Spectrally invariant algebras of pseudodifferential operators with ultradifferentiable orbits

Jonas Brinker

Universität Stuttgart Germany jonas.brinker@mathematik.uni-stuttgart.de

Many operator algebras occurring in the theory of pseudodifferential operators are spectrally invariant. A famous example is the algebra of smooth operators T such that the orbit

$$G \ni x \mapsto \pi(x)T\pi(x)^{-1} \in \mathcal{L}(H_{\pi})$$
 (O)

is smooth for the Heisenberg group $G = \mathbb{H}$ and the Schrödinger representation $\pi = \rho$ on $H_{\pi} = L^2(\mathbb{R}^n)$. This algebra corresponds to the symbols in $S_{0,0}^0(\mathbb{R}^n \times \mathbb{R}^n)$ via the Kohn-Nirenberg quantization. On compact Lie groups G an analogue situation can be found with respect the left regular representation $\pi = L$ on $H_{\pi} = L^2(G)$ and the symbol space $S_{0,0}^0(G \times \widehat{G})$. If G is a torus and $\pi = L$, it is known that the algebra of operators with analytic orbit (O) corresponds to a space of analytic symbols.

We discuss operator algebras with generalized regularity conditions on the orbits (O) and search for analogues of the cases above. In the case of $G = \mathbb{H}$ with $\pi = \rho$ or general compact Lie groups G with $\pi = L$ we get spectrally invariant algebras of pseudodifferential operators with ultradifferentiable orbits, which correspond to spaces of ultradifferentiable symbols.