

Übungsblatt zur Vorlesung Höhere Mathematik II SS 2006

Aufgabe 1

(2P) Es sei

$$f(x) = \frac{1+x}{\sqrt{1-x}}, \quad x < 1.$$

Berechnen Sie $\frac{d^{100}}{dx^{100}}f(x)$.

Aufgabe 2

(3P) Bestimmen Sie folgende Grenzwerte:

a)
$$w = \lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\tanh x} - \frac{1}{\tan x} \right)$$

b) $w = \lim_{x \to 0+0} \left(e^{-\frac{1}{x^2}} x^{-100} \right)$
c) $w = \lim_{x \to 0+0} x^{x^x - 1}$

Aufgabe 3

(2P) Entwickeln Sie das Taylorpolynom für die Funktion

$$f(x) = \sin(\sin x)$$

im Punkt $x_0 = 0$ bis zur Termen der Ordnung $O(x^3)$ sowie für die Funktion

$$f(x) = \ln(\cos x)$$

im Punkt $x_0 = 0$ bis zur Termen der Ordnung $O(x^6)$.

Aufgabe 4

(2P)Zusatzaufgabe Zeigen Sie, dass

$$\frac{d^n}{dx^n}\left(\frac{1}{x^2+1}\right) = \frac{(-1)^n n!}{(x^2+1)^{\frac{n+1}{2}}}\sin((n+1)\arctan x), \quad n \in \mathbb{N}.$$

Verwenden Sie dabei die Identität

$$\frac{1}{x^2 + 1} = \frac{1}{2i} \left(\frac{1}{x - i} - \frac{1}{x + i} \right).$$