Boas-Type Theorems For The q-Bessel Fourier Transform

BERKAK EI MEHDI

(Joint work with Pr. R. Daher and Pr. E.M. Loualid)

 $\label{eq:Department of Mathematics, TAGMD,} Department of Mathematics, TAGMD, Faculty of Sciences A "in Chock, University of Hassan II"$

The 13th International ISAAC Congress Ghent 2 August 2021

In the recent mathematical literature, we find many articles which deal with the theory of q-Fourier analysis associated with the q-Hankel transform. This theory was elaborated first by Koornwinder and R.F. Swarttouw in 1992 [8] and then by Fitouhi and Al in 2006 [4]. They were interested in q-analogue of different integral transformations. In connection with q-difference Bessel operator and with the basic Bessel functions, they introduced several generalized q-Fourier transforms. So, it is natural to look for the q-analogue of some well-known classical theorems.

One of the classical topics in harmonic analysis and approximation theory consists in finding necessary and sufficient conditions on the Fourier coefficients of a function to belong to a generalised Lipschitz class. These types of results are, nowadays, known as Boas-type results, since it was R.P. Boas who in 1967 proved the first characterisation of this type [2]. Since then, this theory has been widely studied by several authors.

In 2008, Moricz, F. [11-14] has studied the continuity and smoothness properties of a function f with absolutely convergent Fourier series. He gave the best possible sufficient conditions in terms of the Fourier coefficients of f which ensure the belonging of f either to one of the Lipschitz classes $Lip(\alpha)$ and $lip(\alpha)$ for some $0 < \alpha \le 1$, or to one of the Zygmund classes $Zyg(\alpha)$ and $zyg(\alpha)$ for some $0 < \alpha \le 2$.

Tikhonov, (2006-2007) [16-17], considered the cases of cosine and sine series separately. Recently (2004 - 2015), S.S. Volosivets has published two papers [18-19], in which he has generalized all the previous results, and also these results are generalized to quaternion Fourier transform in 2021 by El. M. Loualid, A. Elgargati and R. Daher [10].

The aim of this talk is to give a q-analogue of the aforesaid results in q-Bessel Fourier setting.

This talk is arranged as follows:

- \bigstar In Section 2, we will state some basic notions and results from harmonic analysis related to the q-Bessel Fourier transform $\mathcal{F}_{q,\nu}$ that will be needed throughout this talk.
- \bigstar In Section 3, We will show some auxiliary results required to the proofs of our main results.
- \bigstar In section 4, after defining the generalized Lipschtiz classes $H^m_{q,\alpha}$ and $h^m_{q,\alpha}$, we will state the main theorems of this talk.

In this section, we summarize some harmonic analysis tools related to the q-Bessel Fourier transform $\mathcal{F}_{q,\nu}$ that will be used hereafter. Throught this talk, we assume that 0 < q < 1, $\nu > -1$ and

$$\mathbb{R}_q^+ = \{q^n, n \in \mathbb{Z}\}.$$

Definition

Let $a \in \mathbb{C}$, the *q*-shifted factorial are defined by:

$$(a;q)_0 = 1, \quad (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \quad (a;q)_\infty = \prod_{k=0}^\infty (1 - aq^k)$$

Definition

The q-derivative of a function f is given by

$$D_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x} \quad \text{if} \quad x \neq 0$$

Definition

The q-Jackson integrals from 0 to a and from 0 to ∞ are defined by

$$\int_0^a f(x)d_qx = (1-q)a\sum_0^\infty f(aq^n)q^n,$$

$$\int_0^\infty f(x)d_qx = (1-q)\sum_{n=-\infty}^\infty f(q^n)q^n.$$

The third Jackson q-Bessel function J_{ν} (also called Hahn-Exton q-Bessel functions) is defined by the power series

$$J_{\nu}(x;q) = \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} x^{\nu} \sum_{n=0}^{\infty} (-1)^{n} \frac{q^{\frac{n(n+1)}{2}}}{(q^{\nu+1};q)_{n}(q;q)_{n}} x^{2n},$$

and has the normalized form

$$j_{\nu}(x;q) = \sum_{n=0}^{\infty} (-1)^n \frac{q^{\frac{n(n+1)}{2}}}{(q^{\nu+1};q)_n(q;q)_n} x^{2n}.$$

It satisfies the following estimate

$$|j_{\nu}(q^n,q^2)| \leq rac{(-q^2;q^2)_{\infty}(-q^{2
u+2};q^2)_{\infty}}{(q^{2
u+2};q^2)_{\infty}} \left\{ egin{array}{ll} 1 & ext{if} & n \geq 0 \ q^{n^2-(2
u+1)n} & ext{if} & n < 0 \end{array}
ight.$$

The normalized q-Bessel functions satisfies an orthogonality relation

$$c_{q,\nu}^2 \int_0^\infty j_{\nu}(q^n x, q^2) j_{\nu}(q^m x, q^2) x^{2\nu+1} d_q x = \frac{q^{-2n(\nu+1)}}{1-q} \delta_{nm}$$

where

$$c_{q,\nu} = rac{1}{1-q} rac{(q^{2
u+2};q^2)_\infty}{(q^2;q^2)_\infty}.$$

The function $x \mapsto j_{\nu}(\lambda x, q^2)$ is a solution of the following q-differential equation

$$\Delta_{q,\nu}f = -\lambda^2 f,$$

where $\Delta_{q,\nu}$ is the q-Bessel operator

$$\Delta_{q,\nu}f(x)=rac{1}{x^2}[f(q^{-1}x)-(1+q^{2
u})f(x)+q^{2
u}f(qx)].$$

We denote by

• For $1 \leq p < \infty$ we denote by $\mathcal{L}_{q,p,\nu}$ the set of all functions on \mathbb{R}_q^+ for which

$$||f||_{q,p,\nu} = \left[\int_0^\infty |f(x)| x^{2\nu+1} d_q x\right]^{\frac{1}{p}} < \infty.$$

 $\bullet \ d\mu_{\nu,q}(x) = x^{2\nu+1}d_qx.$

Definition

For $f \in \mathcal{L}_{q,1,
u}$, the q-Bessel Fourier transform $\mathcal{F}_{q,
u}$

$$\mathcal{F}_{q,\nu}f(x)=c_{q,\nu}\int_0^\infty f(t)j_{
u}(xt,q^2)d\mu_{
u,q}(t),$$

Definition

The q-Bessel translation operator is defined as follows

$$T_{q,x}^{\nu}f(y) = c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu}(f)(t)j_{\nu}(xt,q^{2})j_{\nu}(yt,q^{2})d\mu_{\nu,q}(t).$$

Definition

The q-translation operator is positive if

$$T_{q,x}^{\nu} f \ge 0, \quad \forall f \ge 0, \quad \forall x \in \mathbb{R}_q^+.$$

The domaine of positivity of the q-translation operator is

$$Q_{
u}=\{q\in]0,1[,\quad T_{q, imes}^{
u}\quad ext{is positive for all }x\in\mathbb{R}_q^+\}.$$

In [5] it was proved that if $-1 < \nu < \nu'$ then $Q_{\nu} \subset Q_{\nu'}$. As a consequence:

- if $0 \le \nu$ then $Q_{\nu} =]0,1[$.
- if $-\frac{1}{2} \le \nu < 0$ then $]0, q_0[\subset Q_{-\frac{1}{2}} \subset Q_{\nu} \subseteq]0, 1[, q_0 \simeq 0.43.$
- if $-1 \le \nu < -\frac{1}{2}$ then $Q_{\nu} \subset Q_{-\frac{1}{2}}$.

In the rest of this talk we always assume that the q-translation operator is positive.

As a direct consequence of the positivity of the q-translation operator [3] we get

$$|j_{\nu}(x,q^2)| \leq 1, \quad \forall x \in \mathbb{R}_q^+.$$

Proposition:

There exists $\alpha, \beta, \eta > 0$ such that:

1

$$\alpha \le |j_{\nu}(t, q^2) - 1|, \quad \forall t > 1, \quad t \in \mathbb{R}_q^+. \tag{1}$$

2

$$|j_{\nu}(t,q^2) - 1| \le \beta t^2, \quad \forall t \le 1, \quad t \in \mathbb{R}_q^+.$$
 (2)

3

$$|j_{\nu}(t,q^2) - 1| \ge \eta t^2, \quad \forall t \le 1, \quad t \in \mathbb{R}_q^+.$$
 (3)

Theorem:

The *q*-Bessel Fourier transform satisfies

1 For all functions $f \in \mathcal{L}_{q,p,\nu}$, $p \ge 1$, we have

$$\mathcal{F}_{q,\nu}^2 f(x) = f(x), \quad \forall x \in \mathbb{R}_q^+.$$

2 For all functions $f \in \mathcal{L}_{q,2,\nu}$,

$$\| \mathcal{F}_{q,\nu} f \|_{q,2,\nu} = \| f \|_{q,2,\nu}$$
.

Corollary:

For any function $f \in \mathcal{L}_{q,2,\nu}$ we have

$$\mathcal{F}_{q,\nu}(T_{q,x}^{\nu}f)(\lambda) = j_{\nu}(\lambda x, q^2)\mathcal{F}_{q,\nu}(f)(\lambda), \quad \forall \lambda, x \in \mathbb{R}_q^+.$$

Now we define the finite differences of order $m \in \mathbb{N}$ and step $h \in \mathbb{R}_q^+$ by

$$\Lambda_{q,h}^m = \left(T_{q,h}^\nu - I\right)^m$$

Where *I* is the unit operator.

Remark:

For all $m \in \mathbb{N}$ and $h \in \mathbb{R}_a^+$, we have

$$\left(\Lambda_{q,h}^{m}f\right)\left(x\right)=\sum_{0\leq i\leq m}\left(-1\right)^{m-i}\left(\begin{array}{c}m\\i\end{array}\right)\left(T_{q,h}^{\nu}\right)^{i}f\left(x\right).$$

Lemma:

For all $m \in \mathbb{N}$ and $h \in \mathbb{R}_a^+$, we have

$$\mathcal{F}_{q,\nu}\left(\Lambda_{q,h}^{m}f\right)(x) = \left(j_{\nu}\left(\lambda h, q^{2}\right) - 1\right)^{m} \mathcal{F}_{q,\nu}\left(f\right)(x). \tag{4}$$

Auxiliary results

In this section, we will show two important lemmas that we used in the proof of our main results.

Let g be a non-negative, measurable function defined on \mathbb{R}_{q}^{+} .

Auxiliary results

Lemma:

Let $m \in \mathbb{N}$. Then

(1) If $0 < \alpha \le m$ is given number, $x^m g(x) \in \mathcal{L}_{q,1,\nu}$ and

$$\int_0^y x^m g(x) d\mu_{\nu,q}(x) = O(y^{m-\alpha}) \text{ for all } y \in \mathbb{R}_q^+$$
 (5)

then $g.\chi_{(y,+\infty)} \in \mathcal{L}_{q,1,\nu}$, where $\chi_{(y,+\infty)}(.)$ is the characteristic function of $(y,+\infty)$, and

$$\int_0^y g(x)d\mu_{\nu,q}(x) = O(y^{-\alpha}) \text{ for all } y \in \mathbb{R}_q^+$$
 (6)

(1) Conversely, if $0 \le \alpha < m$ and (6) holds, then (5) also holds.

Auxiliary results

Lemma:

Let $m \in \mathbb{N}$. Then

① If $0 < \alpha \le m$ is given number, $x^m g(x) \in \mathcal{L}_{q,1,\nu}$ and

$$\int_0^y x^m g(x) d\mu_{\nu,q}(x) = o(y^{m-\alpha}) \text{ as } y \to +\infty$$
 (7)

then $g.\chi_{(y,+\infty)} \in \mathcal{L}_{q,1,\nu}$ for large y, where $\chi_{(y,+\infty)}(.)$ is the characteristic function of $(y,+\infty)$, and

$$\int_0^{+\infty} g(x)d\mu_{\nu,q}(x) = o(y^{-\alpha}) \text{ as } y \to +\infty$$
 (8)

① Conversely, if $0 < \alpha \le m$ and both conditions (5) and (8) are hold, then (7) also holds.

Main results

Before giving our main results, we define, first, the generalized Lipschitz classes $H_{q,\alpha}^m$, and $h_{q,\alpha}^m$.

Definition:

A function f is said belong to $H_{q,\alpha}^m$ for $\alpha > 0$ if

$$|\Lambda_{q,h}^{m}f(x)| = O(h^{\alpha}), \ h \in \mathbb{R}_{q}^{+}, \tag{9}$$

and is said to belong to $h_{q,\alpha}^m$ for $\alpha > 0$ if

$$|\Lambda_{q,h}^{m}f(x)| = o(h^{\alpha}) \text{ as } h \to 0.$$
 (10)

The spaces $H^1_{q,\alpha}$ for $\alpha>0$ and $h^1_{q,\alpha}$ for $\alpha>0$, are called respectively the Lipschitz class $Lip\left(\alpha\right)$ and little Lipschitz class $lip\left(\alpha\right)$. The spaces $H^2_{q,\alpha}$ for $\alpha>0$ and $h^2_{q,\alpha}$ for $\alpha>0$, are called respectively the Zygmund class $Zyg\left(\alpha\right)$ and little Zygmund class $zyg\left(\alpha\right)$.

Main results

Theorem:

Let f be a function, $m \in \mathbb{N}$ and $0 < \alpha \le 2m$.

1 Suppose that $f \in \mathcal{L}_{q,1,\nu}$. If

$$\int_0^y x^{2m} |\mathcal{F}_{q,\nu}(f)(x)| d\mu_{\nu,q}(x) = O(y^{2m-\alpha}), \text{ for all } y \in \mathbb{R}_q^+,$$
 (11)

then $\mathcal{F}_{q,\nu}\left(f
ight)\in\mathcal{L}_{q,1,
u}$ and $f\in H^m_{q,lpha}.$

① Conversely, suppose f, $\mathcal{F}_{q,\nu}(f) \in \mathcal{L}_{q,1,\nu}$. If $f \in H^m_{q,\alpha}$ and $\mathcal{F}_{q,\nu}(f)$ is non-negative or non-positive, then (11) holds.

Main results

Theorem:

Both statements in the previous theorem remain valid if the right-hand side in (11) is replaced by

$$o\left(y^{2m-\alpha}\right) \text{ as } y \to +\infty,$$
 (12)

and $f \in H_{q,\alpha}^m$ is replaced by $f \in h_{q,\alpha}^m$, provided that $0 < \alpha < 2m$.

- 1— Achak, A., Daher, R., Dhaouadi, L. and Loualid, EL.M, An analog of Titchmarsh's theorem for the q-Bessel transform. Ann Univ Ferrara 65, 1-13 (2019). https://doi.org/10.1007/s11565-018-0309-3
- 2— R.P. Boas Jr., Integrability Theorems for Trigonometric Transforms, Springer-Verlag, New York, 1967.
- 3— L.Dhaoudi, On the q-Bessel Fourier transform, Bulletin of Mathematical Analysis and Applications, Volume5, Issue2, Article 42-60(2013).
- 4- L.Dhaouadi, A.Fitouhi and J.El Kamel, Inequalities in q-Fourier Analysis, journal of Inequalities in Pure and Applied Mathematics, Volume 7, Issue 5, Article171 (2006).

- 5— A. Fitouhi and L. Dhaouadi, Positivity of the generalized Translation Associated with the q-Hankel Transform, Constructive Approximation, Volume34, Article 435-472(2011).
- 6— G.Gasper and M.Rahman, Basic hypergeometric series, Encycopedia of mathematics and its applications, Volume 35, Cambridge university press (1990).
- 7- F.H. Jackson, On a *q*-Definite Integrals, Quarterly Journal of Pure and Application Mathematics, Volume 41, Article 193-203 (1910).
- 8- T.H. Koornwinder and Swarttouw, on q-analogues of the Hankel and Fourier transform, Trans. A. S, Volume 333, Article 445-461 (1992).

- 9— H. T. Koelink and R. T. Swarttouw, On the zeros of the Hahn-Exton q-Bessel Function and associated q-Lommel polynomials, J. Math. Anal. Appl, Volume 186, Article 690-710 (1994).
- 10- El. M. Loualid, A. Elgargati and R. Daher. Quaternion Fourier Transform And Generalized Lipschitz Classes. Accepted for publication in Advances in Applied Clifford Algebras (2020).
- 11 r F. Moricz, Absolutely convergent Fourier integrals and classical function spaces, Arch. Math. 91 (1) (2008) 49-62.
- 12- F. Moricz, Absolutely convergent Fourier series and function classes, J. Math. Anal. Appl. 324 (2) (2006) 1168-1177.

- 13— F. Moricz, Higher order Lipschitz classes of functions and absolutely convergent Fourier series, Acta Math. Hungar. 120 (4) (2008) 355-366.
- 14— F. Moricz, Absolutely convergent Fourier series, classical function spaces and Paley's theorem, Anal. Math. 34 (4) (2008) 261-276.
- 15- R. F. Swarttouw, The Hahn-Exton q-Bessel functions, Ph. D. Thesis, Delft Technical University (1992).
- 16- S. Tikhonov, Smoothness conditions and Fourier series, Math. Inequal. Appl. $10\ (2)\ (2007)\ 229-242$.

- 17- S. Tikhonov, On generalized Lipschitz classes and Fourier series, Z. Anal. Anwend. 23 (4) (2004) 745-764.
- 18- S.S. Volosivets. Fourier transforms and generalized Lipschitz classes in uniform metric. J. Math. Anal. Appl. 383 (2011) 344-352
- 19- S.S. Volosivets, Multiple Fourier coefficients and generalized Lipschitz classes in uniform metric, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.02.011

Thank you for your attention