ
E λMD (G) can be used.



Symbols of algebras with ultradifferentiable orbits (Rn case)

We define the spaces

E M
∂,b(R2n) :=

{
f ∈ E (R2n)

∣∣∣∣ lim
|α|→∞

‖∂αf ‖∞
M|α| |α|!

= 0

}
with norm ‖f ‖M = sup

α∈N2n
0

‖∂αf ‖∞
M|α| |α|!

and

E
{M}
b (R2n) = lim←−

λ∈Λ

E λM∂,b (R2n)

If Lb is the left translation on Cb(R2n) := {f ∈ C (R2n) | ‖f ‖∞ <∞}, then

E
{M}
b (R2n) = E {M}(Lb). Similar to the compact case, we get the following

proposition.

Proposition

If M fulfils (nQA), then

OpRn : E
{M}
b (R2n)→ E {M}(Adρ)

is a linear homeomorphism. If (nQA) does not hold, then the above is still a bijection.



Continuity properties of operators with ultradifferentiable orbits

The following theorem is a variation of a Lemma due to [Schwartz, 1958].

Theorem

Let F , G , H , E , F and G be complete locally convex spaces and let

u : F × G → H and b : E × F → G

be bilinear. Suppose H is nuclear u is continuous and b is hypocontinuous. Then

there is a hypocontinuous bilinear map

b
u : (H εE)× (K εF )→ L εG , with b

u(S ⊗ e,T ⊗ f ) = u(S ,T )⊗ b(e, f ).

If G or L has the approximation property, then b
u is unique.

Proposition

Suppose F (G) is a complete C (G)-space with continuous multiplication

E {M}(G)×F (G)→ F (G)

and suppose (E , π) a representation on a Fréchet space E with the approximation

property. Then

E {M}(Adπ)→ Lb(F (π)) : T 7→ T �F(π)

is well defined and continuous.



Continuity properties of operators with ultradifferentiable orbits cont.

Proposition

Suppose F (G) is a complete C (G)-space with continuous multiplication

E {M}(G)×F (G)→ F (G)

and suppose (E , π) a representation on a Fréchet space E with the approximation

property. Then

E {M}(Adπ)→ Lb(F (π)) : T 7→ T �F(π)

is well defined and continuous.

Suppose G is compact. The following spaces are examples for π = L2 that work with

the proposition above. Furthermore, in the following cases F (L2) is dense in L2(G).

1 F (G) = C k (G) with Hk (G) = C k (L2)

2 F (G) = E (G) with E (G) = E (L2)

Suppose D is a basis of left invariant vector fields, then D̃ := L2(D) is a basis of right

invariant vector fields. Let M̃ be another weight sequence.

3 If supk (Mk/M̃k )
1
k <∞, then we may also use F (G) = E {M̃}(G). With (nQA),

we have E {M̃}(G) = E {M̃}(L2)

4 If (Mk/M̃k )
1
k → 0, then we may also use F (G) = E M

D (G) with the Sobolev

space HM
D̃

(G) = E M
D (L2) of functions f with lim|a|→∞

‖D̃af ‖2
M|a| |a|!

= 0
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Véronique Fischer.

Intrinsic pseudo-differential calculi on any compact Lie group.

J. Funct. Anal., 268(11):3404–3477, 2015.

Andreas Klotz.

Inverse closed ultradifferential subalgebras.

J. Math. Anal. Appl., 409(2):615–629, 2014.

Hikosaburo Komatsu.

Ultradistributions. III. Vector-valued ultradistributions and the theory of kernels.

J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29(3):653–717, 1982.

Laurent Schwartz.
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Thank you for your attention!


