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Introduction

In the recent mathematical literature, we find many articles which deal
with the theory of g-Fourier analysis associated with the g-Hankel
transform. This theory was elaborated first by Koornwinder and R.F.
Swarttouw in 1992 [8] and then by Fitouhi and Al in 2006 [4]. They were
interested in g-analogue of different integral transformations. In
connection with g-difference Bessel operator and with the basic Bessel
functions, they introduced several generalized g-Fourier transforms. So, it
is natural to look for the g-analogue of some well-known classical
theorems.
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Introduction

One of the classical topics in harmonic analysis and approximation theory
consists in finding necessary and sufficient conditions on the Fourier
coefficients of a function to belong to a generalised Lipschitz class. These
types of results are, nowadays, known as Boas-type results, since it was
R.P. Boas who in 1967 proved the first characterisation of this type [2].
Since then, this theory has been widely studied by several authors.
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Introduction

In 2008, Moricz, F. [11-14] has studied the continuity and smoothness
properties of a function f with absolutely convergent Fourier series. He
gave the best possible sufficient conditions in terms of the Fourier
coefficients of f which ensure the belonging of f either to one of the
Lipschitz classes Lip(«) and lip(c) for some 0 < a < 1, or to one of the
Zygmund classes Zyg(«) and zyg(a) for some 0 < o < 2.
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Introduction

Tikhonov, (2006-2007) [16-17], considered the cases of cosine and sine
series separately. Recently (2004 - 2015), S.S. Volosivets has published
two papers [18-19], in which he has generalized all the previous results,
and also these results are generalized to quaternion Fourier transform in
2021 by El. M. Loualid, A. Elgargati and R. Daher [10].
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Introduction

The aim of this talk is to give a g-analogue of the aforesaid results in
g-Bessel Fourier setting.
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Introduction

This talk is arranged as follows:

% In Section 2, we will state some basic notions and results from
harmonic analysis related to the g-Bessel Fourier transformF, , that will
be needed throughout this talk.

% In Section 3, We will show some auxiliary results required to the proofs
of our main results.

% In section 4, after defining the generalized Lipschtiz classes H.", and

hg',, we will state the main theorems of this talk.
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Preliminaries

In this section, we summarize some harmonic analysis tools related to the
g-Bessel Fourier transform Fg , that will be used hereafter.
Throught this talk, we assume that 0 < g <1, ¥ > —1 and

4+ n
Ry ={q",neZ}.

BERKAK EI MEHDI (FSAC) Boas For The g-Bessel Fourier Transform




Preliminaries

Definition
Let a € C, the g-shifted factorial are defined by:

n—1 00
(@9)o=1 (q)h=]][(1-2ag"), (a9)=]](1—ag")
k=0 k=0
Definition
The g-derivative of a function f is given by
F) = Flax)
D,f(x)= ————— if x#0
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Preliminaries

Definition
The g-Jackson integrals from 0 to a and from 0 to co are defined by

/Oa f(x)dgx = (1 - q)ai f(aq")q",
0

.
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Preliminaries

The third Jackson g-Bessel function J, (also called Hahn-Exton g-Bessel
functions) is defined by the power series

v+1 00 n(n+1)

o (@) n ° x2"
J(x;q) = (q @)oo Z -1) (q”+1,q) (9;9)n ,

and has the normalized form

00 qn(n2+1)
Ju(x;q) = -1)" x2".
(:a) ,,;0( ) (g“*1:q)n(q: q)n

It satisfies the following estimate

. n 2
iv(q",9%)| < (@2 D)

(0% 0%)oo(-6"*2 %) | 1 if n>0
@n i <o
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Preliminaries

The normalized g-Bessel functions satisfies an orthogonality relation

2 o0 5 N q—2n(u+1)
C"’”/o T

nm

where
1 (q2y+2; qz)oo

Cqv =

1-q (4% 6%
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Preliminaries

The function x + j,(Ax, g?) is a solution of the following g-differential
equation

Dy f = —Nf,

where A, is the g-Bessel operator

D) = lF(a70) — (14 ¢)F(x) + ¢ F (0]
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Preliminaries

We denote by

® For 1 < p < oo we denote by L, the set of all functions on R} for
which

Ifl

o0 1
ano = L[ 1PN 1 dy]s < o0,

® duy, q(x) = x?Tldyx.
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Preliminaries

Definition

For f € Lg,1,, the g-Bessel Fourier transform F ,

qun—%/’fthwmA)

Definition

The g-Bessel translation operator is defined as follows

TV f _%j.p () (xt, @) (vt %) g (£).

Definition

The g-translation operator is positive if

v 4=
TV f>0, Vf>0, VYxeR].

= = = — SNl
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Preliminaries

The domaine of positivity of the g-translation operator is
Q, ={q€)0,1], Ty, s positive for all x € R} }.

In [5] it was proved that if —1 < v </ then Q, C Q. As a
consequence:

e if 0 <wv then Q, =]0,1].
* if —1 <1 <0 then |0, go[C Q1 CQ Cl01], qo=~043.
o if —1<v< —% then Q, C Q_%.
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Preliminaries

In the rest of this talk we always assume that the g-translation operator is

positive.
As a direct consequence of the positivity of the g-translation operator [3]

we get

v(x,@%)| <1, Vx € RS
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Preliminaries

Proposition:
There exists a, 5,1 > 0 such that:
(1)
a<|j(t,g®) 1|, Vt>1, teR]. (1)
= 2 2
| ju(t,q°) —1|< Bt?, YVt <1, teRy. (2)
= 2 2
| Jv(t,q%) =1 |>nt?, Vt<1, teRy. (3)
v
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Preliminaries

The g-Bessel Fourier transform satisfies

® For all functions f € Lg ., p > 1, we have
]—"iyf(x) =f(x), Vxe€ R:;.

@® For all functions f € Lg2,,

H I ,Vf ||q,2,V:|| f ||q72,l/ c
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Preliminaries

For any function f € L4, we have

Fa To F)A) = ju(Ax, @) Fqu(F)(N), VA x € RE.
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Preliminaries

Now we define the finite differences of order m € N and step h € Rj{ by

= (Tsn—1)"

Where [ is the unit operator.
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Preliminaries

For all me N and h € Rj, we have

(ATaf) () = X (—1)'"‘"(’7 )( v) ().

0<i<m
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Preliminaries

Forall me N and h € Rj, we have

Fow (N4f) () = (i (M, 07) = 1) Fau () (). (4)
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Auxiliary results

In this section, we will show two important lemmas that we used in the
proof of our main results.
Let g be a non-negative, measurable function defined on R;.
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Auxiliary results

Let m € N. Then
® If 0 < a < mis given number, x"g (x) € Lg1,, and

y
/ x"g(x)dpu,q(x) = O(y™*) for all y € R (5)
0

then g.x(y,+00) € Lq,1,, Where X(, oo)(.) is the characteristic
function of (y,+o0), and

| €)diugx) = O() for all y € B (6)

@ Conversely, if 0 < a < m and (6) holds, then (5) also holds.

.
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Auxiliary results

Let m € N. Then
® If 0 < o < mis given number, x™g (x) € L41,, and

/Oy xMg(x)dpyq(x) = o(y™ *) as y = +o0 (7)

then g.x(y,+00) € Lq,1,» for large y, where x(, () is the
characteristic function of (y,+o0), and

/0 " () diyg(x) = o(y=) as y — +00 (8)

@ Conversely, if 0 < o < m and both conditions (5) and (8) are hold,
then (7) also holds.

.
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Main results

Before giving our main results, we define, first, the generalized Lipschitz

m
classes Hg',, and hg',,.

Definition:

A function f is said belong to Hg', for a > 0 if

Agnf ()| = O(h%), heR], (9)

and is said to belong to hg!, for a > 0 if

AT (x) | = o (h*) as h— 0. (10)

The spaces H;’a for a > 0 and h}m for a > 0, are called respectively th
Lipschitz class Lip (a) and little Lipschtiz class lip (o). The spaces H2
for & > 0 and h2 for « > 0, are called respectively the Zygmund class
Zyg («) and I|ttIe Zygmund class zyg (a).

(S

.
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Main results

Let f be a function, me N and 0 < a < 2m.
® Suppose that f € Lg1,. If

y
| a0 dug(x) = O™, for all y € RE,  (11)
then 7y, (f) € Lg1,, and f € H,,.

@ Conversely, suppose f, Fq., (f) € Lg1,. If f € Hg and Fq. () is
non-negative or non-positive, then (11) holds.
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Main results

Both statements in the previous theorem remain valid if the right-hand

side in (11) is replaced by
o) (yz’”’o‘) as y — +o00,

and f € Hg', is replaced by f € hg',, provided that 0 < a < 2m.

(12)

.
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Thank you for your attention
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