Harmonische Analysis — Blatt 7

Math is like Ophelia in Hamlet — charming and a bit mad. (Alfred North Whitehead; 1861–1947)

Problems

7.1. (a) Show that a sequence $(c_n)_{n \in \mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}}$ is of positive type on \mathbb{Z} if and only if all matrices

$\int c_0$	c_1	c_2		c_N
c_{-1}	c_0	c_1	• • •	c_{N-1}
c_{-2}	c_{-1}	c_0	• • •	c_{N-2}
:	÷	÷	۰.	:
$\langle c_{-N} \rangle$	c_{1-N}	c_{2-N}		c_0 /

are positive semi-definite.

Conclude that for any sequence of positive type $|c_n| \leq c_0$ and $c_{-n} = \overline{c_n}$.

(b) Assume now that $(c_n)_{n \in \mathbb{Z}}$ is of positive type with $c_0 = 1$. Use Bochner's theorem to show that there exists a uniquely determined probability measure $\mu \in \mathbb{M}_+(\mathbb{T})$ with

$$c_n = \int_{\mathbb{T}} z^n \mathrm{d}\mu(z).$$

What is the cyclic representation associated to $(c_n)_{n \in \mathbb{Z}}$ in the Hilbert space $L^2(\mathbb{T}, d\mu)$?

- (c) Prove that $(c_n)_{n \in \mathbb{Z}} \in \mathcal{P}_1(\mathbb{Z})$ is extremal if and only if $c_n = \omega^n$ for some $\omega \in \mathbb{T}$.
- 7.2. (a) Determine all characters of the multiplicative group $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.
 - (b) Find the associated Fourier transform for this group, determine its Plancherel identity and give the inversion formula for the transform.

Topics as preparation

7.3. Let p be a prime number. The p-adic numbers \mathbb{Q}_p are the completion of \mathbb{Q} with respect to the p-adic metric $|r-s|_p$ with¹

$$|r|_p = p^{-a}$$
, where $r = p^a \frac{m}{n}$, $gcd(n,p) = gcd(m,p) = 1$.

Let further \mathbb{Z}_p denote the closure of \mathbb{Z} in \mathbb{Q}_p . It follows that elements of \mathbb{Q}_p are given by (in \mathbb{Q}_p convergent) series

$$x = \sum_{k=-N}^{\infty} a_k p^k, \qquad a_k \in \mathbb{Z}_{(p)} = \mathbb{Z}/(p\mathbb{Z})$$

with uniquely determined digits a_k .

- (a) \mathbb{Z}_p is compact and \mathbb{Q}_p is σ -compact.
- (b) Characters of \mathbb{Q}_p are of the form $\chi_y(x) = \chi(xy)$ with

$$\chi\left(\sum_{k=-N}^{\infty}a_kp^k\right) = \exp\left(2\pi \mathrm{i}\sum_{k=-N}^{-1}a_kp^k\right).$$

Furthermore, each $y \in \mathbb{Q}_p$ corresponds to a unique character χ_y and hence $\widehat{\mathbb{Q}_p} = \mathbb{Q}_p$.

 ${}^{1}\operatorname{gcd}(m,n)$ stands for the greatest common divisor of two integers m and n.

Seite 2 von 2

Übung am 5. Juni 2018

(c) If the Haar measure on \mathbb{Q}_p is normalised in such a way that $|\mathbb{Z}_p| = 1$, then

$$\int_{\mathbb{Z}_p} \chi(xy) \mathrm{d}x = \begin{cases} 1, & y \in \mathbb{Z}_p \\ 0, & \text{otherwise.} \end{cases}$$

(d) Let $f \in L^1(\mathbb{Q}_p)$. Denoting by

$$\widehat{f}(y) = \int_{\mathbb{Q}_p} f(x) \chi(-xy) \mathrm{d}y$$

the Fourier transform, then for any $f \in L^1(\mathbb{Q}_p) \cap L^2(\mathbb{Q}_p)$

$$\int_{\mathbf{Q}_p} |f(x)|^2 \mathrm{d}x = \int_{\mathbf{Q}_p} |\widehat{f}(y)|^2 \mathrm{d}y.$$

holds true.

Source: Gerald B. Folland A Course in Abstract Harmonic Analysis, Chapter 4.1