Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L^r-uncertaint principles for the Quaternion Linear Canonical

Uncertainty Principles

for The Quaternion Linear Canonical Transform

Achak Azzedine Chouaib Doukkali University-ESEF El Jadida Morocco

In collaboration with Pr. R. Daher 13th ISAAC Congress 2021 .

3 août 2021

Outline

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L'-uncertaint principles for the Quaternion Linear Canonical

- 1 Quaternion Linear Canonical Transform
- 2 Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform
- **3** *L*^r-uncertainty principles for the Quaternion Linear Canonical transform

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L'-uncertainty principles for the Quaternion Linear Canonical

Quaternion Linear Canonical Transform

A quaternion $q \in \mathcal{H}$ can be written in this form

$$q = q_0 + q = q_0 + \mathbf{i}q_1 + \mathbf{j}q_2 + \mathbf{ij}q_3$$

where i and j, satisfy Hamilton's multiplication rules

$$i^2 = j^2 = -1$$
, $ij = -ji$.

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion

L^r-uncertainty principles for the Quaternion Linear

So the modulus of a quaternion q defined by

$$|q| = \sqrt{q\overline{q}} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}.$$

It is not difficult to see that

$$|pq| = |p||q|$$
. $\forall p, q \in \mathcal{H}$.

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion Linear Canonical

5/40

In this paper, we study the quaternion-valued signal $f:\mathbb{R}^2 o \mathcal{H}$ that can be expressed as

$$f(\underline{x}) = f_0(\underline{x}) + \mathbf{i} f_1(\underline{x}) + \mathbf{j} f_2(\underline{x}) + \mathbf{i} \mathbf{j} f_3(\underline{x})$$

where $\underline{x} = \mathbf{i}x_1 + \mathbf{j}x_2 \in \mathbb{R}^2$ and f_0 , f_1 , f_2 and f_3 are real-valued functions.

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L'-uncertainty principles for the Quaternion Linear Canonical

6/40

For $1 \leq r < \infty$, the quaternion modules $L^r(\mathbb{R}^2, \mathcal{H})$ are defined as

$$L^r = L^r(\mathbb{R}^2, \mathcal{H}) = \{f/f : \mathbb{R}^2 \to \mathcal{H}, \ \|f\|_{L^r}^r = \int_{\mathbb{R}^2} |f(\underline{x})|^r d\underline{x} < \infty \ \}.$$

Achak

Quaternion Linear Canonical

Transform

The inner product of $f(\underline{x})$, $g(\underline{x}) \in L^2(\mathbb{R}^2, \mathcal{H})$ is defined by

$$\langle f(\underline{x}), g(\underline{x}) \rangle = \int_{\mathbb{R}^2} f(\underline{x}) \overline{g(\underline{x})} d\underline{x}$$

Clearly, $||f||_2^2 = \langle f, f \rangle$. Now, we define a norm of $\mathcal{F}(f)$ as

$$|\mathcal{F}(f)(\underline{x})|_{Q} = (|\mathcal{F}(f_0)(\underline{x})|^2 + |\mathcal{F}(f_1)(\underline{x})|^2 + |\mathcal{F}(f_2)(\underline{x})|^2 + |\mathcal{F}(f_3)(\underline{x})|^2 + |\mathcal{F}(f_3)(\underline{x})|^2$$

Furthermore, we obtain the $L^r(\mathbb{R}^2,\mathcal{H})$ -norm

$$\|\mathcal{F}(f)\|_{Q,r} = \left(\int_{\mathbb{D}^2} |\mathcal{F}(f)(\underline{x})|_Q^r d\underline{x}\right)^{1/r}.$$

Achak

Quaternion Linear

Canonical Transform

8/40

Let $A_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ be a real matrix parameter such that $det(A_i) = 1$, for i = 1, 2. The (right-sided) QLCT of $f \in L^1(\mathbb{R}^2, \mathcal{H})$ is defined by

$$\mathcal{L}_{A_1,A_2}(f)(\underline{\xi}) = \int_{\mathbb{R}^2} f(x) \mathcal{K}_{A_1}^{\mathbf{i}}(x_1,\xi_1) \mathcal{K}_{A_2}^{\mathbf{j}}(x_2,\xi_2) d\underline{x}$$

Achak

Quaternion Linear Canonical

Transform

9/40

where the kernel functions of the QLCT above are given by

$$K_{A_{1}}^{\mathbf{i}}(x_{1},\xi_{1}) = \begin{cases}
\frac{1}{\sqrt{2\pi b_{1}}} e^{(\mathbf{i}/2)((a_{1}/b_{1})x_{1}^{2} - (2/b_{1})x_{1}\xi_{1} + (d_{1}/b_{1})\xi_{1}^{2}) - \pi/2), \\
\sqrt{d_{1}} e^{\mathbf{i}(c_{1}d_{1}/2)\xi_{1}^{2}},
\end{cases} (1)$$

$$K_{A_{2}}^{\mathbf{j}}(x_{2},\xi_{2}) = \begin{cases}
\frac{1}{\sqrt{2\pi b_{2}}} e^{(\mathbf{j}/2)((a_{2}/b_{2})x_{2}^{2} - (2/b_{2})x_{2}\xi_{2} + (d_{2}/b_{2})\xi_{2}^{2}) - \pi/2), \\
\sqrt{d_{2}} e^{\mathbf{j}(c_{2}d_{2}/2)\xi_{2}^{2}},
\end{cases} (2)$$

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L'-uncertainty principles for the Quaternion Linear Canonical

10/40

Then from the definition of the QLCT, we can easily see that when $b_1b_2=0$ and $b_1=b_2=0$, the QLCT of a signal is essentially a quaternion chirp multiplication. Therefore, in this work, we always assume $b_1b_2\neq 0$, if $b_i\neq 0$ for i=1,2, then $\begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}^{-1}=\begin{pmatrix} d_i & -b_i \\ -c_i & a_i \end{pmatrix}$.

(Riemann-Lebesgue lemma)

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L^r-uncertainty principles for the Quaternion Linear Canonical

Theorem

Suppose that $f \in L^1(\mathbb{R}^2, \mathcal{H})$. Then

$$\lim_{|\omega_1|\to\infty}|\mathcal{L}_{A_1,A_2}(f)(\underline{\omega})|=0, \lim_{|\omega_2|\to\infty}|\mathcal{L}_{A_1,A_2}(f)(\underline{\omega})|=0.$$

(Inversion formula)

Achak Azzedine Chouaib Doukkali Jniversity

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L'-uncertainty principles for the Quaternion Linear Canonical

Definition

The (right-sided) inverse QLCT of $g \in L^1(\mathbb{R}^2,\mathcal{H})$

$$\mathcal{L}_{A_1,A_2}^{-1}(g)(\underline{\xi}) = \int_{\mathbb{R}^2} g(\underline{x}) K_{A_2^{-1}}^{j}(x_2,\xi_2) K_{A_1^{-1}}^{i}(x_1,\xi_1) d\underline{x}$$
 (3)

(Plancherel theorem of QLCT)

Theorem

Let $f \in L^2(\mathbb{R}^2, \mathcal{H})$ then

$$\|\mathcal{L}_{A_1,A_2}(f)\|_{Q,2} = \|f\|_2.$$
 (4)

(Hausdorff-Young inequality)

Achak Azzedine Chouaib Doukkali University

Achak Azzedin

Quaternion Linear

Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L'-uncertainty principles for the Quaternion Linear Canonical

14/40

Theorem

if $1 \le r \le 2$ and letting r' be such that 1/r + 1/r' = 1 then for all $f \in L^r(\mathbb{R}^2, \mathcal{H})$ it holds that

$$\|\mathcal{L}_{A_1,A_2}(f)\|_{Q,r'} \le \frac{|b_1b_2|^{-1/2+1/r'}}{2\pi} \|f\|_r.$$
 (5)

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion Linear Canonical In this section, based on the techniques of Donoho-Stark [5] and K.I Kou, we will show uncertainty principle of concentration-type for Quaternion Linear Canonical transform (QLCT).

Achak Azzedine Chouaib Doukkali Universit

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for

Quaternion Linear Canonical

Definition

We consider a pair of orthogonal projections on $L^2(\mathbb{R}^2, \mathcal{H})$. The first is P_S operator defined by :

$$P_{S}f = \chi_{S}f, \tag{6}$$

and the second is Q_{Σ} operator defined by :

$$Q_{\Sigma}f = \mathcal{L}_{A_1, A_2}^{-1} \left[\chi_{\Sigma} \mathcal{L}_{A_1, A_2}(f) \right], \tag{7}$$

where S and Σ are two measurable subsets of \mathbb{R}^2 , and χ_S denote the characteristic function of S.

Achak Azzedine Chouaib Doukkali Universit

Achak Azzedine

Quaternion Linear Canonical

Donoho-Stark's uncertainty principle for Quaternion Linear

L'-uncertaint principles for the Quaternion Linear

transform

Definition

Let $0 < \varepsilon_S, \varepsilon_\Sigma < 1$ and let $f \in L^2(\mathbb{R}^2, \mathcal{H})$ be a nonzero function. We say that f is ε_S -concentrated on S if :

$$||P_{S^c}f||_2 \le \varepsilon_S ||f||_2. \tag{8}$$

Similarly we say that f is ε_{Σ} -concentrated on Σ for the Quaternion Linear Canonical transform if

$$\|Q_{\Sigma^c}f\|_2 \le \varepsilon_{\Sigma}\|f\|_2. \tag{9}$$

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L'-uncertainty principles for the Quaternion Linear

We define the norm of P_S as following

$$||P_S|| = \sup_{f \in L^2(\mathbb{R}^2, \mathcal{H})} \frac{||P_S(f)||_2}{||f||_2}.$$

In the same way, the norm of Q_{Σ} is defined by

$$\|Q_{\Sigma}\| = \sup_{f \in L^2(\mathbb{R}^2, \mathcal{H})} \frac{\|Q_{\Sigma}(f)\|_2}{\|f\|_2}.$$

Since P_S and Q_Σ are projections, it is clear that $\|P_S\| = \|Q_\Sigma\| = 1$.

If $|\Sigma| < \infty$ where Σ is a set of finite measure of \mathbb{R}^2 , we have

$$|\Sigma| = \int_{\Sigma} d\underline{x}.$$

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternio Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion Linear Canonical

In the following proposition we give an other inequality proved by Donoho-Stark [5] in the one dimensional case. We may derive the analogue result to quaternion-valued signals. We consider unit energy signal for simplification. Then by Plancherel's theorem we get $||f||_2 = ||\mathcal{L}_{A_1,A_2}(f)||_{Q,2} = 1$.

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion
Linear
Canonical
Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion Linear Canonical

20/40

Let S and Σ be two measurable sets of \mathbb{R}^2 and assume that $\varepsilon_S + \varepsilon_{\Sigma} < 1$, f is ε_S -concentrated on S and $\mathcal{L}_{A_1,A_2}(f)$ is ε_{Σ} -concentrated on Σ . Then

$$\left(rac{|b_1b_2|^{-1/2}}{2\pi}
ight)^2|S||\Sigma|\geq (1-arepsilon_{\mathcal{S}}-arepsilon_{\Sigma})^2.$$

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternior Linear Canonical

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion Linear Canonical Let $f\in L^2(\mathbb{R}^2,\mathcal{H})$ and $S,\,\Sigma\subset\mathbb{R}^2$ be two measurable sets such that $|S||\Sigma|<\left(\frac{2\pi}{|b_1b_2|^{-1/2}}\right)^2$ and let $\varepsilon_S,\varepsilon_\Sigma>0$ such that $\varepsilon_S^2+\varepsilon_\Sigma^2<1$. If f is ε_S -concentrated on S and ε_Σ -concentrated on Σ for the Quaternion Linear Canonical transform, then

$$\left(rac{|b_1b_2|^{-1/2}}{2\pi}
ight)^2|S||\Sigma|\geq \left(1-\sqrt{arepsilon_S^2+arepsilon_\Sigma^2}
ight)^2.$$

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion
Linear
Canonical
Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertaint principles for the Quaternion Linear

$$r(\underline{x}) = \begin{cases} f(\underline{x}) + n(\underline{x}), & x \in S^c; \\ 0, & x \in S. \end{cases}$$

Here, without loss of generality we can assume that n=0 on S. Equivalently,

$$r = (I - P_S)f + n.$$

We propose to construct f from r. This construction requires the following definition.

Achak

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

We say that f can be stably reconstructed from r, if there exists a linear operator K and a constant C such that :

$$||f - Kr||_2 \le C||n||_2.$$
 (10)

Achak Azzedine Chouaib Doukkali Universit

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L'-uncertainty principles for the Quaternion Linear Canonical

24/40

If S and Σ are two measurable sets of \mathbb{R}^2 satisfy the condition $0<|S||\Sigma|<\left(\frac{2\pi}{|b_1b_2|^{-1/2}}\right)^2$ then f can be stably reconstructed

from r. That is, there exists a constant C such that

$$C \leq \left(1 - rac{|b_1 b_2|^{-1/2}}{2\pi} \sqrt{|S||\Sigma|}
ight)^{-1}.$$

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternior Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion

Using the similar method given by K. I. Kou, we give an algorithm for computing Kr. Let

$$K = (I - P_S Q_{\Sigma})^{-1} = \sum_{k=0}^{\infty} (P_S Q_{\Sigma})^k$$

Put

$$f^{(n)} = \sum_{k=0}^{n} (P_S Q_{\Sigma})^k r,$$

then

$$\begin{cases} f^{(0)} = r \\ f^{(n+1)} = r + P_S Q_{\Sigma} f^{(n)} \\ f^{(n)} \to Kr \text{ as } n \to \infty. \end{cases}$$

25/40

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternior Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion Linear Canonical In this section we will prove a quantitative uncertainty inequality about the essential supports of a nonzero function $f \in L^r(\mathbb{R}^2, \mathcal{H})$, $1 \leq r \leq 2$ and its Quaternion Linear Canonical transform.

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L'-uncertainty principles for the Quaternion Linear Canonical transform

27/40

Theorem

Let $f \in L^1(\mathbb{R}^2, \mathcal{H}) \cap L^r(\mathbb{R}^2, \mathcal{H}), \ 1 \leq r \leq 2$, then

$$\|\mathcal{L}_{A_1,A_2}(f)\|_{Q,r'} \le \frac{|b_1b_2|^{-1/2}}{2\pi} |\text{supp } \mathcal{L}_{A_1,A_2}(f)|^{1/r'} |\text{supp } f|^{1/r'} \|f\|_r$$

where $r' = \frac{r}{r-1}$.

Achak

L^r-uncertainty principles for the Quaternion Linear Canonical transform

28/40

Let $f \in L^2(\mathbb{R}^2, \mathcal{H}) \cap L^r(\mathbb{R}^2, \mathcal{H})$, 1 < r < 2, then

$$1 < rac{|b_1 b_2|^{-1/2 + 1/r'}}{2\pi} | ext{supp } \mathcal{L}_{A_1,A_2}(f) | rac{r'-2}{2r'} | ext{supp } f | rac{2-r}{2r}$$

where $r' = \frac{r}{r-1}$.

Achak Azzedine Chouaib Doukkali Universit

Achak Azzedin

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L^r-uncertainty principles for the Quaternion Linear Canonical

transform

29/40

we say that a function $f \in L^r(\mathbb{R}^2, \mathcal{H})$ is ε_S -concentrated to S in $L^r(\mathbb{R}^2, \mathcal{H})$ -norm if and only if

$$||f - P_S f||_r \le \varepsilon_S ||f||_r. \tag{11}$$

 $\mathcal{L}_{A_1,A_2}(f)$ is ε_{Σ} -concentrated on Σ in $L^{r'}(\mathbb{R}^2,\mathcal{H})$ -norm if and only if

$$\|\mathcal{L}_{A_1,A_2}(f) - \mathcal{L}_{A_1,A_2}(Q_{\Sigma}f)\|_{Q,r'} \le \varepsilon_{\Sigma} \|\mathcal{L}_{A_1,A_2}(f)\|_{Q,r'}.$$
 (12)

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L'-uncertainty principles for the Quaternion Linear Canonical

transform

30/40

Theorem

Let $f \in L^1(\mathbb{R}^2, \mathcal{H}) \cap L^r(\mathbb{R}^2, \mathcal{H})$, $1 \leq r \leq 2$ and let S, Σ be two measurable subsets of \mathbb{R}^2 . If f is ε_S -concentration to S in $L^r(\mathbb{R}^2, \mathcal{H})$ -norm and $\mathcal{L}_{A_1,A_2}(f)$ is ε_{Σ} -concentration to Σ in $L^{r'}(\mathbb{R}^2, \mathcal{H})$ -norm, then

$$\|\mathcal{L}_{A_1,A_2}(f)\|_{Q,r'} \leq \frac{|b_1b_2|^{-1/2}}{2\pi} \left(\frac{|S|^{\frac{1}{r'}}|\Sigma|^{\frac{1}{r'}} + \varepsilon_S|b_1b_2|^{1/r'}}{1 - \varepsilon_{\Sigma}} \right) \|f\|_r.$$

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L'-uncertainty principles for the Quaternion Linear Canonical transform

31/40

We are now in position to give another principle of concentration type for the Quaternion Linear Canonical transform in $L^1(\mathbb{R}^2,\mathcal{H})\cap L^r(\mathbb{R}^2,\mathcal{H})$ proved by Donoho-Strak [5] in the one dimensional case, this principle is given by the following theorem.

Achak Azzedine Chouaib Doukkali Jniversity

Achak Azzedine

Quaternior Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the

Quaternion Linear Canonical transform

32/40

Theorem

Let S and Σ be two measurable subsets of \mathbb{R}^2 and $f \in L^1(\mathbb{R}^2, \mathcal{H}) \cap L^r(\mathbb{R}^2, \mathcal{H}), 1 \leq r \leq 2$. If f is ε_S -concentration to S in $L^1(\mathbb{R}^2, \mathcal{H})$ -norm and $\mathcal{L}_{A_1,A_2}(f)$ is ε_{Σ} -concentration to Σ in $L^{r'}(\mathbb{R}^2, \mathcal{H})$ -norm, then

$$\|\mathcal{L}_{A_1,A_2}(f)\|_{Q,r'} \leq \frac{|b_1b_2|^{-1/2}}{2\pi} \frac{|S|^{\frac{1}{r'}}|\Sigma|^{\frac{1}{r'}}}{(1-\varepsilon_S)(1-\varepsilon_{\Sigma})} \|f\|_r$$

where $r' = \frac{r}{r-1}$.

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L^r-uncertainty principles for the Quaternion Linear Canonical transform

34/40

Let S and Σ be two measurable subsets of \mathbb{R}^2 , and $f \in L^1(\mathbb{R}^2,\mathcal{H}) \cap L^2(\mathbb{R}^2,\mathcal{H})$ if f is ε_S concentrated to S in $L^1(\mathbb{R}^2,\mathcal{H})$ -norm and $\mathcal{L}_{A_1,A_2}(f)$ is ε_Σ concentrated to Σ in $L^2(\mathbb{R}^2,\mathcal{H})$ -norm, then

$$(1-\varepsilon_{S})(1-\varepsilon_{\Sigma}) \leq \frac{|b_1b_2|^{-1/2}}{2\pi} \sqrt{|S||\Sigma|}.$$

Achak Azzedine Chouaib Doukkali Universit

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion

the Quaternion Linear Canonical transform

35/40

Let $f \in L^1(\mathbb{R}^2, \mathcal{H}) \cap L^{r_1}(\mathbb{R}^2, \mathcal{H}) \cap L^{r_2}_2(\mathbb{R}^2, \mathcal{H})$, $1 < r_1 < r_2 < 2$ and let S and Σ be two measurable subsets of \mathbb{R}^2 . If f is ε_S concentrated to S in $L^{r_1}(\mathbb{R}^2, \mathcal{H})$ -norm and $\mathcal{L}_{A_1,A_2}(f)$ is ε_Σ concentrated to Σ in $L^{r_2}(\mathbb{R}^2, \mathcal{H})$ -norm, $r_2' = \frac{r_2}{r_2-1}$ then

$$\|\mathcal{L}_{A_1,A_2}\|_{Q,r_2'} \leq \frac{|b_1b_2|^{-1/2+1/r_1'}}{2\pi} \frac{|S|^{\frac{r_2-r_1}{r_1r_2}}|\Sigma|^{\frac{r_1'-r_2'}{r_1'r_2'}}}{(1-\varepsilon_S)(1-\varepsilon_\Sigma)} \|f\|_{r_2},$$

where $r'_1 = \frac{r_1}{r_1 - 1}$.

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternior Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L'-uncertainty principles for the Quaternion Linear Canonical transform

36/40

Let $B^r(\Sigma)$, $1 \le r \le 2$, be the set of functions $g \in L^1(\mathbb{R}^2, \mathcal{H}) \cap L^r(\mathbb{R}^2, \mathcal{H})$ that are bandlimited to Σ i.e $(g \in B^r(\Sigma)$ implies $Q_{\Sigma}g = g)$.

We say that f is ε_{Σ} -bandlimited to Σ in $L^r(\mathbb{R}^2,\mathcal{H})$ -norm if there is a $g \in B^r(\Sigma)$ with

$$||f-g||_r \leq \varepsilon_{\Sigma} ||f||_r$$
.

The space $B^r(\Sigma)$ satisfies the following property.

Bandlimited principle-type

Achak

L^r-uncertainty principles for the Quaternion Linear Canonical transform

37/40

Let S and Σ be two measurable subsets of \mathbb{R}^2 . For $g \in B^r(\Sigma)$, $1 \le r \le 2$,

$$||P_{S}g||_{r} \leq \frac{|b_{1}b_{2}|^{-1/2+1/r'}}{2\pi} |S|^{\frac{1}{r}} |\Sigma|^{\frac{1}{r}} ||g||_{r}$$

Bandlimited principle-type

Achak Azzedine Chouaib Doukkali Universit

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion Linear Canonical

transform

38/40

Let S and Σ be two measurable subsets of \mathbb{R}^2 , and $f \in L^1(\mathbb{R}^2, \mathcal{H}) \cap L^{r_1}(\mathbb{R}^2, \mathcal{H}) \cap L^{r_2}(\mathbb{R}^2, \mathcal{H})$, $1 < r_1 < r_2 < 2$. If f is ε_S concentrated to S in $L^{r_1}(\mathbb{R}^2, \mathcal{H})$ -norm and ε_{Σ} -bandlimited to Σ in $L^{r_2}(\mathbb{R}^2, \mathcal{H})$ -norm, $r_2' = \frac{r_2}{r_2-1}$ then

$$||f||_{r_1} \leq \frac{|S|^{\frac{r_2-r_1}{r_1r_2}}}{1-\varepsilon_S} \left[(1+\varepsilon_{\Sigma}) \frac{|b_1b_2|^{-1/2+1/r_2'}}{2\pi} |S|^{\frac{1}{r_2}} |\Sigma|^{\frac{1}{r_2}} + \varepsilon_{\Sigma} \right] ||f||_{r_2}$$

where
$$r_1' = \frac{r_1}{r_1 - 1}$$
.

Bandlimited principle-type

Achak Azzedine Chouaib Doukkali University

Achak Azzedine

Quaternion Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L^r-uncertainty principles for the Quaternion Linear Canonical transform

39/40

Let S and Σ be two measurable subsets of \mathbb{R}^2 and $f \in L^1(\mathbb{R}^2, \mathcal{H}) \cap L^r(\mathbb{R}^2, \mathcal{H})$, $1 \leq r \leq 2$. If f is ε_S -concentrated to S and f is ε_{Σ} -bandlimited to Σ in $L^r(\mathbb{R}^2, \mathcal{H})$ -norm then

$$\frac{1-\varepsilon_{\mathcal{S}}-\varepsilon_{\Sigma}}{1+\varepsilon_{\Sigma}} \leq \frac{|b_1b_2|^{-1/2+1/r'}}{2\pi} |\mathcal{S}|^{\frac{1}{r}} |\Sigma|^{\frac{1}{r}}.$$

Achak Azzedine

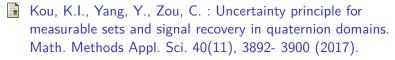
Quaternior Linear Canonical Transform

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L'-uncertainty principles for the Quaternion Linear Canonical transform

39/40

K. I. Kou, J. Ou and J. Morais, On uncertainty principle for quaternionic linear canonical transform, Abstract and Applied Analysis, Vol. 2013, Article ID 725952, 14 pages, doi:10.1155/2013/725952, (2013).



D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math., 49 (1989), 906-931.

K. I. Kou, J. Ou and J. Morais. Uncertainty principles associated with quaternionic linear canonical transforms. Mathematical Methods in the Applied Sciences, Vol. 39, 10, 27222736 July (2016).

Achak Azzedine

Quaternion Linear Canonical Transform

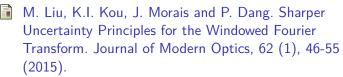
Donoho-Stark's uncertainty principle for Quaternion Linear Canonical transform

L^r-uncertainty principles for the Quaternion Linear Canonical transform

39/40

Kou, K.I., Morais, J.: Asymptotic behaviour of the quaternion linear canonical transform and the Bochner-Minlos theorem. Appl. Math. Comput. 247, 675-688 (2014).

K. I. Kou, J.-Y.Ou, and J.Morais, "On uncertainty principle for quaternionic linear canonical transform," Abstract and Applied Analysis, vol. 2013, Article ID 725952, 14 pages, 2013.



Achak Azzedine

Quaternion Linear Canonical

Donoho-Stark's uncertainty principle for Quaternion Linear Canonical

L^r-uncertainty principles for the Quaternion Linear Canonical transform

Y. L. Liu, K. I. Kou, and I. T. Ho, "New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms," Signal Processing, vol. 90, no. 3, pp. 933-945, 2010.

End

L^r-uncertainty principles for the Quaternion Linear Canonical transform

40/40

Thank you for your attention