

Vortragsübung zur Vorlesung Höhere Mathematik II SS 2006

Aufgabe 1

1. Untersuchen Sie die durch

$$f_1(x) := \left\{ \begin{array}{ll} \sin\frac{1}{x} & \text{f\"{u}r} & x \neq 0 \\ 0 & \text{f\"{u}r} & x = 0 \end{array} \right., \qquad f_2(x) := \left\{ \begin{array}{ll} x \sin\frac{1}{x} & \text{f\"{u}r} & x \neq 0 \\ 0 & \text{f\"{u}r} & x = 0 \end{array} \right.$$

gegebenen Funktionen $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ auf Stetigkeit im Punkt x = 0.

2. Bestimmen Sie den Grenzwert

$$\lim_{x \to \infty} \frac{a_n x^n + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0}, \quad a_n, b_m \neq 0.$$

Aufgabe 2

Sei $M\subset\mathbb{R}$ und $\varepsilon>0$. Desweiteren sei $K_{\varepsilon}(M):=\{x\in\mathbb{R}\,:\, \forall_{a\in M}\, |x-a|>\varepsilon\}$. Zeigen Sie:

- 1. Ist M offen , so ist $K_{\varepsilon}(M)$ abgeschlossen.
- 2. Ist M abgeschlossen, so ist $K_{\varepsilon}(M)$ offen.