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Note, that with intensive research on problems of optimal control of
the agro-economical system, regulating the label of ground waters
and soil moisture, it has become necessary to investigate BVPs for a
loaded partial differential equations.
Integral boundary conditions have various applications in thermo-
elasticity, chemical engineering, population dynamics, etc. In this
work we consider parabolic-hyperbolic type equation fractional order
involving non-linear loaded term:

0 =

{
uxx − CDα

otu + a1(x , t) up1 (x , t) + f1(x , t ; u(x ,0)), for t > 0,
uxx − utt + a2(x , t) up2 (x , t) + f2(x , t ; u(x , 0)), for t < 0,

(1)
where

CDα
0y f (y) =

1
Γ(1− α)

y∫
0

(y − t)−αf ′(t)dt , 0 < α < 1, (2)

is Caputo differential operator, ai (x , t), fi (x , t ; u (x , 0)) are given
functions, and pi = const > 0, 0 < α < 1, i = 1, 2.
Let J = {(x , t); t = 0, 0 < x < l} , Ω1 = {(x , t) : 0 < x < l , 0 < t < h} ,
Ω2 = {(x , t) : 0 < x + t < l , 0 < x − t < l , t < 0} and Ω = Ω1∪J ∪Ω2
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Problem G. It is required to find a solution u (x , t) of the equation (1)
with the following properties:
1) u(x , t) ∈ C (Ω) ∩ C2(Ω2), uxx , CDα

otu ∈ C (Ω1) , ux ∈ C1
(
Ω1 \ t = h

)
;

2) u(x , t) satisfy boundary value conditions:

α1u(0, t) + α2ux (0, t) = ϕ1(t), β1u(l , t) + β2ux (l , t) = ϕ2(t), 0 ≤ t < h;
(3)

γ1u
(x

2
,−x

2

)
+ γ2u

(
x + l

2
,

x − l
2

)
= ψ(x), 0 ≤ x ≤ l ; (4)

and integral gluing condition:

lim
t→+0

t1−αut (x , t) = λ1(x) ut (x , −0) + λ2(x) ux (x , −0)

+λ3(x)u (x , 0) + λ4(x), 0 < x < 1, (5)

where ψ(x), ϕi (t), λk (x) (k = 1, 4) are given continuous functions

and αi , βi , γi , (i = 1,2) are given constants, such that
3∑

k=1
λ2

k (x) 6= 0

and α2
1 + α2

2 6= 0, β2
1 + β2

2 6= 0, γ2
1 + γ2

2 6= 0.
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Remarks

Remark.1. As we known, the same above problems for the
equation (1) at α = 1 have not been investigated, too. On the
another hand, we would like to note, that fundamental solution of
equation (1) for t > 0 at α = 1, completely coincides with the
fundamental solution of the heat equation uxx − ut = 0. Therefore,
all results in this work remain valid in case α = 1, too.
Remark.2. If α1 = β1 = γ1 = 0 or α1 = β1 = γ2 = 0, then the
Problem G becomes a local boundary value problem (BVP) with
the secondary boundary conditions on the parabolic domain,
moreover investigation of the new local problem will be reduced
to the Volterra type non-linear integral equations.
Remark.3. If α2 = β2 = 0 and γ1, γ2 6= 0, then the Problem G
becomes a non-local BVP with the first boundary conditions on
the parabolic domain, however investigation of the new non-local
problem will be reduced to the Fredholm type non-linear integral
equations.
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We note that solution of the non-local problem with condition (4) and
u(x ,0) = τ(x) for equation (1) in Ω2 at γ1 6= γ2, has a form:

u (x , y) =
γ1τ(x + y)− γ2τ(x − y)

γ1 − γ2
+
γ1ψ(x + y)− γ2ψ(x − y)

γ1 − γ2
−

−1
4

x−y∫
x+y

dη

0∫
x+y

a2

(
ξ + η

2
,
ξ − η

2

)
up2

(
ξ + η

2
,
ξ − η

2

)
dξ

−1
4

x−y∫
x+y

dη

0∫
x+y

f2

(
ξ + η

2
,
ξ − η

2
; τ

(
ξ + η

2

))
dξ. (6)

Further, from the equation (1) as y → +0 taking into account (2), (5)
and

lim
y→0

Dα−1
0y f (y) = Γ(α) lim

y→0
y1−αf (y),

we derive
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τ ′′(x)− Γ(α)λ1(x) uy (x , −0)− Γ(α)λ2(x) τ ′(x)

−Γ(α)λ3(x)τ(x)−Γ(α)λ4(x)+a1(x ,0)τp1 (x)+f1(x ,0; τ(x)) = 0, 0 < x < 1.

Hence, taking into account (see (6))

uy (x ,−0) =
γ1 + γ2

γ1 − γ2
τ ′(x)− 2

γ1 − γ2
ψ′(x)

+
1
2

x∫
0

a2

(
ξ + x

2
,
ξ − x

2

)
up2

(
ξ + x

2
,
ξ − x

2

)
dξ

+
1
2

x∫
0

f2

(
ξ + x

2
,
ξ − x

2
; τ

(
ξ + x

2

))
dξ,

we obtain
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τ ′′(x)− Γ(α)

(
γ1 + γ2

γ1 − γ2
λ1(x) + λ2(x)

)
τ ′(x)− Γ(α)λ3(x) τ(x)

−Γ(α)

2
λ1(x)

x∫
0

f2

(
ξ + x

2
,
ξ − x

2
; τ

(
ξ + x

2

))
dξ

+a1 (x ,0)τp1 (x) + f1 (x ,0; τ(x))

=
Γ(α)

2
λ1(x)

x∫
0

a2

(
ξ + x

2
,
ξ − x

2

)
up2

(
ξ + x

2
,
ξ − x

2

)
dξ

+Γ(α)λ4(x) +
2Γ(α)

γ1 − γ2
λ1(x)ψ′(x), 0 < x < 1. (7)
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From the class for solution of the problem G and using by the bound-
ary conditions (3) and (4), we obtain

α1τ(0) + α2τ
′(0) = ϕ1(0), (8)

β1τ(l) + β2τ
′(l) = ϕ2(0), (9)

γ2
1τ(0)− γ2

2τ(l) =1 ψ(0)− γ2ψ(l). (10)

We assume, that α1 = 0 but γ2 6= 0 or β1 = 0 but γ1 6= 0, (see
Remark.2.), then based on the (8), (9) and (10), we can formulate
next remark:

Remark.4. If α1 = β2 = 0, γ1 6= 0 or α2 = β1 = 0, γ2 6= 0 then the
Problem G becomes a non-local BVPs, investigations which will be
reduced to the Volterra type non-linear integral equations.
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By integration the equation (7) with initial value conditions τ(0) = A
and τ ′(0) = B we derive

τ(x)− Γ(α)

x∫
0

K1(x , t)τ(t)dt +

x∫
0

(x − t)a1(t ,0)τp1 (t)dt

−Γ(α)

2

x∫
0

(x − t)λ1(t)dt

t∫
0

f2

(
ξ + t

2
,
ξ − t

2
; τ

(
ξ + t

2

))
dξ

+

x∫
0

(x − t)f1(t ,0; τ(t))dt

=
Γ(α)

2

x∫
0

(x−t)λ1(t)dt

t∫
0

a2

(
ξ + t

2
,
ξ − t

2

)
up2

(
ξ + t

2
,
ξ − t

2

)
dξ+g1(x),

(11)
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where

K1(x , t) =
[
(x − t)

(
λ1(t) + λ2(t)

)]′ − (x − t)λ3(t);

g1(x) = Γ(α)

x∫
0

(x−t)λ4(t)dt−Γ(α)

x∫
0

(x−t)λ1(t)ψ′(t)dt+ϕ2(0)x+ψ(0).
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Theorem. We suppose that pi = const > 1 and the following condi-
tions are fulfilled:

ai (x , y) ∈ C
(
Ωi
)
∪ C1 (Ωi ) , fi (x , y , u(x ,0)) ∈ C

(
Ωi
)
∪ C1 (Ωi ) ; (12)

ϕi (y) ∈ C[0,h] ∪ C1(0,h), ψ(x) ∈ C[0,1] ∪ C2(0,1); (13)

λk (x) ∈ C[0,1] ∩ C1(0,1) (k = 1,2,3,4); (14)∣∣fi (x , (i−1)y ; u2(x ,0))−fi (x , (i−1)y ; u1(x ,0))
∣∣ ≤ Li

∣∣u2(x ,0)−u1(x ,0)
∣∣,

(15)
for all (x , y) ∈ Ωi , where Li = const > 0 (i = 1,2). Then the problem
has a unique solution.

Obidjon Abdullaev IM of Uzb.ASc. On a non-local problem for the loaded parabolic-hyperbolic type equation with non-linear termsAugust 4, 2021 12 / 21



Introduction Problem formulation Existence and uniqueness of solution of the problem G Conclusion

Volterra type integral equations

By virtue of properties (12) and (13), we have estimates:∥∥K1(x , t)
∥∥

C ≤ M1,
∥∥g1(x , t)

∥∥
C ≤ g10,

∥∥fi (x , (i − 1)y ; u(x ,0))
∥∥

C ≤ fi0,
(16)

where M1, g10, fi0 = const > 0 (i = 1,2). The equations (6) and (11)
we consider as a system of nonlinear integral equations of Volterra
type second order with respect to unknown functions τ(x) and u(x , y)
for y ≤ 0 [3] {

u(x , y) = S(x , y ,u; τ), (x , y) ∈ Ω2;
τ(x) = T(x , y ,u; τ), 0 < x < 1. (17)
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We define a sequence of functions τn (x) and un (x , y) (n = 0,1, ...)
from the following system of recurrent equations:{

u0(x , y) = g1(x) + ψ
( x−y

2

)
− ψ

( x+y
2

)
, un(x , y) = S

(
x , y ,un−1; τn−1

)
;

τ0(x) = g1(x), τn(x) = T
(
x , y ,un−1; τn−1

)
.

(18)
By virtue of properties (14),(15) and estimates(16), we have following
estimates∥∥ai (x , y)

∥∥
C ≤ mi ,

∥∥λ1(x)
∥∥

C ≤ λ10,
∥∥τ0(x)

∥∥
C ≤ c11, ‖u0(x , y)‖C ≤ c21,

where mi , λ10, ci1 = const > 0 (i = 1, 2).
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Further, taking these estimates into account, from the iteration pro-
cess (18) we derive{∥∥τ1(x)− τ0(x)

∥∥
C ≤ Γ (α) M1c11x +

(
m1cp1

11 + f10
)
x2 + Γ (α)

2 λ10
(
f20 + m2cp2

21

)
x3 ≤ β x ,

‖u1(x , y)− u0(x , y)‖C ≤ 1
2

(
m2cp2

21 + f20
)
|x + y | ≤ γ

2 |x + y |,

where

β = max
{

Γ (α)M1c11, m1cp1
11+f10,

Γ (α)

2
λ10
(
f20+m2cp2

21

)}
, γ = m2cp2

21+f20.
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Continuing the above reasoning for arbitrary n, we have:

∥∥τn(x)− τn−1(x)
∥∥

C ≤ 4n−1Γn−1(α)λn−1
10 Ln−1

2
xn

n!
, 0 ≤ x ≤ 1,

∥∥un(x , y)−un−1(x , y)
∥∥

C ≤ 4n−2Γn−2(α)λn−2
10 Ln−2

2
xn−1

(n − 1)!
, (x , y) ∈ Ω2.

By virtue of the obtained estimates, we conclude that the functional
sequences of functions {τn(x)}∞n=1 and {un(x , y)}∞n=1 has a unique
limit functions τ (x) and u (x , y):

lim
n→∞

τn(x) = τ (x), lim
n→∞

un(x , y) = u (x , y).

Thus, the existence of a solution of the system (17) has been proved.
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After determination τ (x) we restore the unique solution of the con-
sidering problem B in the domain Ω2 as a solution of the non-local
problem (see the equation (7)). Further, we take the existence of
function τ(x) into account and we will write the solution of second
boundary value problem for the equation (1) in domain Ω1, which has
form [1]:

u (x , y) =

y∫
0

Gξ(x , y , 0, η)ϕ2(η) d η −
y∫

0

Gξ(x , y , 1, η)ϕ1(η) d η

+

1∫
0

G0(x − ξ, y) τ (ξ) d ξ −
y∫

0

1∫
0

G(x , y , ξ, η)f1(ξ, η; τ (ξ)) d ξ d η

−
y∫

0

1∫
0

G(x , y , ξ, η)a1(ξ, η) up1 (ξ, η) d ξ d η. (19)
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where

G0(x − ξ, y) =
1

Γ(1− α)

y∫
0

(y − η)−αG (x , η, ξ, 0) d η,

G (x , y , ξ, η) =
(y − η)α/2−1

2

∞∑
n=−∞

[
e1,α/2

1,α/2

(
−|x − ξ + 2n|

(y − η)α/2

)

−e1,α/2
1,α/2

(
−|x + ξ + 2n|

(y − η)α/2

)]
is Green’s function of the second boundary value problem for the
equation (1) in the domain Ω1 [1], [2],

e1, δ
1, δ(z) =

∞∑
n=0

zn

n!Γ(δ − δn)

is Wright type function.
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It is investigated the last equation as a nonlinear Volterra type integral
equation of the second kind

u (x , y) +

y∫
0

1∫
0

K2(ξ, η) up1 (ξ, η) d ξ d η = F (x , y)

by well known methods from the work [5], where

F (x , y) =

y∫
0

Gξ(x , y , 0, η)ϕ2(η) d η −
y∫

0

Gξ(x , y , 1, η)ϕ1(η) d η

+

1∫
0

G0(x − ξ, y) τ (ξ) d ξ

−
y∫

0

1∫
0

G (x , y , ξ, η)f1 (ξ, η; τ (ξ)) d ξ d η.

The Theorem is proved.
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Thank You !
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