Harmonische Analysis — Blatt 10

Gleichungen sind wichtiger für mich, weil die Politik für die Gegenwart ist, aber eine Gleichung etwas für die Ewigkeit. (Albert Einstein; 1879–1955)

Problems

10.1. Let $\delta \in (-1,1)$ be fixed. Then we consider for continuous functions $f: \mathbb{S}^n \to \mathbb{C}$ the integral transform

$$\mathfrak{F}_{\delta}f(x) = c_{\delta} \int_{\{y: x \cdot y = \delta\}} f(y) \mathrm{d}y,$$

where integration is carried out with respect to the induced surface measure on $\{y \mid x \cdot y = \delta\}$ and c_{δ} is chosen in such a way that $\mathfrak{F}_{\delta} 1 = 1$.

- (a) Show that $\mathfrak{F}_{\delta} : \mathcal{C}(\mathbb{S}^n) \to \mathcal{C}(\mathbb{S}^n)$ is continous.
- (b) Is it possible to choose δ in such a way that \mathfrak{F}_{δ} becomes injective?
- (c) Show that the operator extends by continuity to $\mathfrak{F}_{\delta} : L^2(\mathbb{S}^n) \to L^2(\mathbb{S}^n)$ and that the resulting operator is self-adjoint and compact.

10.2. Let \mathbb{H}_n denote the *n*-dimensional (symmetric) Heisenberg group,

$$\mathbb{H}_n = \{ (x,\xi,\tau) : x,\xi \in \mathbb{R}^n, \ \tau \in \mathbb{R} \}, \qquad (x,\xi,\tau) \boxplus (y,\eta,\sigma) = (x+y,\xi+\eta,\tau+\sigma+\frac{1}{2}(x\cdot\eta-y\cdot\xi)).$$

- (a) Show that the 2n + 1 dimensional Lebesgue measure is left and right invariant on \mathbb{H}_n .
- (b) For $f, g \in C_c(\mathbb{H}_n)$ we define the Heisenberg convolution

$$f \star g(X) = \int_{\mathbb{H}_n} f(X \boxplus Y) g(\boxminus Y) dY,$$

where $\Box Y$ is the inverse element of $Y, Y \boxplus (\Box Y) = (\Box Y) \boxplus Y = 0$. Prove the inequalities

 $\|f\star g\|_1 \leq \|f\|_1 \|g\|_1, \qquad \|f\star g\|_\infty \leq \|f\|_2 \|g\|_2, \qquad \|f\star g\|_\infty \leq \|f\|_1 \|g\|_\infty.$

Topics as preparation

10.3. Let G be a compact group and $H \subset G$ be a closed subgroup. Then to each representation $\pi : G \to \mathcal{L}(V)$, V Hilbert space, the restriction $\operatorname{Res}_{H}^{G} \pi = \pi|_{H}$ to the subgroup H gives a representation of H.

Let now $\pi : H \to \mathcal{L}(V)$ be a representation of the subgroup H. Then it is possible to construct an induced representation $\operatorname{Ind}_{H}^{G} \pi$ of the group G in the Hilbert space $W = \operatorname{Ind}_{\pi}^{G} V$.

Lemma. Let π_1, π_2, π be representations of the subgroup H of G. Then

- (a) $\pi_1 \sim \pi_2$ implies $\operatorname{Ind}_H^G \pi_1 \sim \operatorname{Ind}_H^G \pi_2$.
- (b) $\operatorname{Ind}_{H}^{G}(\pi_{1} \oplus \pi_{2}) = (\operatorname{Ind}_{H}^{G}\pi_{1}) \oplus (\operatorname{Ind}_{H}^{G}\pi_{2}).$
- (c) $\operatorname{Ind}_{H}^{G} \pi$ is irreducible if and only if π is irreducible.

Theorem (Frobenius-Reciprocity). If $[\xi] \in \widehat{G}$ and $[\eta] \in \widehat{H}$. Then

$$\operatorname{mult}([\xi], \operatorname{Ind}_{H}^{G} \eta) = \operatorname{mult}([\eta], \operatorname{Res}_{H}^{G} \xi).$$

Source: M. Ruzhansky, V. Turunen Pseudo-differential operators and symmetries, Chapter 7.9