Parabolic nonsingular integral operator on generalized Orlicz-Morrey spaces

Mehriban Omarova

Baku State University Azerbaijan mehriban_omarova@yahoo.com

We study the boundedness of the parabolic nonsingular integral operator

$$\mathcal{R}f(x) = \int_{D_+^{n+1}} \frac{|f(y)|}{
ho(\widetilde{x}-y)^{n+2}} \, dy.$$

on parabolic generalized Orlicz-Morrey spaces $M^{\Phi,\phi}(D^{n+1}_+)$. Here ρ is a certain metric on \mathbb{R}^{n+1}_+ and $\widetilde{x} = (x'', -x_n, t) \in D^{n+1}_+ = \mathbb{R}^{n-1} \times \mathbb{R}_+ \times \mathbb{R}_+$. The generalized Orlicz-Morrey space $M^{\Phi,\phi}(D^{n+1}_+)$ is equipped with the norm

$$\|f\|_{M^{\Phi,\phi}(D^{n+1}_{+})} \equiv \sup_{x \in D^{n+1}_{+}, r > 0} \ \frac{1}{\phi(x,r)} \Phi^{-1}\left(\frac{1}{|E^{+}(x,r)|}\right) \ \|f\|_{L^{\Phi}(E^{+}(x,r))},$$

where $E^+(x,r) = \left\{ y \in \mathbb{R}^{n+1} : \frac{|x'-y'|^2}{r^2} + \frac{|t-\tau|^2}{r^4} < 1 \right\}.$

The operator \mathcal{R} and its commutator appear in connection with boundary estimates for solutions to parabolic equations.

One of the main theorems states that if Φ satisfies the so-called Δ_2 and ∇_2 condition and, together with $\phi_1, \phi_2 : D^{n+1}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, satisfies some integral inequality, then the operator \mathcal{R} is bounded from $M^{\Phi,\phi_1}(D^{n+1}_+)$ to $M^{\Phi,\phi}(D^{n+1}_+)$.

This work was supported by the Grant of 1st Azerbaijan-Russia Joint Grant Competition (Agreement Number No. EIF-BGM-4-RFTF-1/2017-21/01/1-M-08).