Generalized Sobolev-Morrey estimates for hypoelliptic operators on homogeneous groups

Vagif Guliyev

Institute of Applied Mathematics of Baku State University Azerbaijan vagif@guliyev.com

Let $\mathbb{G} = (\mathbb{R}^N, \circ, \delta_\lambda)$ be a homogeneous group, Q is the homogeneous dimension of \mathbb{G} , X_0, X_1, \ldots, X_m be left invariant real vector fields on \mathbb{G} and satisfy Hörmander's rank condition on \mathbb{R}^N . Assume that X_1, \ldots, X_m $(m \leq N-1)$ are homogeneous of degree one and X_0 is homogeneous of degree two with respect to the family of dilations $(\delta_\lambda)_{\lambda>0}$. Consider the

following hypoelliptic operator $\mathcal{L} = \sum_{i,j=1}^{m} a_{ij}X_iX_j + a_0X_0$ with drift on \mathbb{G} , where (a_{ij}) is a $m \times m$ constant matrix satisfying the elliptic condition in \mathbb{R}^m and $a_0 \neq 0$. In [1], for this class of operators, we obtain the generalized Sobolev-Morrey estimates by establishing boundedness of a large class of sublinear operators T_{α} , $\alpha \in [0, Q)$ generated by Calderón-Zygmund operators ($\alpha = 0$) and generated by fractional integral operator ($\alpha > 0$) on generalized Morrey spaces and proving interpolation results on generalized Sobolev-Morrey spaces on \mathbb{G} . The sublinear operators under consideration contain integral operators of harmonic analysis such as Hardy-Littlewood and fractional maximal operators, Calderón-Zygmund operators, fractional

Keywords: Hypoelliptic operators with drift, Homogeneous group, Fractional integral operator, Singular integral operators, Generalized Morrey space, Generalized Sobolev-Morrey estimates.

integral operators on homogeneous groups, etc.

[1] V.S. Guliyev, *Generalized Sobolev-Morrey estimates for hypoelliptic operators on homogeneous groups*, accepted in Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM (2021), 1-31.