Egorychev method and the evaluation of combinatorial sums

Marko R. Riedel

October 2, 2022

The Egorychev method is from the book by G.P. Egorychev [Ego84]. We collect several examples, the focus being on computational methods to produce results. Those that are from posts to math.stackexchange.com have retained the question answer format from that site. The website for this document is at this hyperlink:


The crux of the method is the use of integrals from the Cauchy Residue Theorem to represent binomial coefficients, exponentials, the Iverson bracket and Stirling numbers, Catalan numbers, Harmonic numbers and Bernoulli numbers.

We use these types of integrals:

- \( \text{First binomial coefficient integral (B}_1 \) \)

\[
\binom{n}{k} = \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1+z)^n}{z^{k+1}} \, dz
\]

where \( 0 < \varepsilon < \infty \).

- \( \text{Second binomial coefficient integral (B}_2 \) \)

\[
\binom{n}{k} = \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{(1-z)^{k+1}z^{n-k}} \, dz
\]

where \( 0 < \varepsilon < 1 \).

- \( \text{Exponentiation integral (E) } \)

\[
n^k = \frac{k!}{2\pi i} \int_{|z|=\varepsilon} \frac{\exp(nz)}{z^{k+1}} \, dz
\]

where \( 0 < \varepsilon < \infty \).

- \( \text{Iverson bracket (I) } \)

\[
[[k \leq n]] = \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{z^k}{z^{n+1}} \frac{1}{1-z} \, dz
\]

where \( 0 < \varepsilon < 1 \).
• *Stirling numbers of the first kind*

\[ \binom{n}{k} = \frac{n!}{k!} \frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{1}{z^{n+1}} \left( \log \frac{1}{1-z} \right)^k \, dz \]

where \(0 < \varepsilon < 1\).

• *Stirling numbers of the second kind*

\[ \stirling{n}{k} = \frac{n!}{k!} \frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{1}{z^{n+1}} (\exp z - 1)^k \, dz \]

where \(0 < \varepsilon < \infty\).

The residue at infinity is coded \(R\).
Contents

1 Introductory example for the method \((B_1)\) 36

2 Introductory example for the method, convergence about zero \((B_1B_2)\) 37

3 Introductory example for the method, an interesting substitution \((B_1)\) 39

4 Introductory example for the method, another interesting substitution \((B_1)\) 40

5 Introductory example for the method, yet another interesting substitution \((B_2)\) 42

6 Introductory example for the method, using the Iverson bracket only \((I_1)\) 43

7 Verifying that a certain sum vanishes \((B_1)\) 45

8 A case of radical cancellation \((B_1,R)\) 48

9 Basic usage of exponentiation integral \((B_1E)\) 50

10 Introductory example for the method, eliminating odd-even dependence \((B_1)\) 51

11 Introductory example for the method, proving equality of two double hypergeometrics \((B_1)\) 53

12 A remarkable case of factorization \((B_1)\) 54

13 Evaluating a quadruple hypergeometric \((B_1)\) 58

14 An integral representation of a binomial coefficient involving the floor function \((B_1)\) 60

15 Evaluating another quadruple hypergeometric \((B_1)\) 61

16 An identity by Strehl \((B_1)\) 64

17 Shifting the index variable and applying Leibniz’ rule \((B_1)\) 66

18 Working with negative indices \((B_1)\) 69

19 Two companion identities by Gould \((B_1)\) 70

20 Exercise 1.3 from Stanley’s Enumerative Combinatorics \((B_2)\) 73
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Counting m-subsets ((B_{1I}))</td>
<td>74</td>
</tr>
<tr>
<td>22</td>
<td>Method applied to an iterated sum ((B_{1R}))</td>
<td>77</td>
</tr>
<tr>
<td>23</td>
<td>A pair of two double hypergeometrics ((B_{1}))</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>A two phase application of the method ((B_{1}))</td>
<td>82</td>
</tr>
<tr>
<td>25</td>
<td>An identity from Mathematical Reflections ((B_{1}))</td>
<td>84</td>
</tr>
<tr>
<td>26</td>
<td>A triple Fibonacci-binomial coefficient convolution ((B_{1}))</td>
<td>86</td>
</tr>
<tr>
<td>27</td>
<td>Fibonacci numbers and the residue at infinity ((B_{2R}))</td>
<td>87</td>
</tr>
<tr>
<td>28</td>
<td>Permutations containing a given subsequence ((B_{1I}))</td>
<td>89</td>
</tr>
<tr>
<td>29</td>
<td>An example of Lagrange inversion ((B_{1}))</td>
<td>92</td>
</tr>
<tr>
<td>30</td>
<td>A binomial coefficient - Catalan number convolution ((B_{1}))</td>
<td>94</td>
</tr>
<tr>
<td>31</td>
<td>A new obstacle from Concrete Mathematics (Catalan numbers) ((B_{1}))</td>
<td>97</td>
</tr>
<tr>
<td>32</td>
<td>Abel-Aigner identity from Table 202 of Concrete Mathematics ((B_{1}))</td>
<td>98</td>
</tr>
<tr>
<td>33</td>
<td>Reducing the form of a double hypergeometric ((B_{1}))</td>
<td>100</td>
</tr>
<tr>
<td>34</td>
<td>Basic usage of the Iverson bracket ((B_{1I}))</td>
<td>102</td>
</tr>
<tr>
<td>35</td>
<td>Basic usage of the Iverson bracket II ((B_{1I}))</td>
<td>104</td>
</tr>
<tr>
<td>36</td>
<td>Use of a double Iverson bracket ((B_{1R}))</td>
<td>106</td>
</tr>
<tr>
<td>37</td>
<td>Iverson bracket and an identity by Gosper, generalized ((IR))</td>
<td>109</td>
</tr>
<tr>
<td>38</td>
<td>Factoring a triple hypergeometric sum ((B_{1}))</td>
<td>113</td>
</tr>
<tr>
<td>39</td>
<td>Factoring a triple hypergeometric sum II ((B_{1}))</td>
<td>117</td>
</tr>
<tr>
<td>40</td>
<td>Factoring a triple hypergeometric sum III ((B_{1}))</td>
<td>118</td>
</tr>
<tr>
<td>41</td>
<td>A triple hypergeometric sum IV ((B_{1}))</td>
<td>120</td>
</tr>
<tr>
<td>42</td>
<td>Basic usage of exponentiation integral to obtain Stirling number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>formulae ((E))</td>
<td>121</td>
</tr>
<tr>
<td>43</td>
<td>Three phase application including Leibniz’ rule ((B_{1B_{2R}}))</td>
<td>124</td>
</tr>
</tbody>
</table>
44 Same problem, streamlined proof \((B_1B_2R)\) 127

45 Symmetry of the Euler-Frobenius coefficient \((B_1EIR)\) 130

46 A probability distribution with two parameters \((B_1B_2)\) 133

47 An identity involving Narayana numbers \((B_1)\) 136

48 Convolution of Narayana polynomials \((B_1)\) 140

49 A property of Legendre polynomials \((B_1)\) 145

50 A sum of factorials, OGF and EGF of the Stirling numbers of the second kind \((B_1)\) 148

51 Fibonacci, Tribonacci, Tetranacci \((B_1)\) 151

52 Stirling numbers of two kinds, binomial coefficients 154

53 An identity involving two binomial coefficients and a fractional term \((B_1)\) 156

54 Double chain of a total of three integrals \((B_1B_2)\) 159

55 Rothe-Hagen identity 162

56 Abel polynomials are of binomial type 163

57 A summation identity with four poles \((B_2)\) 164

58 A summation identity over odd indices with a branch cut \((B_2)\) 167

59 A stirling number identity 169

60 A Catalan-Central Binomial Coefficient Convolution 170

61 Post Scriptum I: A trigonometric sum 171

62 Post Scriptum II: A class of polynomials similar to Fibonacci and Lucas Polynomials \((B_1)\) 173

63 Post Scriptum III: Partial row sums of Pascal’s triangle \((B_1)\) 177

64 Post Scriptum IV: The Tree function and Eulerian numbers of the second order 179

65 Post Scriptum V.1: A Stirling set number generating function and Eulerian numbers of the second order 182
<table>
<thead>
<tr>
<th>Page</th>
<th>Post Scriptum</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>V.2:</td>
<td>A Stirling cycle number generating function and Eulerian numbers of the second order</td>
<td>184</td>
</tr>
<tr>
<td>67</td>
<td>VI:</td>
<td>Another case of factorization</td>
<td>187</td>
</tr>
<tr>
<td>68</td>
<td>VII:</td>
<td>An additional case of factorization</td>
<td>189</td>
</tr>
<tr>
<td>69</td>
<td>VIII:</td>
<td>Contours and a binomial square root</td>
<td>191</td>
</tr>
<tr>
<td>70</td>
<td>IX:</td>
<td>Careful examination of a contour</td>
<td>192</td>
</tr>
<tr>
<td>71</td>
<td>X:</td>
<td>Stirling numbers, Bernoulli numbers and Catalan numbers</td>
<td>194</td>
</tr>
<tr>
<td>72</td>
<td>XI:</td>
<td>Computing an EGF from an OGF</td>
<td>196</td>
</tr>
<tr>
<td>73</td>
<td>XII:</td>
<td>Stirling numbers of the first and second kind</td>
<td>199</td>
</tr>
<tr>
<td>74</td>
<td>XIII:</td>
<td>An identity by Carlitz</td>
<td>201</td>
</tr>
<tr>
<td>75</td>
<td>XIV:</td>
<td>Logarithm squared of the Catalan number</td>
<td>203</td>
</tr>
</tbody>
</table>

**76 Egorychev method in formal power series**

<p>| 76.1 | MSE 2384932 | 209 |
| 76.2 | MSE 2472978 | 213 |
| 76.3 | MSE 2498426 | 215 |
| 76.4 | MSE 2830860 | 218 |
| 76.5 | MSE 2904333 | 219 |
| 76.6 | MSE 2950043 | 221 |
| 76.7 | MSE 3045800 | 224 |
| 76.8 | MSE 3051713 | 226 |
| 76.9 | MSE 3098831 | 229 |
| 76.10| MSE 3138710 | 231 |
| 76.11| MSE 3196998 | 234 |
| 76.12| MSE 3245099 | 236 |
| 76.13| MSE 3260307 | 238 |
| 76.14| MSE 3285142 | 241 |
| 76.15| MSE 3333597 | 244 |
| 76.16| MSE 3342361 | 246 |
| 76.17| MSE 3383557 | 249 |
| 76.18| MSE 3441855 | 251 |
| 76.19| MSE 3577193 | 252 |
| 76.20| MSE 3583191 | 254 |
| 76.21| MSE 3592240 | 256 |
| 76.22| MSE 3604802 | 257 |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.23</td>
<td>MSE 3619182</td>
</tr>
<tr>
<td>76.24</td>
<td>MSE 3638162</td>
</tr>
<tr>
<td>76.25</td>
<td>MSE 3661349</td>
</tr>
<tr>
<td>76.26</td>
<td>MSE 3706767</td>
</tr>
<tr>
<td>76.27</td>
<td>MSE 3737197</td>
</tr>
<tr>
<td>76.28</td>
<td>MSE 3825092</td>
</tr>
<tr>
<td>76.29</td>
<td>MSE 3845061</td>
</tr>
<tr>
<td>76.30</td>
<td>MSE 3885278</td>
</tr>
<tr>
<td>76.31</td>
<td>MSE 3559223</td>
</tr>
<tr>
<td>76.32</td>
<td>MSE 3926409</td>
</tr>
<tr>
<td>76.33</td>
<td>MSE 3942039</td>
</tr>
<tr>
<td>76.34</td>
<td>MSE 3956698</td>
</tr>
<tr>
<td>76.35</td>
<td>MSE 3993330</td>
</tr>
<tr>
<td>76.36</td>
<td>MSE 4008276</td>
</tr>
<tr>
<td>76.37</td>
<td>MSE 4031272</td>
</tr>
<tr>
<td>76.38</td>
<td>MSE 4034224</td>
</tr>
<tr>
<td>76.39</td>
<td>MSE 4037172</td>
</tr>
<tr>
<td>76.40</td>
<td>MSE 4037946</td>
</tr>
<tr>
<td>76.41</td>
<td>MSE 4055292</td>
</tr>
<tr>
<td>76.42</td>
<td>MSE 4054024</td>
</tr>
<tr>
<td>76.43</td>
<td>MSE 4084763</td>
</tr>
<tr>
<td>76.44</td>
<td>MSE 4095795</td>
</tr>
<tr>
<td>76.45</td>
<td>MSE 4098392</td>
</tr>
<tr>
<td>76.46</td>
<td>MSE 4127695</td>
</tr>
<tr>
<td>76.47</td>
<td>MSE 4135219</td>
</tr>
<tr>
<td>76.48</td>
<td>MSE 4139722</td>
</tr>
<tr>
<td>76.49</td>
<td>MSE 4192271</td>
</tr>
<tr>
<td>76.50</td>
<td>MSE 4212878</td>
</tr>
<tr>
<td>76.51</td>
<td>A different obstacle</td>
</tr>
<tr>
<td>76.52</td>
<td>MO 291738</td>
</tr>
<tr>
<td>76.53</td>
<td>Stirling number identity by Gould</td>
</tr>
<tr>
<td>76.54</td>
<td>Stirling number identity by Gould II</td>
</tr>
<tr>
<td>76.55</td>
<td>Schlafli’s identity for Stirling numbers</td>
</tr>
<tr>
<td>76.56</td>
<td>Stirling numbers and Faulhaber’s formula</td>
</tr>
<tr>
<td>76.57</td>
<td>Stirling number and binomial coefficient</td>
</tr>
<tr>
<td>76.58</td>
<td>Stirling number and double binomial coefficient</td>
</tr>
<tr>
<td>76.59</td>
<td>Stirling number and double binomial coefficient II</td>
</tr>
<tr>
<td>76.60</td>
<td>Stirling number and Bernoulli polynomials</td>
</tr>
<tr>
<td>76.61</td>
<td>Central binomial coefficient and Stirling numbers</td>
</tr>
<tr>
<td>76.62</td>
<td>Single variable monomial and two binomial coefficients</td>
</tr>
<tr>
<td>76.63</td>
<td>Use of an Iverson bracket</td>
</tr>
<tr>
<td>76.64</td>
<td>Use of an Iverson bracket II</td>
</tr>
<tr>
<td>76.65</td>
<td>Use of an Iverson bracket III</td>
</tr>
<tr>
<td>76.66</td>
<td>Basic example</td>
</tr>
<tr>
<td>76.67</td>
<td>Basic example continued</td>
</tr>
<tr>
<td>76.68</td>
<td>An identity by Erik Sparre Andersen</td>
</tr>
</tbody>
</table>

7
List of identities in this document

section 1 \[ B_1 \]
\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} \binom{k}{j} = (-1)^n \binom{n}{j} \binom{n+j}{j}.
\]

section 2 \[ B_1 B_2 \]
\[
\sum_{k=0}^{r} \binom{r-k}{m} \binom{s+k}{n} = \binom{s+r+1}{n+m+1}.
\]

section 3 \[ B_1 \]
\[
\sum_{q=0}^{2m} (-1)^q \binom{p-1+q}{q} \binom{2m+2p+q-1}{2m-q} 2^q = (-1)^m \binom{p-1+m}{m}.
\]

section 4 \[ B_1 \]
\[
\sum_{k=0}^{[m/2]} (-1)^k \binom{m-2k+n-1}{n-1} = \binom{n}{m}.
\]

section 5 \[ B_2 \]
\[
\sum_{k=0}^{n} \binom{2n}{n+k} = \frac{1}{2} n \binom{2n}{n}.
\]

section 6 \[ I_1 \]
\[
\sum_{k=0}^{n} 2^{-k} \binom{n+k}{k} = 2^n.
\]
section 7 $B_1$
\[\sum_{m=0}^{n} \binom{n}{m} \sum_{k=0}^{n+1} \frac{1}{a + bk + 1} \binom{a + bk}{m} \binom{k - n - 1}{k} = \binom{n}{m}.\]

section 8 $B_1, R$
\[\sum_{k=0}^{n} \binom{2n+1}{2k+1} \binom{m+k}{2n} = \binom{2m}{2n}.\]

section 9 $B_1 E$
\[(-1)^p \sum_{q=r}^{p} \binom{p}{q} \binom{q}{r} (-1)^q q^{p-r} = \frac{p!}{r!}.\]

section 10 $B_1$
\[\sum_{k=0}^{n} \binom{n}{k}^{2n-k} \binom{k}{\lfloor k/2 \rfloor} = \binom{2n+1}{n}.\]

section 11 $B_1$
Verify that $f_1(n, k) = f_2(n, k)$ where
\[f_1(n, k) = \sum_{v=0}^{n} \frac{(2k + 2v)!}{(k + v)! \times v! \times (2k + v)! \times (n - v)!} 2^{-v}\]
and
\[f_2(n, k) = \sum_{m=0}^{\lfloor n/2 \rfloor} \frac{1}{(k + m)! \times m! \times (n - 2m)!} 2^{n-4m}.\]

section 12 $B_1$
If
\[T(n) = \sum_{k=1}^{\lfloor n/2 \rfloor} (-1)^{k+1} \binom{n-k}{k} T(n-k)\]
for $n \geq 2$ then
\[T(n) = C_{n-1} = \frac{1}{n} \binom{2n-2}{n-1}.\]

section 13 $B_1$
\[\sum_{k=0}^{n} \sum_{l=0}^{n} (-1)^{k+l} \binom{n+k-l}{n} \binom{k+l}{n} \binom{n}{k} \binom{n}{l} = (-1)^m \binom{2m}{m}.\]
section 14 $B_1$
\[
\sum_{k=0}^{2m+1} \binom{n}{k} 2^k \left( \frac{n-k}{1(2m+1-k)/2} \right) = \binom{2n+1}{2m+1}.
\]

section 15 $B_1$
\[
\sum_{k=m}^{n} (-1)^{n+k} \frac{2k+1}{n+k+1} \binom{n}{k} \left( \frac{n+k}{k} \right)^{-1} \binom{k}{m} \binom{k+m}{m} = \delta_{mn}.
\]

section 16 $B_1$
\[
\sum_{k=0}^{n} \binom{n}{k}^3 = \sum_{k=[n/2]}^{n} \binom{n}{k} (2k)^3.
\]

section 17 $B_1$
\[
\sum_{s} \binom{n+s}{k+l} \binom{l}{k} = \binom{n}{k} \binom{n}{l}.
\]

section 18 $B_1$
\[
\sum_{k=-\lfloor n/3 \rfloor}^{\lfloor n/3 \rfloor} (-1)^k \binom{2n}{n+3k} = 2 \times 3^{n-1}.
\]

section ?? $B_1 B_2$
\[
\sum_{j=0}^{b} \binom{b}{j} \binom{n+j}{2b} = \binom{n}{b}^2.
\]

section 19 $B_1$
\[
\sum_{k=0}^{\rho} \binom{2x+1}{2k} \binom{x-k}{\rho-k} = \frac{2x+1}{2\rho+1} \binom{x+\rho}{2\rho} 2^{2\rho}.
\]

section 20 $B_1 B_2$
\[
\sum_{k=\min(a,b)}^{\min(a,b)} \binom{x+y+k}{k} \binom{x}{b-k} \binom{y}{a-k} = \binom{x+a}{b} \binom{y+b}{a}.
\]

section 21 $B_1 I$
\[
\sum_{q=0}^{n} \binom{n}{2q} \binom{n-2q}{p-q} 2^{2q} = \binom{2n}{2p}.
\]
section 22 $B_1 R$

$$\sum_{k=0}^{n-1} \left( \sum_{q=0}^{k} \binom{n}{q} \right) \left( \sum_{q=k+1}^{n} \binom{n}{q} \right) = \frac{1}{2} n \binom{2n}{n} .$$

section 23 $B_1$

$$(1 - x)^{2k+1} \sum_{n \geq 0} \binom{n+1}{k} \binom{n+k}{k} x^n = \sum_{j \geq 0} \binom{k-1}{j-1} \binom{k+1}{j} x^j .$$

section 24 $B_1$

$$\sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k \binom{n+1}{k} \binom{2n-3k}{n} = \sum_{k=\lfloor n/2 \rfloor}^{n} \binom{n+1}{k} \binom{k}{n-k} .$$

section 25 $B_1$

$$\sum_{k=0}^{\lfloor (m+n)/2 \rfloor} \binom{n}{k} (-1)^k \binom{m+n-2k}{n-1} = \binom{n}{m+1} .$$

section 26 $B_1$

$$\sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k} F_{k+1} = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k} (-1)^{n-k} F_{2k+1} .$$

section 27 $B_2 R$

$$\sum_{p,q \geq 0} \binom{n-p}{q} \binom{n-q}{p} = F_{2n+2} .$$

section 28 $B_1 I$

$$\sum_{r=0}^{n} \binom{r+n-1}{n-1} \binom{3n-r}{n} = \frac{1}{2} \left( \binom{4n}{2n} + \binom{2n}{n}^2 \right) .$$

section 29 $B_1$

$$[x^\mu y^\nu] \frac{1}{2} (1 - x - y - \sqrt{1 - 2x - 2y - 2xy + x^2 + y^2}) = \frac{1}{\mu + \nu - 1} \binom{\mu + \nu - 1}{\nu} \binom{\mu + \nu - 1}{\mu} .$$

section 30 $B_1$

$$\sum_{r=1}^{n+1} \frac{1}{r+1} \binom{2r}{r} \binom{m+n-2r}{n+1-r} = \binom{m+n}{n} .$$
section 31 \(B_1\)
\[
\sum_{k \geq 0} \binom{n+k}{m+2k} \binom{2k}{k} \frac{(-1)^k}{k+1} = \binom{n-1}{m-1}.
\]

section 32 \(B_1\)
\[
\sum_k \binom{tk+r}{k} \binom{tn-tk+s}{n-k} \frac{r}{tk+r} = \binom{tn+r+s}{n}
\]

section 33 \(B_1\)
\[
\sum_{q=0}^{n-2} \sum_{k=1}^{n} \binom{k+q}{k} \binom{2n-q-k-1}{n-k+1} = n \times \binom{2n}{n+2}
\]

section 34 \(B_1I\)
\[
\sum_{q=0}^{l} \binom{q+k}{k} \binom{l-q}{k} = \binom{l+k+1}{2k+1},
\]

section 35 \(B_1I\)
\[
\sum_{k=0}^{n} k \binom{m+k}{m+1} = \frac{nm+2n+1}{m+3} \binom{n+m+1}{m+2}.
\]

section 36 \(B_1IR\)
\[
\sum_{k=1}^{n} 2^{n-k} \binom{k}{\lfloor k/2 \rfloor} = -2^{n+1} + (2n+2 + (n \mod 2)) \binom{n}{\lfloor n/2 \rfloor}.
\]

section 37 \(IR\)
\[
\sum_{q=0}^{m-1} \binom{n-1+q}{q} x^n (1-x)^q + \sum_{q=0}^{n-1} \binom{m-1+q}{q} x^q (1-x)^m = 1
\]
where \(n, m \geq 1\) as well as
\[
\sum_{k=0}^{n} \binom{m+k}{k} 2^{n-k} + \sum_{k=0}^{m} \binom{n+k}{k} 2^{m-k} = 2^{n+m+1}.
\]

section 38 \(B_1\)
\[
\sum_{k=0}^{n} (-1)^k \binom{p+q+1}{k} \binom{p+n-k}{n-k} \binom{q+n-k}{n-k} = \binom{p}{n} \binom{q}{n}.
\]
section 39 $B_1$

$$
\sum_{k=0}^{n} \binom{n}{k} \binom{pn-n}{k} \binom{pn+k}{k} = \left( \frac{pn}{n} \right)^2.
$$

section 40 $B_1$

$$
\min\{m,n,p\} \sum_{r=0}^{m} \binom{m}{r} \binom{n}{r} \binom{p}{m+n-r} = \left( \frac{p+m}{m} \right) \left( \frac{p+n}{n} \right).
$$

section 41 $B_1$

$$
\sum_{p=0}^{l} \sum_{q=0}^{p} (-1)^q \binom{m-p}{m-l} \binom{n}{q} \binom{m-n}{p-q} = 2^l \binom{m-n}{l}.
$$

section 42 $E$

$$
\sum_{q=0}^{n} (n-2q)^k \binom{n}{2q+1} = \sum_{q=0}^{k+1} \binom{n}{q} 2^{n-q-1} \times q! \times \binom{k+1}{q+1} - \frac{1}{2} \times n! \times \binom{k+1}{n+1}.
$$

section 43 $B_1B_2R$

$$
\sum_{q=0}^{n} q \binom{2n}{n+q} \binom{m+q-1}{2m-1} = m \times 4^{n-m} \times \binom{n}{m}
$$

where $n \geq m$.

section 44 $B_1B_2R$

$$
\sum_{q=0}^{n} q \binom{2n}{n+q} \binom{m+q-1}{2m-1} = m \times 4^{n-m} \times \binom{n}{m}
$$

where $n \geq m$.

(different proof).

section 45 $B_1EIR$

With

$$
b^n_k = \sum_{l=1}^{k} (-1)^{k-l} l^n \binom{n+1}{k-l}
$$

and we

show that $b^n_k = b^n_{n+1-k}$ where $0 \leq k \leq n+1$. 

14
section 46 \(B_1B_2\)

Suppose we have a random variable \(X\) where
\[
P[X = k] = \binom{N}{2n+1}^{-1} \binom{N-k}{n} \binom{k-1}{n}
\]
for \(k = n+1, \ldots, N-n\) and zero otherwise.

We seek to show that these probabilities sum to one and compute the mean and the variance.

section 47 \(B_1\)

Suppose we have the Narayana number
\[
N(n, m) = \frac{1}{n} \binom{n}{m} \binom{n}{m-1}
\]
and let
\[
A(n, k, l) = \sum_{i_0+i_1+\cdots+i_k=n, j_0+j_1+\cdots+j_k=l} \prod_{t=0}^{k} N(i_t, j_t+1)
\]
where the compositions for \(n\) are regular and the ones for \(l\) are weak and we seek to verify that
\[
A(n, k, l) = \frac{k+1}{n} \binom{n}{l} \binom{n}{l+k+1}.
\]

section 48 \(B_1\)

Same as previous, generalized.

section 49 \(B_1\)

\[
(-1)^m \frac{(n+m)!}{(n-m)!} \left( \frac{d}{dz} \right)^{n-m} (1-z^2)^n = (1-z^2)^n \left( \frac{d}{dz} \right)^{n+m} (1-z^2)^n
\]

section 50 \(B_1\)

\[
r^k(r+n)! = \sum_{m=0}^{k} (r+n+m)!(-1)^{k+m} \sum_{p=0}^{k-m} \binom{k}{p} \left\{ \frac{k+1-p}{m+1} \right\} n^p.
\]

section 51 \(B_1\)

\[
\sum_{k=0}^{n} \sum_{q=0}^{k} (-1)^q \binom{k}{q} \binom{n-1-qm}{k-1} = [z^n] \frac{1}{1-w-w^2-\cdots-w^m}.
\]
section 52

\[
\binom{n}{m} = \sum_{k=m}^{n} \binom{k}{m} \sum_{q=0}^{k} (-1)^n \binom{n+q-m}{k} (-1)^k \binom{k}{q} (n+q-m)
\]

section 53 \(B_1\)

\[
\sum_{k=0}^{m} \frac{q}{pk+q} \binom{pk+q}{k} \binom{pm-pk}{m-k} = \binom{mp+q}{m}.
\]

section 54 \(B_1B_2\)

\[
\sum_{k=0}^{n-1} \frac{q}{k} \binom{2n-2k-2}{n-k-1} \binom{2k-q-1}{k-1} = \binom{2n-q-2}{n-1}.
\]

section 55

\[
\sum_{k=0}^{n} \frac{x}{x+kz} \binom{x+kz}{k} \frac{y}{y+(n-k)z} \binom{y+(n-k)z}{n-k} = \frac{x+y}{x+y+ nz} \binom{x+y+nz}{n}
\]

section 56

\[
P_n(x + y) = \sum_{k=0}^{n} \binom{n}{k} P_k(x) P_{n-k}(y)
\]

where

\[
P_n(x) = x(x + an)^{n-1}
\]

is an Abel polynomial.

section 57

\[
\sum_{m=0}^{n} (-1)^m \binom{2n+2m}{n+m} \binom{n+m}{n-m} = (-1)^n 2^{2n}.
\]

section 58

\[
\sum_{k=0}^{m} \binom{2n}{2n-k} \binom{2m-2n}{m-k} = \frac{1}{2} \binom{2m}{m} + (-1)^{m+1} 2^{2m-1} \binom{n-1/2}{m}
\]

section 59

\[
\sum_{j=0}^{n} (-1)^{n+j} \binom{n}{j} \binom{m+j}{k} = \frac{n!}{k!} \sum_{q=0}^{k} \binom{k}{q} \binom{q}{n} (-1)^{k-q} q^m.
\]
\[ [z^k] \frac{1}{\sqrt{1 - 4z}} \left( \frac{1 - \sqrt{1 - 4z}}{2z} \right)^n = \binom{n + 2k}{k} \]

section 61
\[
\sum_{k=1}^{m-1} \sin^2(q(k\pi/m)) = m \frac{1}{2^{2q}} \left( \binom{2q}{q} \right) + m \frac{1}{2^{2q-1}} \sum_{l=1}^{\lfloor q/m \rfloor} \left( \binom{2q}{q - lm} \right)(-1)^{lm}.
\]

section 62 $B_1$
\[
\sum_{j=-\lfloor n/p \rfloor}^{\lfloor n/p \rfloor} (-1)^j \binom{2n}{n-pj} = [z^n] \left( \sum_{q=0}^{\lfloor p/2 \rfloor} \frac{p}{p-q} \binom{p-q}{q} (-1)^q z^q \right)^{-1} \left( \sum_{q=0}^{\lfloor (p-1)/2 \rfloor} \binom{p-1-q}{q} (-1)^q z^q \right).
\]

section 63 $B_1$
\[
\sum_{k=0}^{n} \binom{2k+1}{k} \binom{m - (2k+1)}{n - k} = \sum_{k=0}^{n} \binom{m+1}{k}.
\]

section 64
\[
\sum_{m \geq 0} m^{n+m} \frac{z^m}{m!} = \frac{1}{(1 - T(z))^{2n+1}} \sum_{k=0}^{n} \binom{n}{k} T(z)^k
\]

section 65
\[
\sum_{n \geq 0} \binom{n+r}{n} z^n = \frac{1}{(1 - z)^{2r+1}} \sum_{k=0}^{r} \binom{r}{k} z^k
\]

section 66
\[
\sum_{n \geq 0} \binom{n+r+1}{n+1} z^n = \frac{1}{(1 - z)^{2r+1}} \sum_{k=0}^{r} \binom{r}{r-k} z^k
\]

section 67
\[
\binom{q-j+k}{k} + (-1)^k \binom{j}{k} = \sum_{\ell=0}^{\lfloor k/2 \rfloor} \binom{q/2 + \ell}{2\ell} \left( \binom{q/2 - j+k-\ell}{k-2\ell} + \binom{q/2 - j+k-\ell-1}{k-2\ell} \right)
\]
section 68
\[
\sum_{j=0}^{k} \binom{2j}{j+q} \binom{2k-2j}{k-j} = 4^k - \sum_{j=k-q+1}^{k} \binom{2k+1}{j}
\]

section 69
\[
\sum_{k=0}^{n} \binom{2n+1}{2k+1} \binom{m+k}{2n} = \binom{2m}{2n}
\]

section 70
\[
\sum_{q=0}^{n} \left( \frac{q}{n-q} \right) (-1)^{n-q} \binom{2q+1}{q+1} = 2^{n+1} - 1
\]

section 71
\[
\sum_{k=0}^{n} \binom{n+k}{k} \binom{2n}{n+k} \frac{(-1)^k}{k+1} = B_n \binom{2n}{n} \frac{1}{n+1}
\]

section 72
With \( f(z) \) the OGF and \( g(w) \) the EGF of a sequence we have
\[
g(w) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{f(z)}{z} \exp(w/z) \, dz
\]

section 73
\[
\sum_{q=0}^{r} (-1)^{q+r} \binom{n+q-1}{k} \binom{2n}{k-r} = (-1)^{k-r} \frac{k-r}{(k-r)!} \sum_{p=0}^{k-r} \binom{k-r}{p} (-1)^p (p+r)^{n-1}
\]

section 74
\[
\sum_{k=0}^{n} \binom{n}{k} \frac{(k/2)}{m} = \frac{n}{m} \binom{n-m-1}{m-1} 2^{n-2m}
\]

section 75
\[
[z^n] \log^2 \frac{2}{1 + \sqrt{1 - 4z}} = \binom{2n}{n} \left( H_{2n-1} - H_n \right) \frac{1}{n}
\]

section 76.1 \( B_1, B_2 \)
\[
\sum_{l=0}^{m} (-4)^l \binom{m}{l} \frac{2l}{m} \sum_{k=0}^{n} (-4)^k \binom{2k+1}{k} \frac{1}{2k+1} \frac{2l}{l} = \frac{1}{2n+1-2m}.
\]
section 76.2 B_1
\[ \sum_{l=0}^{n} \binom{n}{l}^2 (x+y)^{2l} (x-y)^{2n-2l} = \sum_{l=0}^{n} \binom{2l}{n-l} \left( \binom{2n-2l}{n-l} x^{2l} y^{2n-2l} \right). \]

section 76.3 B_2
\[ \sum_{k=0}^{n} \frac{1}{k+c} \left( \frac{2n+c}{c} \right) (-1)^c \left( 1 - \frac{c-1}{2n+1} \sum_{q=0}^{c-1} \binom{n+q}{q} (-1)^q \right). \]

section 76.4 B_1
\[ \sum_{j=0}^{n-k} (-1)^j \binom{2k+2j}{j} \binom{n+k+j+1}{n-k-j} = \left[ \text{[(n - k) is even]} \right] = \frac{1 + (-1)^{n-k}}{2} \]

section 76.5 B_2
\[ \sum_{k=0}^{a+b-1} \binom{a+k-1}{a-1} p^a (1-p)^k = \sum_{k=a}^{a+b-1} \binom{a+b-1}{k} p^k (1-p)^{a+b-k-1} \]

section 76.6 B_1
\[ (-1)^{n+k} \binom{n}{k} = \sum_{j=0}^{n-k} (-1)^j \binom{n-1+j}{n-k+j} \binom{2n-k}{n-k-j} \binom{n-k+j}{j} \]

section 76.7 B_1
\[ \binom{m+n}{s+1} - \binom{n}{s+1} = \sum_{q=0}^{s} \binom{m+1+2q}{q} \binom{n-2-2q}{s-q} \]

section 76.8 B_1
\[ \sum_{k=q}^{2n} \binom{2n+k}{2k} \frac{(2k-1)!!}{(k-q)!} (-1)^k \]
is zero when q is odd, and
\[ \frac{(-1)^{n+q/2}}{2^{2n}} (2n+q)! \frac{(2n+q)!}{(n-q/2)! \times (n+q/2)!} \]
otherwise.
section 76.9
\[ \sum_{j=n}^{2n} \sum_{k=j+1-n}^{j} (-1)^i 2^{j-k} \binom{2n}{j} \binom{j}{k} \binom{k}{j+1-n} = 0. \]

section 76.10
\[ \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{m+j+k}{m-j+1} \frac{n}{n-j} \binom{n-j}{j} = \binom{n+k+m}{m+1}. \]

section 76.11
With Fibonacci numbers
\[ F_{2n+2} = \sum_{p=0}^{n} \sum_{q=0}^{n} \binom{n-p}{q} \binom{n-q}{p}. \]

section 76.12
\[ \sum_{q=0}^{K-1} \binom{K-1+q}{K-1} a^q b^K + a^K b^q = 1 \]

section 76.13
\[ \binom{r+2n-1}{n-1} - \binom{2n-1}{n-1} = \sum_{k=1}^{n-1} \binom{2k-1}{k} \binom{r+2(n-k)-1}{r+n-k} \]

section 76.14
\[ \sum_{k=1}^{n} \left( \frac{-1}{4} \right)^k \binom{2k}{k} \frac{1}{1-2k} \binom{n+k-2}{2k-2} \]

is zero when \( n \) is odd and
\[ \left[ \left( \frac{1}{4} \right)^m \binom{2m}{m} \frac{1}{1-2m} \right]^2 \]
when \( n = 2m \) is even.

section 76.15
\[ \sum_{n=0}^{N} \sum_{k=0}^{N} (-1)^{n+k} \binom{N}{n} \binom{N+k}{k} \binom{N+n}{n} \binom{N+k}{k} = \frac{1}{2N+1}. \]

20
section 76.16
\[ \sum_{k=3}^{n} (-1)^k {n \choose k} \sum_{j=1}^{k-2} \left( j(n+1) + k - 3 \right) n - 2 = (-1)^{n-1} \left[ {n \choose 2} - {2n + 1 \choose n - 2} \right] \]

section 76.17
\[ n \sum_{k=0}^{n} \frac{(-1)^k}{2n-k} \binom{2n-k}{k} x^k y^{2n-2k} = \frac{1}{2^{2n}} \sum_{k=0}^{n} \binom{2n}{2k} y^{2k}(y^2 - 4x)^{n-k}. \]

section 76.18
\[ \sum_{k=0}^{n} (-1)^k 4^{n-k} \binom{2n-k}{k} = 2n + 1 \]

section 76.19
\[ \sum_{k=0}^{n} \binom{k}{m} \binom{k}{n} = \sum_{k=0}^{n} (-1)^k \binom{l+1}{m+k+1} \binom{l-k}{n-k}. \]

section 76.20
\[ \sum_{j=0}^{k} \binom{2n}{j} \binom{n-j}{k-j} = \frac{4^k n}{n+k} \binom{n+k}{n-k}. \]

section 76.21
\[ \sum_{q=m}^{n-k} (-1)^{q-m} \binom{k-1+q}{k-1} \binom{n}{q+m} = \binom{n-1}{m} \binom{n-m}{k}. \]

section 76.22
\[ \sum_{q=0}^{N} (-1)^q \binom{2q}{q} \binom{N+q}{N-q} \frac{q^2}{(q+1)^2} = (-1)^N + \frac{1}{N(N+1)} \]

section 76.23
\[ \sum_{k=0}^{n} \binom{n}{k}^2 \sum_{l=0}^{k} \binom{k}{l} \binom{n}{l} \binom{2n-l}{n} = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 \]

section 76.24
\[ \sum_{k=1}^{a} (-1)^{a-k} \binom{a}{k} \binom{b+k}{b+1} = \binom{b}{a-1} \]
section 76.25
\[
\sum_{q=0}^{k} (-1)^{q-j} \binom{n+q}{q} \binom{n+k-q}{k-q} \binom{2n}{n+j-q} = \binom{2n}{n}
\]
where \(0 \leq j \leq k\).

section 76.26
\[
S_{n,m} = \sum_{k=m}^{n} \binom{k+m}{2m} \binom{2n+1}{n+k+1} = \binom{n}{m} 4^{n-m}.
\]

section 76.27
\[
\sum_{j=0}^{k} \binom{k}{j} \left( \frac{j}{n} \right) (-1)^{n-j} = \frac{k}{n} 2^{k-2n} \binom{2n-k-1}{n-1}
\]

section 76.28
\[
\sum_{k=1}^{n} (-1)^{n-k} k^n \binom{n+1}{n-k} = 1
\]

section 76.29
\[
\sum_{q=a+1}^{n} \binom{q-1}{a} \binom{n-q}{k-a} = \binom{n}{k+1}
\]
or alternatively
\[
\sum_{q=0}^{n} \binom{q}{a} \binom{n-q}{b} = \binom{n+1}{a+b+1}.
\]

section 76.30
\[
\sum_{k \geq 0} \frac{(2k+1)^2}{(p+k+1)(q+k+1)} \binom{2p}{p-k} \binom{2q}{q-k} = \frac{1}{p+q+1} \binom{2p+2q}{p+q}
\]

section 76.31
With
\[
G_{n,j} = \sum_{k=1}^{n} \frac{k^j (-1)^{n-k} \binom{n}{k}}{2n(n+1)-k}
\]
we have
\[ G_{n,j} = \frac{\left(\frac{1}{2} n(n+1)\right)^{j-1} n!}{\prod_{q=1}^{n} \left(\frac{1}{2} n(n+1) - q\right)} - \lfloor j > n \rfloor n! \sum_{q=0}^{j-1-n} \left(\frac{1}{2} n(n+1)\right)^q \left\{ \frac{j - 1 - q}{n} \right\} \]

section 76.32
\[ \sum_{p=q}^{k} (-1)^p \binom{k}{p} (q-p)^k = \sum_{p=q}^{k} \binom{k}{p} . \]

section 76.33
\[ \sum_{k=0}^{n} (-1)^k \frac{2^{n-k} \binom{n}{k}}{(m+k+1) \binom{m+k}{k}} = \sum_{k=0}^{n} \frac{n}{m+k+1} \]

section 76.34
\[ \sum_{k \geq 1} \left(\left\lfloor \frac{k}{2} \right\rfloor m + \left\lceil \frac{k}{2} \right\rceil \right) \binom{n-1}{k-1} = 2^{n-2m} \binom{n-m}{m-1} \frac{n+1}{m} \]

section 76.35
\[ \sum_{k=0}^{n} \binom{n}{k} ax^{-k} = (1-x)^n \sum_{k=0}^{n} \binom{n}{k} k! \left(\frac{x}{1-x}\right)^k \]

section 76.36
\[ \sum_{k=0}^{r} k^p \binom{m}{k} \binom{n}{r-k} = \sum_{j=0}^{p} m^2 \binom{m+n-j}{m-r} \binom{p}{j} \]

section 76.37
Li-Shanlan identity:
\[ \binom{m+k}{k}^2 = \sum_{q=0}^{m} \binom{k}{m-q}^2 \binom{2k+q}{q} \]

section 76.38
Two alternate representations of second order Eulerian numbers:
\[ \sum_{j=0}^{k} (-1)^{k-j} \binom{2n+1}{k-j} \binom{n+j}{j} = \sum_{j=0}^{n-k} (-1)^j \binom{2n+1}{j} \binom{2n-k-j+1}{n-k-j+1} \]
section 76.39

Two alternate representations of second order Eulerian numbers:

\[
\sum_{j=0}^{k} (-1)^{k-j} \binom{n-j}{k-j} \{\binom{n+j}{j}\} = \binom{n}{k} = \sum_{j=0}^{n-k+1} (-1)^{n-k-j+1} \binom{n-j}{k-1} \floor{n+j}{j}
\]

section 76.40

\[
\left[\begin{array}{cc} n \\ n-k \end{array}\right] - \left\{\begin{array}{c} n \\ n-k \end{array}\right\} = \sum_{j=0}^{k} \left(\binom{n+j-1}{2k} - \binom{n+k-j}{2k}\right) \binom{k}{j}
\]

section 76.41

\[
\sum_{k=0}^{2n} (-1)^{k} \binom{n+k}{k}^{-1} \binom{2n}{k} \binom{2k}{k} = 1
\]

section 76.42

\[
\sum_{k=1}^{n} \binom{2n-2k}{n-k} H_{2k} - 2H_{k} \binom{2k}{k} = \frac{1}{n} \left[4^n - 3 \binom{2n-1}{n}\right]
\]

section 76.43

\[
\sum_{q=0}^{n} \binom{n}{q} q^k = \sum_{q=1}^{k} n^q \frac{k}{q+1} \binom{k}{q} 2^{n-q}
\]

section 76.44

\[
\sum_{r=0}^{n} r^k = (n+1) \sum_{q=1}^{k} n^q \frac{1}{q+1} \binom{k}{q}
\]

section 76.45

\[
\sum_{k=0}^{n} \binom{k}{m} \binom{n-k}{r-m} = \binom{n+1}{r+1}
\]

section 76.46

\[
\sum_{r=0}^{n} 2^{n-r} \binom{n+r}{r} = 4^n
\]
section 76.47

With

\[ K_k(x; n) = \sum_{j=0}^{k} (-1)^j \binom{x}{j} \binom{n-x}{k-j} \]

we have

\[ \sum_{\ell=0}^{n} \binom{n-\ell}{n-m} K_\ell(x; n) = 2^m \times \binom{n-x}{m}. \]

section 76.48

\[ B_n = \sum_{k=0}^{n} (-1)^k \frac{1}{k+1} \binom{n+1}{k+1} + (-1)^{n+1}(n+1) \]

section 76.49

\[ \sum_{q \geq k} \binom{m+1}{2q+1} \binom{q}{k} = \binom{m-k}{k} 2^{m-2k} \]

section 76.50

\[ \sum_{k=1}^{n-1} \binom{n}{k} \binom{2n-2k-1}{2n-1} !! \sim \frac{1}{2} \sqrt{e} \]

section 76.51

\[ \sum_{k=0}^{n} \binom{n+k}{2k} \binom{2k}{k} \frac{(-1)^k}{k+1+m} = \frac{(-1)^n \times m^n}{(n+m+1)^{n+1}} \]

section 76.52

\[ \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n+k}{n-k} \binom{2k}{k} = \frac{1}{2n+1} \]

section 76.53

\[ \binom{n}{n-k} = (-1)^k \binom{n}{k} \sum_{j=0}^{k} \binom{k}{j} \sum_{q=0}^{j} (-1)^q \binom{j+1}{q+1} \binom{q+n+q}{qn+q}^{-1} \binom{qn+q}{qn+q} \]

section 76.54

\[ \binom{n}{n-k} = (-1)^k \binom{n-1}{k} \sum_{j=0}^{k} (-1)^j \binom{k+1}{j+1} \binom{j+n+k}{jn+k}^{-1} \binom{jn+k}{jn} \]
section 76.55
\[ \left[ \begin{array}{c} n \\ n-k \end{array} \right] = \sum_{q=0}^{k} (-1)^{k-q} \binom{n+q-1}{n-k-1} \binom{n+k}{k-q} \binom{k+q}{q} \]
section 76.56
\[ \sum_{k=0}^{n} k^p = \sum_{j=1}^{p+1} \sum_{k=j}^{p+1} \frac{1}{k} \binom{p+1}{k} (-1)^{k-j} \binom{k}{j} \]
\[ = \frac{1}{p+1} n^{p+1} + \frac{1}{2} n^p + \sum_{k=1}^{p} \binom{p}{k} \frac{B_{p+1-k}}{p+1-k} n^k \]
section 76.57
\[ \sum_{k=0}^{n} (-1)^k \binom{n}{k} (x-k)^{n+j} = \sum_{k=0}^{j} \binom{x-n}{k} \binom{n+k}{n+k} \frac{n+j}{n+k} \]
section 76.58
\[ \sum_{k=0}^{n} (-1)^k \binom{x}{k} k^r = \sum_{k=0}^{r} (-1)^k \binom{x}{k} \binom{n-x}{n-k} k! \frac{k!}{k} \]
section 76.59
\[ \sum_{k=0}^{n} (-1)^k \binom{n}{k} k^{n+j} = (-1)^n (n+j)! \sum_{k=0}^{j} \binom{j-n}{j-k} \binom{n}{k} \frac{k!}{(k+j)!} \binom{k+j}{k} \]
section 76.60
\[ \sum_{k=0}^{n} (-1)^k \binom{n+x}{n-k} \frac{1}{k+1} = \frac{1}{n!} \sum_{k=0}^{n} \frac{n+1}{k+1} B_k(x) \]
section 76.61
\[ \sum_{k=0}^{n} \binom{2k}{k} \frac{k^r}{2^{2k}} = \frac{2n+1}{2^{2n}} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{2k+1} k! \binom{k+r}{k} \]
section 76.62
\[ x^n = (-1)^{m+n} \sum_{k=0}^{m+1} \sum_{p=0}^{r} (-1)^p \binom{m+1}{p} (k-p)^n \]
\[
\sum_{k=0}^{n} {2k + 1 \choose j} = (-1)^{j+1} \sum_{k=0}^{j+1} (-1)^k \binom{2n + 3}{k} 2^k + 1
\]

section 76.64
\[
\sum_{k=0}^{n} (-1)^k \binom{j + k}{j} = \left\{ (-1)^n \sum_{k=0}^{j} (-1)^k \binom{n + j + 1}{k} 2^k + (-1)^j \right\}
\]

section 76.65
\[
\sum_{k=0}^{n} \binom{x}{n-k} \binom{x}{n+k} = \frac{1}{2} \left\{ \binom{2x}{2n} + \binom{x}{n}^2 \right\}
\]

section 76.66
\[
\sum_{k=0}^{[n/2]} \binom{x}{2k} \binom{x}{n-2k} = \frac{1}{2} \left\{ \binom{2n}{n} + (-1)^{n/2} \binom{x}{n/2} \frac{1 + (-1)^n}{2} \right\}
\]

section 76.67
\[
\sum_{k=0}^{[n/2]} \binom{x}{2k} \binom{2n-x}{n-2k} = \frac{1}{2} \left\{ \binom{2n}{n} + (-1)^n 2^n \binom{x-1}{n} \right\}
\]

section 76.68
\[
\sum_{k=0}^{r} \binom{x}{k} \binom{-x}{n-k} = \frac{n-r}{n} \binom{x-1}{r} \binom{-x}{n-r}
\]

section 76.69
\[
\sum_{k=0}^{[n/2]} \binom{x}{k} \binom{x-k}{n-2k} 2^{n-2k} = \binom{2x}{n}
\]

section 76.70
\[
\sum_{k=0}^{n} \binom{x}{n-k} 2^{2k} = \sum_{k=0}^{n} \binom{2x}{k} \binom{y}{n-k} 2^k = \sum_{k=0}^{n} \binom{2x}{k} \binom{2x+y-k}{n-k}
\]

section 76.71
\[
\sum_{k=0}^{n} \binom{2x}{2k} \binom{x-k}{n-k} = \frac{x}{x+n} \binom{x+n}{2n} 2^{2n} = \frac{2^{2n}}{(2n)!} \prod_{k=0}^{n-1} (x^2 - k^2)
\]
\[ \sum_{k=0}^{n} \binom{2x+1}{2k+1} \frac{(x-k)}{(n-k)} = \frac{2x+1}{2n+1} \binom{x+n}{2n} 2^{2n} = \frac{2x+1}{(2n+1)!} \prod_{k=0}^{n-1} (2x+1)^2 - (2k+1)^2) \]

\[ \sum_{k=0}^{n} (-1)^k \binom{x}{n-k} \binom{x}{n+k} = \frac{1}{2} \left\{ \binom{x}{n} + \binom{x}{n}^2 \right\} \]

\[ \sum_{k=0}^{n} (-1)^k \binom{2n}{k} \binom{2x-2n}{x-k} = \frac{1}{2} (-1)^n \left\{ \binom{x}{n} + \binom{x}{n}^2 \right\} \binom{2x}{2} \binom{2x}{2n}^{-1} \]

\[ \sum_{k=0}^{n} (-1)^k \binom{x}{k} \binom{2n-x}{n-k} = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{x}{k} \binom{2n-2x}{n-2k} \]
\[ = (-1)^n \sum_{k=0}^{n} (-1)^k \binom{2n-k}{n-k} \binom{2n-x}{k} 2^k \]
\[ = \sum_{k=0}^{n} (-1)^k 2^k \binom{x}{k} \binom{2n-k}{n} \]
\[ = \frac{2^n}{n!} \prod_{k=0}^{n-1} (2k + 1 - x) = (-1)^n 2^{2n} \binom{x-1}{2n} \]

\[ \sum_{k=0}^{n} \binom{n}{k}^2 k^r = \sum_{k=0}^{r} \binom{n}{k} \binom{2n-k}{n} k! \binom{r}{k} \]

\[ \sum_{k=0}^{n} (-1)^k \binom{2n}{k}^2 = \frac{1}{2} (-1)^n \left\{ \binom{2n}{n} + \binom{2n}{n}^2 \right\} \]

\[ \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{2n}{2k}^2 = \frac{1}{4} \binom{4n}{2n} + \frac{1}{4} (-1)^n \binom{2n}{n} + \frac{1 + (-1)^n}{4} \binom{2n}{n}^2 \]
section 76.79

\[ 2^{2n} \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} = \sum_{k=0}^{n} \binom{2n-2k}{k} \binom{2k}{k} 2^k \]

\[ 2^{2n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} = \sum_{k=0}^{n} (-1)^k \binom{2n-2k}{k} \binom{2k}{k} 3^k \]

section 76.80

\[ \sum_{k=0}^{n} \binom{2n-2k}{n-k} \binom{2k}{k} \frac{x}{x+k} = 2^{2n} \binom{x+n}{n}^{-1} \binom{n+x-1}{n} \]

section 76.81

\[ \sum_{k=0}^{n} \binom{2n-2k}{n-k} \binom{2k}{k} \frac{1}{(2k-1)(2n-2k+1)} = \frac{2^{4n}}{2n(2n+1)} \binom{2n}{n}^{-1} \]

section 76.82

\[ \sum_{k=0}^{n} \binom{4n-4k}{2n-2k} \binom{4k}{2k} = 2^{4n-1} + 2^{2n-1} \binom{2n}{n} \]

\[ \sum_{k=0}^{n-1} \binom{4n-4k-2}{2n-2k-1} \binom{4k+2}{2k+1} = 2^{4n-1} - 2^{2n-1} \binom{2n}{n} \]

section 76.83

\[ \sum_{k=0}^{n} (-1)^k \binom{n+k}{2k} \binom{2k}{k} \frac{x}{x+k} = (-1)^n \binom{x+n}{n}^{-1} \binom{x-1}{n} \]

section 76.84

\[ \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{n+2r+k}{n+r} 2^{n-k} = (-1)^{n/2} + (-1)^n \binom{n+r}{n}^{-1} \binom{n+r}{n/2} \binom{n+2r}{r} \]

\[ \sum_{k=0}^{n-r} (-1)^k \binom{n}{k} \binom{n+k+r}{k} 2^{n-r-k} = (-1)^{(n-r)/2} + (-1)^{n-r} \binom{n}{(n-r)/2} \]

section 76.85

\[ \sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2n+2k}{n+k} 3^{2n-k} = \binom{2n}{n} \]
section 76.86
\[ \sum_{k=0}^{n} \binom{4n+1}{2n-2k} \binom{k+n}{n} = 2^{2n} \binom{3n}{n} \]

section 76.87
\[ \sum_{k=0}^{n} (-1)^k \binom{2n}{n-k} \binom{2n+2k+1}{2k} = (-1)^n (n+1) 2^{2n} \]

section 76.88
\[ \sum_{k=0}^{n} \binom{2k}{k} \binom{2n-k}{n} \frac{k}{(2n-k) \times 2^k} = (-1)^n 2^{2n} \left( -\frac{1}{4} \right) \]

section 76.89
\[ \sum_{k=1}^{n} \binom{n}{k}^2 H_k = \binom{2n}{n} (2H_n - H_{2n}) \]

section 76.90
\[ \sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n+k-1}{k} H_k = \frac{(-1)^n}{n} \]
\[ \sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n+k-1}{k} H_{n+k-1} = \frac{(-1)^n}{n} \]

section 76.91
\[ \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \binom{n+k}{k} \frac{1}{k} = 2H_n \]
section 76.92

\[ P_n(x) = \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \left( \frac{2n - 2k}{n} \right) x^{n-2k} \]

\[ P_n(x) = \left[ \frac{x - 1}{2} \right]^n \sum_{k=0}^{\lfloor n/2 \rfloor} \left( \frac{n}{k} \right)^2 \left[ \frac{x + 1}{x - 1} \right]^k \]

\[ P_n(x) = (-1)^n \sum_{k=0}^{n} \binom{n}{k} \left( \frac{n + k}{k} \right) (-1)^k \left[ \frac{x + 1}{2} \right]^k \]

\[ P_n(x) = \sum_{k=0}^{n} \left( \frac{n}{k} \right) \left( \frac{n + k}{k} \right) \left[ \frac{x - 1}{2} \right]^k \]

section 76.93

\[ P_n(x) = \sum_{k=0}^{n} \left( \frac{n}{k} \right) \left( \frac{2k}{k} \right) 2^{-k} \sqrt{x^2 - 1} \left[ x - \sqrt{x^2 - 1} \right]^{n-k} \]

\[ P_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \left( \frac{n}{2k} \right) \left( \frac{2k}{k} \right) 2^{-2k} x^{n-2k} (x^2 - 1)^k \]

section 76.94

\[ \sum_{k=0}^{n} \left( \frac{2k}{k} \right) \left( \frac{2n - 2k}{n - k} \right) x^{2k} = 2^{2n} x^n P_n((x + 1/x)/2) \]

\[ = 2^{2n} \frac{2}{\pi} \int_0^{\pi/2} (x^2 \sin^2 t + \cos^2 t)^n \ dt \]

\[ \sum_{k=0}^{n} \left( \frac{-1/2}{k} \right) \left( \frac{-1/2}{n - k} \right) x^{2k} = (-1)^n x^n P_n((x + 1/x)/2) \]

\[ = \sum_{k=0}^{n} (-1)^k \left( \frac{n}{k} \right) \left( k - 1/2 \right) x^{2k} \]

section 76.95

\[ \sum_{r=0}^{n} \frac{1}{4^r} \binom{2r}{r} = \frac{1}{2^n} \sum_{q=0}^{n} \left( \frac{n + q}{n} \right) \frac{1}{2^q} (n - q + 1) = \binom{n + 1/2}{n} \]
section 76.96

\[ P_n(x) = \frac{1}{\pi} \int_0^\pi (x + \sqrt{x^2 - 1} \times \cos t)^n \, dt \]

\[ P_n(x) = \frac{1}{m} \sum_{k=0}^{m-1} (x + \sqrt{x^2 - 1} \times \cos \frac{2\pi k}{m})^n \]

\[ P_n(x) = \frac{1}{2^n} \frac{1}{2\pi i} \int_{|t-x|=\varepsilon} (t^2 - 1)^n (t-x)^{n+1} \, dt \]

section 76.97

\[ \sum_{k=0}^{n} \binom{x+ky}{k} \binom{p-x-ky}{n-k} = \begin{cases} y^{p+1}(y-1)^{n-p-1}, & 0 \leq p \leq n-1 \\ \frac{y^{n+1}-1}{y-1}, & p = n \end{cases} \]

section 76.98

\[ \sum_{k=0}^{n} \binom{x+kt}{k} \binom{y-kt}{n-k} = \sum_{k=0}^{n} \binom{x+y-k}{n-k} t^k \]

section 76.99

\[ \sum_{k=1}^{n-1} \binom{nx-2k}{k} \binom{nx-kx}{n-k} \frac{1}{kx(nx-kx)} = \frac{2}{nx(n)} \sum_{k=1}^{n-1} \frac{1}{nx-n+k} \]

section 76.100

\[ \left[ z^n \right] \frac{1}{(1-z)^{\alpha+1}} \log \frac{1}{1-z} = \binom{n+\alpha}{n} (H_{n+\alpha} - H_\alpha) \]

section 76.101

\[ \sum_{k=1}^{n} \frac{1}{k} \binom{nx-2k}{k-1} \binom{nx-kx}{n-k} = \frac{1}{x} \binom{nx}{n} \]

section 76.102

\[ C_{n-1} = \sum_{k=1}^{[n/2]} 2^{n-2k} \binom{n-2}{n-2k} \frac{1}{k} \binom{2k-2}{k-1} \]
section 76.103
\[
\sum_{k=0}^{n-1} \frac{2x}{2k+1} \left( \frac{x-k-1}{n-k-1} \right) = \frac{n}{x+n} 2^{2n} \left( \frac{x+n}{2n} \right)
\]
\[
\sum_{k=0}^{n} \frac{2x}{2k+1} \left( \frac{x-k-1}{n-k} \right) = \frac{x+n}{2n+1} 2^{2n+1} \left( \frac{x+n-1}{2n} \right)
\]

section 76.104
\[
\sum_{k=1}^{n} \left( \frac{a-b-k}{a+1-k} \right)! \frac{1}{b!} \left[ \frac{1}{a!} \frac{(a-b)!}{b!} \right] = \frac{1}{b!} \frac{(a-b)!}{a!}
\]

section 76.105
\[
\sum_{k=a}^{n} (-1)^k \binom{n+k}{2k} 2^{2k} 2^{n+1} = (-1)^n \binom{n+a}{2a} 2^{2a}
\]

section 76.106
\[
\sum_{j=1}^{n+j} \binom{n+j}{2j-1} (-1)^{n+j} C_{n+j-1} = 0
\]

section 76.107
\[
\sum_{k=0}^{n} \frac{2k+1}{n+k+1} \left( \frac{x-k-1}{n-k} \right) \left( \frac{x+k}{n+k} \right) = \left( \frac{x}{n} \right)^2
\]

section 76.108
\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n+1}{2k+1} \left( \frac{x+k}{n} \right) = \binom{2x}{n}
\]
\[
\sum_{k=0}^{\lfloor (n+1)/2 \rfloor} \binom{n+1}{2k} \left( \frac{x+k}{n} \right) = \binom{2x+1}{n}
\]
section 76.109

\[
\sum_{k=0}^{n} \binom{x}{2k} \frac{x-2k}{n-k} 2^{2k} = \binom{2x}{2n}
\]

\[
\sum_{k=0}^{n} \binom{x+1}{2k+1} \frac{x-2k}{n-k} 2^{2k+1} = \binom{2x+2}{2n+1}
\]

section 76.110

\[
\sum_{k=0}^{n-p} \binom{2n+1}{2p+2k+1} \frac{p+k}{k} = \binom{2n-p}{p} 2^{2n-2p}
\]

\[
\sum_{k=0}^{n-p} \binom{2n}{2p+2k} \frac{p+k}{k} = \frac{n}{2n-p} \binom{2n-p}{p} 2^{2n-2p}
\]

section 76.111

\[
\sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} \frac{k}{r} 2^{n-2k} = (-1)^r \binom{n+1}{2r+1}
\]

\[
\sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \frac{n}{n-k} \binom{n-k}{k} \frac{k}{r} 2^{n-2k-1} = (-1)^r \binom{n}{2r}
\]

section 76.112

\[
\sum_{k=m}^{n} (-1)^k 2^{2k} \binom{k}{m} \frac{n}{n+k} \binom{n+k}{2k} = (-1)^m 2^{2m} \frac{n}{n+m} \binom{n+m}{2m}
\]

section 76.113

\[
\sum_{q=0}^{m} (-1)^{q-1} \binom{k+q}{q} \frac{k}{q} = \frac{(-1)^{m+1}}{k+1} \binom{k-1}{m} \binom{k+1+m}{k}
\]

section 76.114

\[
\sum_{k=1}^{n} (-1)^{k-1} \frac{f(x-k)}{k} = H_n f(x) - f'(x)
\]
section 76.115

\[ f(x + y) = y \binom{y + n}{n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{f(x - k)}{y + k} \]

section 76.116

\[ f(x + y) = (-1)^m \sum_{k=0}^{m+1} \binom{x + k - 1}{m} \sum_{j=0}^{k} (-1)^j \binom{m + 1}{j} f(j - k + y) \]

section 76.117

\[ \sum_{k=0}^{n} \binom{m + k}{m}^{-1} = \frac{m}{m-1} \left[ 1 - \binom{m + n}{m-1}^{-1} \right] \]

section 76.118

\[ (-1)^n \sum_{g=0}^{n} \frac{B_{n+g+1}}{n + g + 1} \binom{m}{g} + (-1)^m \sum_{g=0}^{n} \frac{B_{m+g+1}}{m + g + 1} \binom{n}{g} = - \frac{1}{n + m + 1} \binom{n + m}{m}^{-1} \]

section 76.119

\[ \sum_{k=0}^{n} (-1)^k \binom{2n}{n + k} \frac{f(y + k^2)}{x^2 - k^2} = (-1)^n \frac{f(x^2 + y)}{2x(x - n)} \binom{x + n}{2n}^{-1} + \frac{1}{2} \binom{2n}{n} \frac{f(y)}{x^2} \]

section 76.120

\[ \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{k + r}{k}^{-1} f(y - k) = - \sum_{k=1}^{r} (-1)^k \binom{r}{k} \binom{k + n}{k}^{-1} f(y + k) \]

section 76.121

\[ \sum_{q=0}^{\lfloor n/2 \rfloor} (n - 2q)^n \binom{n}{q} (-1)^q = 2^{n-1} n! \]
1 Introductory example for the method \((B_1)\)

Suppose we seek to evaluate

\[ S_j(n) = \sum_{k=0}^{n} (-1)^k \binom{n+k}{k} \binom{k}{j} \]

which is claimed to be

\[ (-1)^n \binom{n}{j} \binom{n+j}{j}. \]

Introduce

\[ \binom{n+k}{k} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^{n+k}}{z^{k+1}} \, dz \]

and

\[ \binom{k}{j} = \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1+w)^k}{w^{j+1}} \, dw. \]

This yields for the sum

\[
\begin{align*}
&\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{j+1}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (1+z)^k \frac{(1+w)^k}{z^k} \, dw \, dz \\
&\quad = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{j+1}} \left(1 - \frac{(1+w)(1+z)}{z}\right)^n \, dw \, dz \\
&\quad = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{j+1}} (-1-wz)^n \, dw \, dz \\
&\quad = \frac{(-1)^n}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{j+1}} \frac{1}{w+wz} (1+w+wz)^n \, dw \, dz.
\end{align*}
\]

This is

\[
\frac{(-1)^n}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{j+1}} \sum_{q=0}^{n} \binom{n}{q} w^q (1+z)^q \, dw \, dz.
\]

Extracting the residue at \(w = 0\) we get

\[
\frac{(-1)^n}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \binom{n}{j} (1+z)^j \, dz
\]

\[
= \binom{n}{j} \frac{(-1)^n}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^{n+j}}{z^{n+1}} \, dz \\
= (-1)^n \binom{n}{j} \binom{n+j}{n},
\]

thus proving the claim.

This is math.stackexchange.com problem 1331507.
2 Introductory example for the method, convergence about zero \((B_1B_2)\)

Suppose we seek to evaluate

\[
\sum_{k=0}^{r} \binom{r-k}{m} \binom{s+k}{n}
\]

where \(n \geq s\) and \(m \leq r\).

Introduce

\[
\binom{r-k}{m} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{r-k} (1-z)^m+1} dz.
\]

Note that this is zero when \(k > r - m\) so we may extend the sum in \(k\) to \(k = \infty\).

Introduce furthermore

\[
\binom{s+k}{n} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^s}{w^n+1} dw.
\]

This yields for the sum

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{r-m} (1-z)^{m+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^s}{w^n+1} \sum_{k=0}^{r} z^k (1+w)^k dw dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{r-m+1} (1-z)^{m+2}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^s}{w^n+1} \frac{1}{1 - w/(1-z)} dw dz.
\]

For the geometric series to converge we must have \(|z(1+w)| < 1\), which also ensures that the inner pole is not inside the contour. Observe that \(|z(1+w)| = \epsilon|1+w| \leq \epsilon(1+\gamma)\). So we need to choose \(1+\gamma < 1/\epsilon\) with \(\epsilon\) in a neighborhood of zero. The choice \(\epsilon = 1/2\) and \(\gamma = 1/2\) will work.

Continuing we find

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{r-m+1} (1-z)^{m+2}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^s}{w^n+1} \frac{1}{1 - w/(1-z)} dw dz.
\]

Extracting the inner residue we get

\[
\sum_{q=0}^{n} \binom{s}{n-q} \frac{z^q}{(1-z)^q}.
\]

Now

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{r-m-q+1} (1-z)^{m+q+2}} dz = \binom{r+1}{m+q+1}
\]

37
which yields for the sum
\[ \sum_{q=0}^{n} \binom{s}{n-q} \binom{r+1}{m+q+1}. \]

Continue by re-indexing for
\[ \sum_{q=0}^{s} \binom{s}{q} \binom{r+1}{m+n-q+1} \]
where we have lowered the upper limit to \( s \) since the first binomial coefficient is zero when \( q > s \).

Using
\[ \binom{r+1}{m+n-q+1} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{r+1}}{z^{m+n-q+1}} dz \]
we thus obtain for the sum
\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{r+s+1}}{z^{m+n+2}} \sum_{q=0}^{s} \binom{s}{q} z^q dz = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{r+s+1}}{z^{m+n+2}} = \binom{s+r+1}{n+m+1}. \]

**Remark.** This can be done using formal power series only.

We have for the sum
\[ \sum_{k=0}^{r} \binom{r-k}{m} \binom{s+k}{n} = \sum_{k=0}^{r} [z^{r-k-m}] \frac{1}{(1-z)^{m+1}} [w^n](1+w)^s z^k \]
\[ = [z^{r-m}] \frac{1}{(1-z)^{m+1}} [w^n](1+w)^s \sum_{k=0}^{r} z^k (1+w)^k. \]

Now we may certainly extend the sum to infinity as there is no contribution to the coefficient extractor when \( k > r - m \) (recall that \( r \geq m \)) getting
\[ [z^{r-m}] \frac{1}{(1-z)^{m+1}} [w^n](1+w)^s \sum_{k=0}^{r} z^k (1+w)^k = [z^{r-m}] \frac{1}{(1-z)^{m+1}} [w^n](1+w)^s \frac{1}{1-z/z(1+w)} \]
\[ = [z^{r-m}] \frac{1}{(1-z)^{m+2}} [w^n](1+w)^s \frac{1}{1-z-wz} \]
\[ = [z^{r-m}] \frac{1}{(1-z)^{m+2}} [w^n](1+w)^s \frac{1}{1-wz/(1-z)}. \]

Now with \( n \geq s \) we get for the inner coefficient
\[ \sum_{q=0}^{s} \binom{s}{q} \frac{z^{n-q}}{(1-z)^{n-q}} \]

Substitute into the outer coefficient extractor to get

\[ [z^{r-m}](1-z)^{m+2} \sum_{q=0}^{s} \binom{s}{q} \frac{z^{n-q}}{(1-z)^{n+2-q}} = [z^{r-m}] \sum_{q=0}^{s} \binom{s}{q} \frac{z^{n-q}}{(1-z)^{n+1+2-q}} \]

\[ = \sum_{q=0}^{s} \binom{s}{q} [z^{r-m-n+q}](1-z)^{n+1+2-q} = \sum_{q=0}^{s} \binom{s}{q} \frac{r+1}{(n+m+1-q)} \]

\[ = \sum_{q=0}^{s} \binom{s}{q} [z^{n+m+1-q}](1+z)^{r+1} = [z^{n+m+1}](1+z)^{r+1} \sum_{q=0}^{s} \binom{s}{q} z^q \]

\[ = [z^{n+m+1}](1+z)^{r+1}(1+z)^s = [z^{n+m+1}](1+z)^{r+s+1} = \binom{r+s+1}{n+m+1}. \]

This was math.stackexchange.com problem 928271.

### 3 Introductory example for the method, an interesting substitution \((B_1)\)

Suppose we seek to verify that

\[ \sum_{q=0}^{2m} (-1)^q \binom{p-1+q}{q} \binom{2m+2p+q-1}{2m-q} 2^q = (-1)^m \binom{p-1+m}{m}. \]

Introduce

\[ \binom{2m+2p+q-1}{2m-q} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2m-q+1}(1+z)^{2m+2p+q-1}} dz. \]

Observe that this controls the range being zero when \(q > 2m\) so we may extend \(q\) to infinity to obtain for the sum

\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2m+1}(1+z)^{2m+2p-1}} \sum_{q \geq 0} \binom{p-1+q}{q} (-1)^q 2^q z^q (1+z)^q \]

\[ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2m+1}(1+z)^{2m+2p-1}} \frac{1}{(1+2z(z+1))^p} \]

\[ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2m+1}(1+z)^{2m+2p-1}} \frac{1}{((1+z)^2 + z^2)^p} \]

39
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2m+1}} \left(1 + z\right)^{2m-1} \frac{1}{\left(1 + z^2/(1 + z)^2\right)^{\rho}} \, dz
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2m}} \left(1 + z\right)^{2m} \frac{1}{z(1 + z)} \frac{1}{\left(1 + z^2/(1 + z)^2\right)^{\rho}} \, dz.
\]

Now put
\[
\frac{z}{1 + z} = u \quad \text{so that} \quad z = \frac{u}{1 - u} \quad \text{and} \quad dz = \frac{1}{(1 - u)^2} \, du
\]
to obtain for the integral
\[
\frac{1}{2\pi i} \int_{|u|=\gamma} \frac{1}{u^{2m}} \frac{1}{u/(1 - u)} \times \frac{1}{1/(1 - u)} \frac{1}{(1 + u)^{\rho}} \frac{1}{1 - u^2} \, du
= \frac{1}{2\pi i} \int_{|u|=\gamma} \frac{1}{u^{2m+1}} \frac{1}{(1 + u)^{\rho}} \, du.
\]
This is
\[
[u^{2m}] \frac{1}{(1 + u^2)^{\rho}} = [v^m] \frac{1}{(1 + v)^{\rho}} = (-1)^m \binom{m + p - 1}{m},
\]
as claimed.

For the conditions on \(\epsilon\) and \(\gamma\) we require convergence of the geometric series with \(|2z(1 + z)| < 1\) which holds for \(\epsilon < (-1 + \sqrt{3})/2\). Note that with \(u = z + \cdots\) the image of \(|z| = \epsilon\) makes one turn around zero. The closest it comes to the origin is at \(\epsilon/(1 + \epsilon)\) so we must choose \(\gamma < \epsilon/(1 + \epsilon)\) e.g. \(\gamma = \epsilon^2/(1 + \epsilon)\) for \(|w| = \gamma\) to be entirely contained in the image of \(|z| = \epsilon\). Taking \(\epsilon = 1/5\) will work.

This was [math.stackexchange.com problem 557982](https://math.stackexchange.com/questions/557982/)

### 4 Introductory example for the method, another interesting substitution \((B_1)\)

Suppose we seek to evaluate
\[
\sum_{k=0}^{\lfloor m/2 \rfloor} \binom{n}{k} (-1)^k \binom{m - 2k + n - 1}{n - 1}
\]
where \(m \leq n\) and introduce
\[
\binom{m - 2k + n - 1}{n - 1} = \binom{m - 2k + n - 1}{m - 2k}
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m-2k+1}} (1 + z)^{m-2k+n-1} \, dz
\]

40
which has the property that it is zero when $2k > m$ so we may set the upper limit in the sum to $n$, getting

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m+1}} (1 + z)^{m+n-1} \sum_{k=0}^{n} \binom{n}{k} (-1)^k \frac{z^{2k}}{(1 + z)^{2k}} \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m+1}} (1 + z)^{m+n-1} \left(1 - \frac{z^2}{(1 + z)^2}\right)^n \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^m}{z^m} \frac{1}{z(1 + z)} \frac{1}{(1 + z)^n} \, dz.
\]

Now put

\[
\frac{1 + 2z}{1 + z} = u \quad \text{so that} \quad z = \frac{u - 1}{u - 2}, \quad 1 + z = -\frac{1}{u - 2}, \quad \frac{1}{u - 1}, \quad \frac{1}{z(1 + z)} = \frac{(u - 2)^2}{u - 1} \quad \text{and} \quad dz = \frac{1}{(u - 2)^2} \, du
\]

to get for the integral

\[
\frac{1}{2\pi i} \int_{|u-1|=\gamma} \frac{1}{(u - 1)^m} \frac{(u - 2)^2}{u - 1} \frac{u^n}{(u - 2)^2} \, du
\]

\[
= \frac{1}{2\pi i} \int_{|u-1|=\gamma} \frac{1}{(u - 1)^{m+1}} u^n \, du.
\]

This is

\[
[(u - 1)^m] u^n = \sum_{q=0}^{n} \binom{n}{m} (u - 1)^q = \binom{n}{m}.
\]

This solution is more complicated than the obvious one (which can be found at the stackexchange link) but it serves to illustrate the substitution aspect of the method.

Concerning the choice of $\epsilon$ and $\gamma$ the closest that the image of $|z| = \epsilon$ which is $1 + \frac{\epsilon}{1 + \epsilon}$, gets to one, is $\epsilon/(1 + \epsilon)$ so that must be the upper bound for $\gamma$. Taking $\epsilon = 1/3$ and $\gamma = 1/5$ will work. Note also that $u = 1 + z + \cdots$ makes one turn around one.

This was [math.stackexchange.com problem 1558659](http://math.stackexchange.com/questions/1558659).
5 Introductory example for the method, yet another interesting substitution \((B_2)\)

Suppose we seek to evaluate

\[
\sum_{k=0}^{n} k \binom{2n}{n+k}.
\]

Introduce

\[
\binom{2n}{n+k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-k+1}} \frac{1}{(1-z)^{n+k+1}} \, dz.
\]

Observe that this is zero when \(k > n\) so we may extend \(k\) to infinity to obtain for the sum

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{(1-z)^{n+1}} \sum_{k\geq0} \frac{k \cdot z^k}{(1-z)^k} \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{(1-z)^{n+1}} \frac{z/(1-z)}{(1-z/(1-z))^2} \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{2^n} \frac{1}{(1-z)^n} \frac{1}{(1-2z)^2} \, dz.
\]

Now put \(z(1-z) = w\) so that (observe that with \(w = z + \cdots\) the image of \(|z| = \epsilon\) with \(\epsilon\) small is another closed circle-like contour which makes one turn and which we may certainly deform to obtain another circle \(|w| = \gamma\)\

\[
z = \frac{1 - \sqrt{1-4w}}{2} \quad \text{and} \quad (1-2z)^2 = 1 - 4w
\]

and furthermore

\[
dz = -\frac{1}{2} \times \frac{1}{2} \times (-4) \times (1-4w)^{-1/2} \, dw = (1-4w)^{-1/2} \, dw
\]

to get for the integral

\[
\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^n} \frac{1}{1-4w} (1-4w)^{-1/2} \, dw = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^n} \frac{1}{1-4w} \frac{1}{(1-4w)^{3/2}} \, dw.
\]

This evaluates by inspection to

\[
4^{n-1} \binom{n-1+1/2}{n-1} = 4^{n-1} \binom{n-1/2}{n-1} = \frac{4^{n-1}}{(n-1)!} \sum_{q=0}^{n-2} (n-1/2 - q)
\]

\[
= \frac{2^{n-1}}{(n-1)!} \prod_{q=0}^{n-2} (2n-2q-1) = \frac{2^{n-1}}{(n-1)!} \frac{(2n-1)!}{2^{n-1}(n-1)!}
\]

42
\[ n^2 \binom{2n}{n} = \frac{1}{2} n \binom{2n}{n}. \]

Here the mapping from \( z = 0 \) to \( w = 0 \) determines the choice of square root. For the conditions on \( \epsilon \) and \( \gamma \) we have that for the series to converge we require \(|z/(1-z)| < 1 \) or \( \epsilon/(1-\epsilon) < 1 \) or \( \epsilon < 1/2 \). The closest that the image contour of \( |z| = \epsilon \) comes to the origin is \( \epsilon - \epsilon^2 \) so we choose \( \gamma < \epsilon - \epsilon^2 \) for example \( \gamma = \epsilon^2 - \epsilon^3 \). This also ensures that \( \gamma < 1/4 \) so \( |w| = \gamma \) does not intersect the branch cut \([1/4, \infty)\) (and is contained in the image of \( |z| = \epsilon \)). For example \( \epsilon = 1/3 \) and \( \gamma = 2/27 \) will work.

This was math.stackexchange.com problem 1585536.

### Using formal power series

We may use the change of variables rule 1.8 (5) from the Egorychev text (page 16) on the integral

\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^n} \frac{1}{(1-z)^n} \frac{1}{(1-2z)^2} \, dz = \text{res} \left( \frac{1}{z} \frac{1}{z^n} \frac{1}{(1-z)^n} \frac{1}{(1-2z)^2} \right)
\]

with \( A(z) = \frac{z}{(1-z)^2} \) and \( f(z) = \frac{1}{1-z} \). We get \( h(z) = z(1-z) \) and find

\[
\text{res} \left( \frac{1}{w^{n+1}} \left[ \frac{A(z)}{f(z)h'(z)} \right] \right)_{z=g(w)}
\]

with \( g \) the inverse of \( h \).

This becomes

\[
\text{res} \left( \frac{1}{w^{n+1}} \left[ \frac{z/(1-2z)^2}{(1-2z)/(1-z)} \right] \right)_{z=g(w)}
\]

or alternatively

\[
\text{res} \left( \frac{1}{w^{n+1}} \left[ \frac{z(1-z)}{(1-2z)^2} \right] \right)_{z=g(w)} = \text{res} \left( \frac{1}{w^n} \left[ \frac{1}{(1-2z)^2} \right] \right)_{z=g(w)}.
\]

Observe that \((1-2z)^2 = 1 - 4z + 4z^2 = 1 - 4z(1-z) = 1 - 4w \) so this is

\[
\text{res} \left( \frac{1}{w^n} \frac{1}{(1-4w)^{3/2}} \right)
\]

and the rest of the computation continues as before.

This was math.stackexchange.com problem 4007052.

### 6 Introductory example for the method, using the Iverson bracket only (I₁)

Suppose we seek to verify that
\[ S_n = \sum_{k=0}^{n} 2^{-k} \binom{n+k}{k} = 2^n. \]

We introduce the Iverson bracket
\[ [k \leq n] = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-k+1}} \frac{1}{1-z} \, dz \]
so we may extend \( k \) to infinity, getting
\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{1-z} \sum_{k \geq 0} 2^{-k} \binom{n+k}{n} z^k \, dz \]
\[ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{1-z} \frac{1}{(1-z/2)^{n+1}} \, dz. \]

We evaluate this using the negative of the residues at \( z = 1, z = 2 \) and \( z = \infty \). Here the contour does not include the other two finite poles which also ensures that the geometric series converges. We could choose \( \epsilon = 1/2 \). We get for the residue at \( z = 1 \)
\[ -\frac{1}{(1/2)^{n+1}} = -2^{n+1}. \]

For the residue at \( z = 2 \) we write
\[ (-1)^{n+1} \text{Res}_{z=2} \frac{1}{z^{n+1}} \frac{1}{1-z} \frac{1}{(z/2 - 1)^{n+1}} \]
\[ = (-1)^{n+1} 2^{n+1} \text{Res}_{z=2} \frac{1}{z^{n+1}} \frac{1}{1-z} \frac{1}{z-2)^{n+1}} \]
\[ = (-1)^{n+1} 2^{n+1} \text{Res}_{z=2} \frac{1}{(2 + (z-2))^{n+1}} \frac{1}{1+(z-2)/(z-2)^{n+1}} \]
\[ = (-1)^n \text{Res}_{z=2} \frac{1}{(1+(z-2)/2)^{n+1}} \frac{1}{1+(z-2)/(z-2)^{n+1}}. \]

This is
\[ (-1)^n \sum_{q=0}^{n} (-1)^q \binom{n+q}{q} 2^{-q}(-1)^{n-q} = \sum_{q=0}^{n} \binom{n+q}{q} 2^{-q} = S_n. \]

Finally do the residue at \( z = \infty \) getting (this also follows by inspection having degree zero in the numerator and degree \( 2n+3 \) in the denominator)
\[ \text{Res}_{z=\infty} \frac{1}{z^{n+1}} \frac{1}{1-z} \frac{1}{(1-z/2)^{n+1}} \]
\[ = -\text{Res}_{z=0} \frac{1}{z^2 z^{n+1}} \frac{1}{1-1/z} \frac{1}{(1-1/2/2)^{n+1}} \]

44
\[ -\text{Res}_{z=0} \frac{1}{z} z^{n+1} \frac{1}{z-1 (z-1/2)^{n+1}} = 0. \]

Using the fact that the residues sum to zero we thus obtain

\[ S_n - 2^{n+1} + S_n = 0 \]

which yields

\[ S_n = 2^n. \]

This was math.stackexchange.com problem 389099

7 Verifying that a certain sum vanishes \( B_1 \)

Suppose we seek to evaluate

\[ \sum_{m=0}^{\infty} \binom{n}{m} \sum_{k=0}^{n+1} \frac{1}{a + bk + 1} \binom{a + bk}{m} \binom{k - n - 1}{k}. \]

Now we have

\[ \binom{a + bk}{m} = \sum_{q=0}^{m} (-1)^{m-q} \binom{a + bk + 1}{q} \]

and hence

\[ \frac{1}{a + bk + 1} \binom{a + bk}{m} = \frac{(-1)^{m}}{a + bk + 1} + \sum_{q=1}^{m} \frac{1}{q} (-1)^{m-q} \binom{a + bk}{q-1}. \]

Now from the first component we get in the main sum

\[ \sum_{m=0}^{n} \binom{n}{m} \sum_{k=0}^{n+1} \frac{(-1)^{m}}{a + bk + 1} \binom{k - n - 1}{k} \]

\[ = \sum_{k=0}^{n+1} \frac{1}{a + bk + 1} \binom{k - n - 1}{k} \sum_{m=0}^{n} \binom{n}{m} (-1)^{m} = 0. \]

We are thus left with the following sum:

\[ \sum_{k=0}^{n+1} \binom{k - n - 1}{k} \sum_{m=0}^{n} \binom{n}{m} \sum_{q=1}^{m} \frac{1}{q} (-1)^{m-q} \binom{a + bk}{q-1}. \]
Working with the inner sum we obtain
\[
\sum_{m=1}^{n} \binom{n}{m} \sum_{q=1}^{m} \frac{1}{q} (-1)^{m-q} \frac{a + bk}{q - 1} = \sum_{q=1}^{n} \frac{(-1)^q}{q} \binom{n}{q} \sum_{m=q}^{n} (-1)^m \binom{n}{m} \frac{a + bk}{q - 1} = \sum_{q=1}^{n} \frac{n-1}{q} \frac{1}{q} \binom{n}{q} \frac{a + bk}{q - 1} = \frac{1}{n} \sum_{q=1}^{n} \frac{n}{q} \binom{n}{q} \frac{a + bk}{q - 1}.
\]

Now put
\[
\frac{(a + bk)}{(q - 1)} = \frac{a + bk}{(a + bk - q + 1)} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{a+bk-q+2}} (1+z)^{a+bk} \, dz
\]

to get
\[
\frac{1}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{a+bk+2}} (1+z)^{a+bk} \sum_{q=1}^{n} \binom{n}{q} z^q \, dz = \frac{1}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{a+bk+2}} (1+z)^{a+bk} (-1 + (1 + z)^n) \, dz
\]

The inner constant term does not contribute and we are left with
\[
\frac{1}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{a+bk+n}}{z^{a+bk+2}} \, dz = \frac{1}{n} \binom{a + bk + n}{a + bk + 1} = \frac{1}{n} \binom{a + bk + n}{n - 1}.
\]

Returning to the main sum we thus have
\[
\frac{1}{n} \sum_{k=0}^{n+1} \binom{k - n - 1}{k} \binom{a + bk + n}{n - 1} = \frac{1}{n} \sum_{k=0}^{n+1} \binom{-k}{n + 1 - k} \binom{a + b(n + 1) + n - bk}{n - 1}.
\]

Note that
\[
\binom{-k}{n + 1 - k} = \frac{1}{(n + 1 - k)!} \prod_{q=0}^{n-k} (-k - q) = \frac{(-1)^{n-k+1}}{(n + 1 - k)!} \prod_{q=0}^{n-k} (k + q)
\]

46
\[
= (-1)^{n-k+1} \frac{n!}{(n+1-k)!} \frac{(n) - (k-1)!} = (-1)^{n-k+1} \binom{n}{k-1}.
\]
This means for the main sum
\[
\frac{(-1)^{n+1}}{n} \sum_{k=1}^{n+1} \binom{n}{k-1} (-1)^{k} \binom{a+b(n+1) + n - bk}{n-1}
= \frac{(-1)^{n}}{n} \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \binom{a+n - bk}{n-1}.
\]
Introduce
\[
\binom{a+b(n+n-bk)}{n-1} = \frac{1}{2\pi i} \int_{|z|=e} \frac{1}{z^n} (1+z)^{a+bn+n-bk} dz
\]
We get for the sum
\[
\frac{(-1)^{n}}{n} \frac{1}{2\pi i} \int_{|z|=e} \frac{1}{z^n} (1+z)^{a+bn+n} \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \frac{1}{(1+z)^{bk}} dz
= \frac{(-1)^{n}}{n} \frac{1}{2\pi i} \int_{|z|=e} \frac{1}{z^n} (1+z)^{a+bn+n} \left(1 - \frac{1}{(1+z)^{b}}\right)^n dz
= \frac{(-1)^{n}}{n} \frac{1}{2\pi i} \int_{|z|=e} \frac{1}{z^n} (1+z)^{a+bn+n} ((1+z)^{b} - 1)^n dz.
\]
This is
\[
\frac{(-1)^{n}}{n} [z^{n-1}] (1+z)^{a+bn+n} ((1+z)^{b} - 1)^n.
\]
Note however that
\[
((1+z)^{b} - 1)^n = \left( \binom{b}{1} z + \binom{b}{2} z^2 + \cdots \right)^n = b^n z^n + \cdots
\]
so there is no coefficient on \([z^{n-1}]\) because the powered term starts at \(z^n\).
Therefore the end result of the whole calculation is
0.

Remark. We have made several uses of
\[
\binom{n}{m} = \sum_{q=0}^{m} (-1)^{m-q} \binom{n+1}{q}.
\]
If this is not considered obvious we can prove it with the integral
\[
\left(\frac{n+1}{q}\right) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1+z)^{n+1} \, dz
\]
to get
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z} (1+z)^{n+1} \sum_{q=0}^{m} (-1)^{m-q} \frac{1}{z^q} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(-1)^m}{z} (1+z)^{n+1} \frac{1 - (-1/z)^{m+1}}{1+1/z} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} (-1)^m (1+z)^{n+1} \frac{1 - (-1/z)^{m+1}}{1+z} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} (-1)^m (1+z)^{n} (1 - (-1/z)^{m+1}) \, dz
\]
\[
= -(-1)^m \times (-1)^{m+1} \left(\frac{n}{m}\right) = \left(\frac{n}{m}\right).
\]
This was [math.stackexchange.com problem 1789981](http://math.stackexchange.com/problem/1789981).

### 8 A case of radical cancellation \((B_1, R)\)

Suppose we seek to show that
\[
\binom{2m}{2n} = \sum_{k=0}^{n} \binom{2n+1}{2k+1} \binom{m+k}{2n},
\]
where \(m \geq n\). We introduce
\[
\binom{2n+1}{2k+1} = \binom{2n+1}{2n-2k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2n-2k+1}} (1+z)^{2n+1} \, dz.
\]
Observe that this vanishes when \(k > n\) so that we may use it to control the range and extend \(k\) to infinity. We also use
\[
\binom{m+k}{2n} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{2n+1}} (1+w)^{m+k} \, dw.
\]
We thus obtain
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+1}}{z^{2n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^m}{w^{2n+1}} \sum_{k \geq 0} z^{2k} (1+w)^k \, dw \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+1}}{z^{2n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^m}{w^{2n+1}} \frac{1}{1-(1+w)z^2} \, dw \, dz.
\]

48
Evaluate the inner integral using the negative of the residue at the pole at

\[ w = \frac{1 - z^2}{z^2} \]

(residues sum to zero) as in

\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{2n+1}}{z^{2n+1}} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^m}{w^{2n+1}} \frac{1}{1 - z^2 - wz} \, dw \, dz
\]

\[= -\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{2n+1}}{z^{2n+3}} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^m}{w^{2n+1}} \frac{1}{w - (1 - z^2)/z^2} \, dw \, dz.\]

The negative of the residue is

\[ \frac{1}{z^{2m}} \frac{z^{4n+2}}{(1 - z^2)^{2n+1}} = \frac{1}{z^{2m-4n-2}} \frac{1}{(1 - z^2)^{2n+1}} \]

and we obtain from the outer integral

\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{2n+1}}{z^{2n+3}} \frac{1}{z^{2m-4n-2}} \frac{1}{(1 - z^2)^{2n+1}} \, dz
\]

\[= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{2m-2n+1}} \frac{1}{(1 - z)^{2n+1}} \, dz
\]

\[= \binom{2m - 2n + 2n}{2n} = \binom{2m}{2n}.\]

This is the claim.

**Remark.** We also need to show that the contribution from the residue at infinity of the inner integral is zero. We get

\[
\text{Res}_{w=\infty} \frac{(1 + w)^m}{w^{2n+1}} \frac{1}{1 - (1 + w)z^2}
\]

\[= -\text{Res}_{w=0} \frac{1}{w^2} (1 + 1/w)^m w^{2n+1} \frac{1}{1 - z^2 - z^2/w}
\]

\[= -\text{Res}_{w=0} (1 + w)^m w^{2n-m} \frac{1}{w(1 - z^2) - z^2}.\]

No contribution when \(2n \geq m\). Otherwise,

\[\frac{1}{z^2} \text{Res}_{w=0} (1 + w)^m \frac{1}{w^{m-2n}} \frac{1}{1 - w(1 - z^2)/z^2}
\]

\[= \frac{1}{z^2} \sum_{q=0}^{m-2n-1} \binom{m}{m - 2n - q} \frac{(1 - z^2)^q}{z^{2q}}
\]

\[= \frac{1}{z^2} \sum_{q=0}^{m-2n-1} \binom{m}{2n + 1 + q} \left( \frac{1}{z^2} - 1 \right)^q.
\]

49
Combining this with the integral in $z$ yields

$$\sum_{q=0}^{m-2n-1} \binom{m}{2n+1+q} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+1}}{z^{2n+1}} \frac{1}{z^q} \sum_{p=0}^{q} \binom{q}{p} (-1)^{q-p} \frac{1}{z^{2p}} \, dz.$$

The contribution from the residue is

$$[z^{2n+2+2p}] (1+z)^{2n+1} = 0.$$

We can express this verbally by saying that the term from the integral is $[z^{2n}] (1+z)^{2n+1} = 0$ and the sum only contributes negative powers of $z$ with exponent starting at two.

**Remark, II.** From the convergence we require that $|z^2(1+w)| < 1$ in the double integral and must choose our contours appropriately. We must also verify that $(1-z^2)/z^2$ is outside the contour $|w| = \gamma$. This is $1/z^2 - 1$ i.e. a circle of radius $1/\epsilon^2$ shifted by one to the left. Therefore when $\epsilon < 1/\sqrt{2}$ the pole is outside the contour.

This was math.stackexchange.com problem 1900578.

9 Basic usage of exponentiation integral ($B_1E$)

Suppose we seek to verify that

$$(-1)^r \sum_{q=r}^{p} \binom{p}{q} \binom{q}{r} (-1)^q q^{p-r} = \frac{p^!}{r^!}.$$

We use the integral representation

$$\binom{q}{r} = \binom{q}{q-r} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^q}{z^{q-r+1}} \, dz,$$

which is zero when $q < r$ (pole vanishes) so we may extend $q$ back to zero.

We also use the integral

$$q^{p-r} = \frac{(p-r)!}{2\pi i} \int_{|w|=\gamma} \frac{\exp(qw)}{w^{p-r+1}} \, dw.$$

We thus obtain for the sum

$$\frac{(-1)^p (p-r)!}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{p-r+1}} \times \frac{1}{2\pi i} \int_{|z|=\epsilon} z^{r-1} \sum_{q=0}^{p} \binom{p}{q} (-1)^q \frac{(1+z)^q}{z^q} \exp(qw) \, dz \, dw$$

$$= \frac{(-1)^p (p-r)!}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{p-r+1}}.$$
\[
\times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^{r-1}}{\exp(w)^p} \left(1 - \frac{1}{z} \exp(w)\right)^p \, dz \, dw
\]

\[
= \frac{(-1)^p(r-p)!}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{p-r+1}} \exp((-\exp(w) + z(1 - \exp(w)))^p) \, dz \, dw
\]

\[
\times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{p-r+1}} \left(\exp(w) + z(\exp(w) - 1)^p\right) \, dz \, dw.
\]

We extract the residue on the inner integral to obtain

\[
\frac{(p-r)!}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{p-r+1}} \left(\begin{array}{c} p \\ p-r \end{array}\right) \exp(rw)(\exp(w) - 1)^{p-r} \, dw
\]

\[
= \frac{p!}{r!} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{p-r+1}} \exp(rw)(\exp(w) - 1)^{p-r} \, dw.
\]

It remains to compute

\[
[w^{p-r}] \exp(rw)(\exp(w) - 1)^{p-r}.
\]

Observe that \(\exp(w) - 1\) starts at \(w\) so \((\exp(w) - 1)^{p-r}\) starts at \(w^{p-r}\) and hence only the constant coefficient from \(\exp(rw)\) contributes, the value being one, which finally yields

\[
\frac{p!}{r!}.
\]

This was [math.stackexchange.com problem 1731648](https://math.stackexchange.com/1731648).

10 Introductory example for the method, eliminating odd-even dependence \((B_1)\)

Suppose we seek to verify that

\[
\sum_{k=0}^{n} \binom{n}{k} 2^{n-k} \binom{k}{[k/2]} = \binom{2n+1}{n}.
\]

This is

\[
\sum_{q=0}^{n} \binom{n}{2q} 2^{n-2q} \binom{2q}{q} + \sum_{q=0}^{n} \binom{n}{2q+1} 2^{n-2q-1} \binom{2q+1}{q}.
\]

We treat these in turn.
First sum. Observe that
\[
\binom{n}{2q} \binom{2q}{q} = \binom{n}{q} \binom{n-q}{q}.
\]
This yields for the sum
\[
2^n \sum_{q=0}^{n} \left( \binom{n}{q} \binom{n-q}{q} \right) 2^{-2q}.
\]
Introduce
\[
\left( \binom{n}{q} \right) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{n-q}}{z^{q+1}} \, dz
\]
which yields for the sum
\[
\frac{2^n}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z} \sum_{q=0}^{n} \left( \binom{n}{q} \right) 2^{-2q} \frac{1}{z^q(1 + z)^q} \, dz
\]
\[
= \frac{2^n}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z} \left( 1 + \frac{1}{4z(1 + z)} \right)^n \, dz
\]
\[
= \frac{2^{-n}}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + 2z)^{2n}}{z^{n+1}} \, dz = 2^{-n} \left( \binom{2n}{n} \right)^2 = 2^n \binom{n}{n}.
\]
Second sum. Observe that
\[
\binom{n}{2q+1} \binom{2q+1}{q} = \binom{n}{q} \binom{n-q}{q+1}.
\]
This yields for the sum
\[
2^{n-1} \sum_{q=0}^{n} \left( \binom{n}{q} \binom{n-q}{q+1} \right) 2^{-2q}.
\]
This time introduce
\[
\left( \frac{n}{q+1} \right) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{n-q}}{z^{q+2}} \, dz
\]
which yields for the sum
\[
\frac{2^{n-1}}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^2} \sum_{q=0}^{n} \left( \binom{n}{q} \right) 2^{-2q} \frac{1}{z^q(1 + z)^q} \, dz
\]
\[
= \frac{2^{n-1}}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^2} \left( 1 + \frac{1}{4z(1 + z)} \right)^n \, dz
\]
\[
= \frac{2^{-n-1}}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + 2z)^{2n}}{z^{n+2}} \, dz = 2^{-n-1} \left( \binom{2n}{n+1} \right)^2 = 2^n \binom{n}{n+1}.
\]
Conclusion.
Collecting the two contributions we obtain
\[
\binom{2n}{n} + \binom{2n}{n+1} = \binom{2n+1}{n}
\]
as claimed.
This was math.stackexchange.com problem 1442436.

11 Introductory example for the method, proving equality of two double hypergeometrics \((B_1)\)
Suppose we seek to verify that \(f_1(n, k) = f_2(n, k)\) where
\[
f_1(n, k) = \sum_{v=0}^{n} \frac{(2k + 2v)!}{(k + v)! \times v! \times (2k + v)! \times (n - v)!} 2^{-v}
\]
and
\[
f_2(n, k) = \sum_{m=0}^{\lfloor n/2 \rfloor} \frac{1}{(k + m)! \times m! \times (n - 2m)!} 2^{n-4m}.
\]
Multiplying by \((n + k)!\) we obtain
\[
g_1(n, k) = \sum_{v=0}^{n} \frac{(n + k)}{(n - v)} \binom{2k + 2v}{v} 2^{-v}
\]
and
\[
g_2(n, k) = 2^n \sum_{m=0}^{\lfloor n/2 \rfloor} \binom{n + k}{m} \binom{n + k - m}{n - 2m} 2^{-4m}.
\]
We will work with the latter two. Re-write the first sum as follows:
\[
2^{-n} \sum_{v=0}^{n} \binom{n + k}{v} \binom{2k + 2n - 2v}{n - v} 2^v
\]
Introduce
\[
\binom{2k + 2n - 2v}{n - v} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^n - v + 1} (1 + z)^{2k + 2n - 2v} \, dz.
\]
This integral is zero when \(v > n\) so we may extend \(v\) to infinity.
We get for \(g_1(n, k)\)
\[2^{-n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1 + z)^{2k+2n} \sum_{v \geq 0} \frac{(n + k)}{v} \left( \frac{z}{1 + z} \right)^v 2^v \, dz\]

\[= 2^{-n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1 + z)^{2k+2n} \left( 1 + 2 \frac{z}{(1 + z)^2} \right)^{n+k} \, dz\]

\[= 2^{-n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1 + 4z + z^2)^{n+k} \, dz.\]

For the second sum introduce
\[
\left( \frac{n + k - m}{n - 2m} \right) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-2m+1}} (1 + z)^{n+k-m} \, dz.
\]

This is zero when \(2m > n\) so we may extend \(m\) to infinity.

We get for \(g_2(n, k)\)

\[2^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1 + z)^{n+k} \sum_{m \geq 0} \frac{(n + k)}{m} \left( \frac{z^2}{1 + z^2} \right)^m 2^{-4m} \, dz\]

\[= 2^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1 + z)^{n+k} \left( 1 + \frac{1}{16} \frac{z^2}{1 + z} \right)^{n+k} \, dz\]

\[= 2^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1 + z + \frac{1}{16} z^2)^{n+k} \, dz.\]

Finally put \(z = 4w\) in this integral to get

\[2^n \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1} (4^n + w^{n+1})} (1 + 4w + w^2)^{n+k} \, 4dw\]

\[= 2^{-n} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}} (1 + 4w + w^2)^{n+k} \, dw.\]

This concludes the argument.

This was math.stackexchange.com problem 924966

12 A remarkable case of factorization \((B_1)\)

We let \(T(0) = 0\) and \(T(1) = 1\) and prove that when

\[T(n) = \sum_{k=1}^{\lfloor n/2 \rfloor} (-1)^{k+1} \binom{n-k}{k} T(n-k)\]

for \(n \geq 2\) then

\[T(n) = C_{n-1} = \frac{1}{n} \binom{2n-2}{n-1} = \binom{2n-2}{n-1} - \binom{2n-2}{n}.\]
In fact the case of a zero argument to $T$ is not reached as for $n \geq 2$ we also have $n - \lfloor n/2 \rfloor \geq 1$. Applying the induction hypothesis on the RHS we get two pieces, the first is

$$A = \sum_{k=1}^{\lfloor n/2 \rfloor} (-1)^{k+1} \binom{n-k}{k} \binom{2n-2k-2}{n-k-1}$$

$$= \binom{2n-2}{n-1} + \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{k+1} \binom{n-k}{k} \binom{2n-2k-2}{n-k-1}$$

and the second

$$B = \sum_{k=1}^{\lfloor n/2 \rfloor} (-1)^{k+1} \binom{n-k}{k} \binom{2n-2k-2}{n-k}$$

$$= \binom{2n-2}{n} + \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{k+1} \binom{n-k}{k} \binom{2n-2k-2}{n-k}.$$  

As we subtract $B$ from $A$ we see that we only need to show that the contribution from the two sum terms call them $A'$ and $B'$ is zero.

For these two pieces we introduce the integral representation

$$\binom{n-k}{k} = \binom{n-k}{n-2k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-k+1}(1+z)^{n-k}} \, dz.$$  

This has the nice property that it vanishes when $k > \lfloor n/2 \rfloor$ so we may extend the upper limit of the sum to infinity. We also introduce for the first sum

$$\frac{2n-2k-2}{n-k-1} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n-k}} (1+w)^{2n-2k-2} \, dw.$$  

We thus obtain

$$\times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}(1+z)^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{k+1} \frac{z^{2k} w^k}{(1+z)^k (1+w)^{2k}} \, dz \,dw$$

$$= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n}} (1+w)^{2n-2}$$

$$\times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}(1+z)^n} \frac{1}{1+z^2 w/(1+z)/(1+w)^2} \, dz \,dw$$

$$= -\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n}} (1+w)^{2n}.$$  

55
\[
\times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{(1 + z)(1 + w)^2 + z^2 w} \, dz \, dw
\]
\[
= -\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} (1 + w)^{2n} \, dw
\]
\[
\times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1 + z)^{n+1} \frac{1}{z + 1 + w} \frac{1}{z + (1 + w)/w} \, dz \, dw.
\]

We evaluate the inner integral by summing the residues at \( z = -(1 + w) \) and \( z = -(1 + w)/w \) and flipping the sign. (We will verify that the residue at infinity is zero.)

The residue at \( z = -(1 + w) \) yields
\[
-\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} (1 + w)^{2n} \, dw
\]
\[
\times (-1)^{n+1} \frac{1}{(1 + w)^{n+1}} \frac{1}{-(1 + w) + (1 + w)/w} \, dw
\]
\[
= -\frac{1}{2\pi i} \int_{|w|=\gamma} (1 + w)^{n-1} \frac{w}{1 - w^2} \, dw.
\]

This is zero as the pole at zero has been canceled. Next for the residue at \( z = -(1 + w)/w \) we get
\[
-\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} (1 + w)^{2n} \, dw
\]
\[
\times (-1)^{n+1} \frac{1}{w^{n+1}} \frac{1}{-(1 + w)/w + 1 + w} \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} (1 + w)^{n-1} \frac{w}{1 - w^2} \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^n} (1 + w)^{n-2} \frac{1}{1 - w} \, dw.
\]

With \( n \geq 2 \) we can evaluate this as
\[
\sum_{q=0}^{n-1} \binom{n-2}{q} = 2^{n-2}.
\]

To wrap up the residue at infinity of the inner integral is
\[
\text{Res}_{z=\infty} \frac{1}{z^{n+1}} (1 + z)^{n+1} \frac{1}{z + 1 + w} \frac{1}{z + (1 + w)/w}
\]
\[
= -\text{Res}_{z=0} \frac{1}{z^2} z^{n+1} (1 + z)^{n+1} \frac{1}{1/z + 1 + w} \frac{1}{1/z + (1 + w)/w}
\]

56
\[ \text{Res}_{z=0} (1 + z)^{n+1} \frac{1}{1 + z(1 + w)} \frac{1}{1 + z(1 + w)/w} = 0. \]

Collecting everything and flipping the sign we have shown that
\[ A' = -2^{n-2}. \]

For piece \( B' \) we see that it only differs from \( A' \) in an extra \( 1/w \) factor on the extractor in \( w \) at the front. We thus obtain
\[
-\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+2}} (1 + w)^{2n} \times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1 + z)^{n+1} \frac{1}{z + 1 + w} \frac{1}{z + (1 + w)/w} \, dz \, dw.
\]

The residue at \( z = -(1 + w) \) vanishes the same because there was an extra \( w \) to spare on the \( w/(1-w^2) \) term:
\[
-\frac{1}{2\pi i} \int_{|w|=\gamma} (1 + w)^{n-1} \frac{1}{1 - w^2} \, dw.
\]

For the residue at \( z = -(1 + w)/w \) we are now extracting from
\[
\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} (1 + w)^{n-2} \frac{1}{1 - w} \, dw.
\]

to get
\[
\sum_{q=0}^{n} \binom{n-2}{q} = 2^{n-2}
\]

as before. The residue at infinity vanished in \( z \) and did not reach the front extractor in \( w \), for another contribution of zero. This means that
\[ B' = -2^{n-2} \]

and we may conclude the proof. The fact that the sum term from the geometric series factored as it did is the remarkable feature of this problem.

**Addendum, four years later.** In the present version with complex variables the proof requires the convergence of the geometric series. This is \( |z^2 w/(1 + z)(1 + w)^2| < 1 \) or \( |z^2 w| < |(1 + z)(1 + w)^2| \). Now we have \( |(1 + z)(1 + w)^2| \geq (1 - \epsilon)(1 - \gamma)^2 \) so \( (1 - \epsilon)(1 - \gamma)^2 > \epsilon^2 \gamma \) will do. Suppose we take \( \epsilon = \gamma \). We obtain \( (1 - \gamma)^3 > \gamma^3 \). Therefore e.g. \( \epsilon = \gamma = 1/4 \) ensures convergence of the series. This also ensures that the two poles at \( -(1 + w) \) and \( -(1 + w)/w \) are outside the contour \( |z| = \epsilon \).

This was [math.stackexchange.com problem 2113830](https://math.stackexchange.com/questions/2113830).
13 Evaluating a quadruple hypergeometric \((B_1)\)

Suppose we seek to evaluate

\[
\sum_{k=0}^{n} \sum_{l=0}^{n} (-1)^{k+l} \binom{n+k-l}{n} \binom{k+l}{l} \binom{n}{k} \binom{n}{l}
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \sum_{l=0}^{n} (-1)^{l} \binom{n+k-l}{n} \binom{k+l}{l} \binom{n}{l}.
\]

Evaluate the inner sum first and introduce

\[
\binom{n+k-l}{n} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{n+k-l}}{z^{n+1}} \, dz.
\]

and

\[
\binom{k+l}{l} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{k+l}}{w^{n+1}} \, dw.
\]

This yields for the inner sum

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{n+k}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{k}}{w^{n+1}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \binom{k+l}{l} \frac{(1+w)^{l}}{(1+z)^{l}} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{n+k}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{k}}{w^{n+1}} \left(1 - \frac{1+w}{1+z}\right)^{n} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{k}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{k}}{w^{n+1}} (z-w)^{n} \, dw \, dz.
\]

Extracting the inner coefficient yields

\[
\sum_{q=0}^{n} \binom{k}{q} \binom{n}{n-q} (-1)^{-q} z^{q}.
\]

The outer coefficient becomes

\[
\sum_{q=0}^{n} \binom{k}{q} \binom{n}{n-q} (-1)^{-q} \binom{k}{n-q}
\]

\[
= \sum_{q=0}^{n} \binom{k}{q} \binom{n}{q} (-1)^{-q} \binom{k}{n-q}.
\]

Call this \(S\). By symmetry we have on re-indexing that

\[
2S = \sum_{q=0}^{n} \binom{k}{q} \binom{n}{q}((-1)^{q} + (-1)^{n-q}) \binom{k}{n-q}
\]

58
\[ = (1 + (-1)^n) \sum_{q=0}^{n} \binom{k}{q} \binom{n}{q} (-1)^q \binom{k}{n-q}. \]

This is zero when \( n \) is odd so the entire sum being evaluated vanishes when \( n \) is odd and we may assume that \( n = 2m \) and get

\[ \sum_{q=0}^{2m} \binom{k}{q} \binom{2m}{q} (-1)^q \binom{k}{2m-q}. \]

Substituting this into the outer sum yields

\[ \sum_{q=0}^{2m} \binom{2m}{q} (-1)^q \sum_{k=0}^{2m} \binom{2m}{k} (-1)^k \binom{k}{q} \binom{k}{2m-q}. \]

We evaluate the inner sum with the integrals

\[ \binom{k}{q} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^k}{z^{q+1}} \, dz. \]

and

\[ \binom{k}{2m-q} = \frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{(1 + w)^k}{w^{2m-q+1}} \, dw \]

to get

\[ \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{q+1}} \frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{2m-q+1}} \sum_{k=0}^{2m} \binom{2m}{k} (-1)^k (1 + z)^k (1 + w)^k \, dw \, dz \]

\[ = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{q+1}} \frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{2m-q+1}} (z + w)^{2m} \, dw \, dz \]

\[ = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{q+1}} \frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{2m-q+1}} (w(1 + z) + z)^{2m} \, dw \, dz. \]

Extracting the coefficient we get for the inner term

\[ \binom{2m}{2m-q} (1 + z)^{2m-q} \]

and for the outer integral

\[ \binom{2m}{2m-q} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z} (1 + z)^{2m-q} \, dz = \binom{2m}{2m-q}. \]

We are now ready to conclude and return to the main sum which has been transformed into

\[ \sum_{q=0}^{2m} \binom{2m}{q} (-1)^q \binom{2m}{2m-q} \]
which is
\[ (v^2 m (1 - v)^2 m (1 + v)^2 m = [v^2 m (1 - v^2)^2 m = [v^m (1 - v)^2 m = (-1)^m \binom{2m}{n}. \]

This was math.stackexchange.com problem 1577907.

14 An integral representation of a binomial coefficient involving the floor function \((B_1)\)

Suppose we seek to prove that
\[
\sum_{k=0}^{2m+1} \binom{n}{k} 2^k \binom{n-k}{(2m+1-k)/2} = \binom{2n+1}{2m+1}.
\]

Observe that from first principles we have that
\[
\binom{n}{\lfloor q/2 \rfloor} = \binom{n}{n - \lfloor q/2 \rfloor} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{2m+2}} (1 + w)^n (1 + z + wz^2 + wz^3 + w^2z^4 + w^2z^5 + \cdots) dw dz.
\]

This simplifies to
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{2m+2}} (1 + w)^n (1 + z + wz^2 + wz^3 + w^2z^4 + w^2z^5 + \cdots) dw dz.
\]

This correctly enforces the range as the reader is invited to verify and we may extend \(k\) beyond \(2m + 1\), getting for the sum
\[
\times \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{n+1}} \left( \frac{1}{1 - wz^2} + \frac{1}{1 - wz^2} \right) dw dz
\]

This correctly enforces the range as the reader is invited to verify and we may extend \(k\) beyond \(2m + 1\), getting for the sum
\[
\times \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{n+1}} \left( \frac{1}{1 - wz^2} + \frac{1}{1 - wz^2} \right) dw dz
\]

This was math.stackexchange.com problem 1577907.
\[ = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1 + z}{z^{2m+2}} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w + 2wz)^n}{w^{n+1}} \frac{1}{1 - wz} \, dw \, dz. \]

Extracting the inner coefficient now yields
\[
\sum_{q=0}^{n} \binom{n}{q} (1 + 2z)^q z^{2n-2q} = z^{2n} \sum_{q=0}^{n} \binom{n}{q} (1 + 2z)^q z^{-2q}
\]
\[= z^{2n} \left(1 + \frac{1 + 2z}{z^2}\right)^n = (1 + z)^{2n}. \]

We thus get from the outer coefficient
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{2n+1}}{z^{2m+2}} \, dz
\]
which is
\[
\binom{2n+1}{2m+1}
\]
as claimed. I do believe this is an instructive exercise.

This was math.stackexchange.com problem 2087559

15 Evaluating another quadruple hypergeometric \((B_1)\)

Suppose we seek to verify that
\[
\sum_{k=m}^{n} (-1)^{n+k} \frac{2k+1}{n+k+1} \binom{n}{k} \binom{n+k}{k}^{-1} \binom{k+m}{m} \binom{k+m}{m} = \delta_{mn}. \]

Here we may assume \(n \geq m\), the equality holds trivially otherwise. Now we have
\[
\binom{n}{k} \binom{n+k}{k}^{-1} = \frac{n!}{k!(n-k)!(n+k)!} \frac{k!n!}{k!(n-k)!(n+k)!} = \frac{n!}{(n-k)!(n+k)!} \frac{n!}{(n-k)!(n+k)!} = \binom{2n}{n} \binom{2n}{n}^{-1}.
\]

We get for the sum
\[
\sum_{k=m}^{n} (-1)^{n+k} \frac{2k+1}{n+k+1} \binom{2n}{k} \binom{k+m}{m} \binom{k+m}{m} = \delta_{mn} \times \binom{2n}{n},
\]
which is
\[
\sum_{k=m}^{n} (-1)^{n+k} \frac{2k+1}{n+k+1} \binom{2n}{k} \binom{k+m}{m} \binom{k+m}{m}
\]
\[= \delta_{mn} \times (2n + 1) \times \binom{2n}{n}.\]

Introduce
\[
\binom{2n+1}{n+k+1} = \binom{2n+1}{n-k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-k+1}(1+z)^{2n+1}} \, dz.
\]

Observe that this vanishes when \(k > n\) so we may extend \(k\) upward to infinity.

Furthermore introduce
\[
\binom{k}{m} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} (1+w)^k \, dw.
\]

Observe once again that the integral vanishes, this time when \(0 \leq k < m\) so we may extend \(k\) back to zero.

We thus get for the sum
\[
(-1)^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}}(1+z)^{2n+1}
\]
\[
\times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \sum_{k \geq 0} (-1)^k (2k+1) \binom{k+m}{m} z^k (1+w)^k \, dw \, dz.
\]

The inner sum yields two pieces, the first is
\[
\sum_{k \geq 0} (-1)^k \binom{k+m}{m} z^k (1+w)^k = \frac{1}{(1+z+wz)^{m+1}}
\]
\[
= \frac{1}{(1+z)^{m+1} (1+wz/(1+z))^{m+1}}.
\]

On extracting the residue for the integral in \(w\) we obtain
\[
(-1)^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}}(1+z)^{2n+1}
\]
\[
\times \frac{1}{(1+z)^{m+1}} \binom{2m}{m} (-1)^m z^m (1+z)^m \, dz
\]
\[
= \binom{2m}{m} (-1)^{n+m} \int_{|z|=\epsilon} \frac{1}{z^{n-m+1}} (1+z)^{2n-2m} \, dz
\]
\[
= \binom{2m}{m} (-1)^{n+m} \binom{2n-2m}{n-m}.
\]

The second piece from the sum is
\[
2 \sum_{k \geq 1} (-1)^k k \binom{k+m}{m} z^k (1+w)^k.
\]
Write
\[
\binom{k+m}{m} = \frac{(k+m)!}{(k-1)!m!} = (m+1) \frac{(k+m)!}{(k-1)!(m+1)!}
\]
\[
= (m+1) \binom{k+m}{m+1}
\]
to get for the sum
\[
2(m+1)z(1+w) \sum_{k \geq 1} (-1)^k \binom{k+m}{m+1} z^{k-1}(1+w)^k
\]
\[
= -2(m+1)z(1+w) \frac{1}{(1+z+wz)^{m+2}}
\]
\[
= -2(m+1)z(1+w) \frac{1}{(1+z)^{m+2}} \frac{1}{(1+wz/(1+z))^{m+2}}.
\]
Here we get two pieces, the first is
\[
-2(m+1)(-1)^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z}{z^{n+1}} (1+z)^{2n+1}
\]
\[
\times \frac{1}{(1+z)^{m+2}} \binom{2m+1}{m} (-1)^m \frac{z^m}{(1+z)^m} dz
\]
\[
= -2(m+1) \binom{2m+1}{m} (-1)^{n+m} \int_{|z|=\epsilon} \frac{1}{z^{n-m}} (1+z)^{2n-2m-1} dz
\]
We have two cases, we get zero when \( n = m \) and when \( n > m \) we have
\[
-2(m+1) \binom{2m+1}{m} (-1)^{n+m} \binom{2n-2m-1}{n-m-1}.
\]
The second piece is
\[
-2(m+1)(-1)^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z}{z^{n+1}} (1+z)^{2n+1}
\]
\[
\times \frac{1}{(1+z)^{m+2}} \binom{2m}{m-1} (-1)^{m-1} \frac{z^{m-1}}{(1+z)^{m-1}} dz
\]
\[
= 2(m+1) \binom{2m}{m-1} (-1)^{n+m} \int_{|z|=\epsilon} \frac{1}{z^{n-m+1}} (1+z)^{2n-2m} dz
\]
\[
= 2(m+1) \binom{2m}{m-1} (-1)^{n+m} \binom{2n-2m}{n-m}.
\]
Therefore when \( n = m \) we get
\[
\binom{2n-2m}{n-m} (-1)^{m+n} \left( 2(m+1) \binom{2m}{m-1} + \binom{2m}{m} \right).
\]

63
This simplifies to
\[ (-1)^{2m} \left( 2(m+1) \binom{2m}{m-1} + \binom{2m}{m} \right) \]
\[ = 2m \binom{2m}{m} + \binom{2m}{m} = (2m+1) \binom{2m}{m}. \]

This is precisely the claim we were trying to prove. On the other hand when \( n > m \) we obtain
\[ \left( \binom{2n-2m}{n-m} \right) (-1)^{m+n} \]
\[ \times \left( 2(m+1) \binom{2m}{m-1} + \binom{2m}{m} - 2(m+1) \binom{2m+1}{m} \frac{n-m}{2n-2m} \right). \]

The factor is
\[ (2m+1) \binom{2m}{m} - (m+1) \binom{2m+1}{m} = 0. \]

This concludes the argument.

**Remark.** For \( n = m \) we could have evaluated the single term in the initial sum by expanding the four binomial coefficients and assumed \( n > m \) thereafter. This was math.stackexchange.com problem 1817122.

### 16 An identity by Strehl \((B_1)\)

Suppose we seek to show that
\[ \sum_{k=0}^{n} \binom{n}{k}^3 = \sum_{k=\lfloor n/2 \rfloor}^{n} \binom{n}{k} \frac{2k}{n}. \]

With
\[ \binom{n}{k} \frac{2k}{n} = \frac{(2k)!}{k! \times (n-k)! \times (2k-n)!} = \binom{2k}{k} \frac{k}{n-k} \]
we find that the RHS is
\[ \sum_{k=\lfloor n/2 \rfloor}^{n} \binom{n}{k} \frac{2k}{k} \binom{k}{n-k}. \]

Introduce
\[ \binom{2k}{k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k}}{z^{k+1}} \, dz \]
and (this integral is zero when $0 \leq k < \lceil n/2 \rceil$)
\[
\binom{k}{n-k} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^k}{w^{n-k+1}} \, dw
\]
to get for the RHS
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} \sum_{k=0}^{n} \binom{n}{k} \frac{w^k (1+w)^k (1+z)^{2k}}{z^k} \, dw \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} \left(1 + \frac{w (1+w) (1+z)^2}{z}\right)^n \, dw \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} \left(z + w (1+w) (1+z)^2\right)^n \, dw \, dz
\]

Extracting first the residue in $w$ in next the residue in $z$ we get
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \sum_{q=0}^{n} \binom{n}{q} \frac{z^{n-q} (1+z)^q}{z^{q+1}} \binom{n}{n-q} (1+z)^{n-q} \, dz
\]
\[
= \sum_{q=0}^{n} \binom{n}{q}^2 \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^{q+1}} \, dz
\]
\[
= \sum_{q=0}^{n} \binom{n}{q}^3
\]

QED.

**Addendum May 27 2018.** We compute this using formal power series as per request in comment. Start from
\[
\binom{2k}{k} = [z^k](1+z)^{2k}
\]
and
\[
\binom{k}{n-k} = [w^{n-k}](1+w)^k.
\]

Observe that this coefficient extractor is zero when $n-k > k$ or $k < \lceil n/2 \rceil$ where $k \geq 0$. Hence we are justified in lowering $k$ to zero when we substitute these into the sum and we find
\[
\sum_{k=0}^{n} \binom{n}{k} [z^k](1+z)^{2k} [w^{n-k}](1+w)^k
\]
\[ [z^0][w^n] \sum_{k=0}^{n} \binom{n}{k} \frac{1}{z^k} (1 + z)^{2k} w^k (1 + w)^k \]

\[ = [z^0][w^n] \left(1 + \frac{(1 + z)^2 w(1 + w)}{z}\right)^n \]

\[ = [z^n][w^n](z + (1 + z)^2 w(1 + w))^n \]

\[ = [z^n][w^n](1 + w(1 + z))^n(z + w(1 + z))^n. \]

We extract the coefficient on \([w^n]\) then the one on \([z^n]\) and get

\[ [z^n] \sum_{q=0}^{n} \binom{n}{q} (1 + z)^q \binom{n}{n - q} (1 + z)^{n-q} z^q \]

\[ = \sum_{q=0}^{n} \binom{n}{q}^2 [z^{n-q}](1 + z)^n = \sum_{q=0}^{n} \binom{n}{q}^2 \frac{n}{n - q} = \sum_{q=0}^{n} \binom{n}{q}^3. \]

The claim is proved.

This was \texttt{math.stackexchange.com problem 586138}.

17 Shifting the index variable and applying Leibniz’ rule \((B_1)\)

We seek to simplify

\[ \sum_{s} \binom{n + s}{k + l} \binom{k}{s} \binom{l}{s}. \]

The substitution \(s = t + k + l - n\) yields

\[ \sum_{t} \binom{t + k + l}{k + l} \binom{k}{t + k + l - n} \binom{l}{t + k + l - n}. \]

Working with the assumption that the parameters are positive integers we find that from the first binomial coefficient we get that for it to be non-zero we must have \(t \geq 0\) or \(t < -(k + l)\). Note however that in the latter case the two remaining coefficients vanish, which leaves \(t \geq 0\). Re-writing we find

\[ \sum_{t \geq 0} \binom{t + k + l}{k + l} \binom{k}{n - l - t} \binom{l}{n - k - t}. \]

We introduce integral representations for the two right coefficients that also enforce the fact that \(t \leq n - l\) and \(t \leq n - k\) so that we may then let \(t\) range to infinity. We use

\[ \binom{k}{n - l - t} = \frac{1}{2\pi i} \int_{|z|=\epsilon_1} \frac{1}{z^{n-l-t+1}} (1 + z)^k \, dz \]

66
as well as
\[
\binom{n - k - t}{l} = \frac{1}{2\pi i} \int_{|v| = \epsilon_2} \frac{1}{v^{n-k-t-1}} (1 + v)^l \, dv.
\]
We then get for the sum (no convergence issues here)
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon_1} \frac{1}{z^{n-l+1}} (1 + z)^k \frac{1}{2\pi i} \int_{|v| = \epsilon_2} \frac{1}{v^{n-k+1}} (1 + v)^l \sum_{t \geq 0} \binom{k + l + t}{k + l} v^t z^t \, dv \, dz.
\]
We see that this vanishes when \( n < k \) or \( n < l \), which we label case A. Case B is that \( n \geq k, l \). We evaluate the inner integral using the fact that residues sum to zero. With this in mind we write
\[
\frac{(-1)^{k+l+1}}{2\pi i} \int_{|z| = \epsilon_1} \frac{1}{z^{n+k+q+1}} (1 + z)^k \frac{1}{2\pi i} \int_{|v| = \epsilon_2} \frac{1}{v^{n-k+q+1}} (1 + v)^l \frac{1}{(v - 1/2)^{k+l+1}} \, dv \, dz.
\]
We thus require for the pole at \( v = 1/z \)
\[
\frac{1}{(k + l)!} \left( \frac{1}{v^{n-k+1}} (1 + v)^l \right)^{(k+l)}
\]
which is (apply Leibniz)
\[
\frac{1}{(k + l)!} \sum_{q=0}^{k+l} \binom{k + l}{q} (-1)^q \binom{n - k + q}{q} \frac{q!}{v^{n-k+1+q}} \times \binom{l}{k + l - q} (k + l - q)! (1 + v)^{l-(k+l-q)}
\]
\[
= \sum_{q=0}^{k+l} (-1)^q \binom{n - k + q}{q} \frac{1}{v^{n-k+1+q}} \binom{l}{k + l - q} (1 + v)^{q-k}.
\]
Evaluate at \( v = 1/z \) to get
\[
\sum_{q=0}^{k+l} (-1)^q \binom{n - k + q}{q} z^{n-k+1+q} \binom{l}{k + l - q} \frac{(1 + z)^{q-k}}{z^{q-k}}.
\]
Substituting this into the integral in \( z \) and flipping the sign yields
\[
(-1)^{k+l} \sum_{q=0}^{k+l} (-1)^q \binom{n - k + q}{q} \binom{l}{k + l - q} \binom{q}{k}.
\]
Now we have

\[
\binom{q}{k} \binom{n-k+q}{q} = \frac{(n-k+q)!}{k! \times (q-k)! \times (n-k)!} = \binom{n}{k} \binom{n-k+q}{n}
\]

and we obtain

\[
(-1)^{k+l} \binom{n}{k} \sum_{q=0}^{k+l} (-1)^q \binom{l}{q} \binom{n-k+q}{n} = \binom{n}{k} \sum_{q=0}^{k+l} (-1)^q \binom{l}{q} (1+w)^{n-l-q}
\]

\[
= \binom{n}{k} [w^n] (1+w) \sum_{q=0}^{k+l} (-1)^q \binom{l}{q} \frac{1}{(1+w)^q}
\]

\[
= \binom{n}{k} [w^n] (1+w)^{n-l} \left( 1 - \frac{1}{1+w} \right)^l
\]

\[
= \binom{n}{k} [w^n] (1+w)^{n-l} = \binom{n}{k} \binom{n-l}{l} = \binom{n}{k} \binom{n}{l}.
\]

This is the claim, which we proved for case B.

**Remark.** To be perfectly rigorous we also need to show that the contribution from the residue at infinity is zero. We find

\[
\text{Res}_{v=\infty} \frac{1}{v^{n-k+l+1}} (1+v)^l \frac{1}{(1-vz)^{k+l+1}}
\]

\[
= -\text{Res}_{v=0} \frac{1}{v^2} v^{n-k+l+1} (1+v)^l \frac{1}{(1-z/v)^{k+l+1}}
\]

\[
= -\text{Res}_{v=0} \frac{1}{v^2} v^{n-k-l+1} (1+v)^l \frac{v^{k+l+1}}{(v-z)^{k+l+1}}
\]

\[
= -\text{Res}_{v=0} v^n (1+v)^l \frac{1}{(v-z)^{k+l+1}} = 0
\]

and the check goes through.

This was [math.stackexchange.com problem 2381429](https://math.stackexchange.com).
18 Working with negative indices \((B_1)\)

Suppose we seek to prove that

\[
\sum_{k=-\lfloor n/3 \rfloor}^{\lfloor n/3 \rfloor} (-1)^k \binom{2n}{n + 3k} = 2 \times 3^{n-1}.
\]

We start by introducing the integral

\[
\binom{2n}{n + 3k} = \frac{2n}{n - 3k} \int_{|z| = \epsilon} \frac{1}{z^{n - 3k + 1}} (1 + z)^{2n} dz.
\]

Observe that this vanishes for \(3k > n\) (pole canceled) and for \(3k < -n\) (upper range of polynomial term exceeded) so we may extend the summation to \([-n, n]\) getting

\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{n+1}} (1 + z)^{2n} \sum_{k=-n}^{n} (-1)^k z^{3k} dz
\]

\[
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{2n+1}} (1 + z)^{2n} (-1)^n (-1)^k z^{3k} dz
\]

\[
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{2n+1}} (1 + z)^{2n} (-1)^n \frac{1 - (-1)^{2n+1} z^{3(2n+1)}}{1 + z^3} dz.
\]

Only the first piece from the difference due to the geometric series contributes and we get

\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{2n+1}} (1 + z)^{2n} (-1)^n \frac{1}{1 + z^3} dz
\]

\[
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{2n+1}} (1 + z)^{2n-1} (-1)^n \frac{1}{1 - z + z^2} dz.
\]

We have two poles other than zero and infinity at \(\rho\) and \(1/\rho\) where

\[
\rho = \frac{1 + \sqrt{3}i}{2}
\]

and using the fact that residues sum to zero we obtain

\[
S + \frac{(-1)^n}{\rho(1 + \rho)} \frac{1}{\rho - 1/\rho} \left( \frac{(1 + \rho)^2}{\rho^4} \right)^n + \frac{(-1)^n}{1/\rho(1 + 1/\rho)} \frac{1}{1/\rho - \rho} \left( \frac{(1 + 1/\rho)^2}{1/\rho^4} \right)^n
\]

\[+ \text{Res}_{z=\infty} \frac{1}{z^{2n+1}} (1 + z)^{2n-1} (-1)^n \frac{1}{1 - z + z^2} = 0.
\]

We get for the residue at infinity
\[ -\text{Res}_{z=0} \frac{1}{z^2} z^{4n+1}(1 + 1/z)^{2n-1}(-1)^n \frac{1}{1 - 1/z + 1/z^2} \]
\[ = -\text{Res}_{z=0} z^{2n+2}(1 + z)^{2n-1}(-1)^n \frac{1}{z^2 - z + 1} = 0. \]

Now if \( z^2 = z - 1 \) then \( z^4 = z^2 - 2z + 1 = -z \) and thus
\[ \frac{(1 + 1/\rho)^2}{\rho^4} = \frac{(1 + \rho)^2}{\rho^4} = \frac{\rho - 1 + 2 \rho + 1}{\rho} = -3 \]
and furthermore with \( z(1+z)(z-1/z) = (1+z)(z^2-1) \) and \( (1+z)(z-2) = z^2 - z - 2 = -3 \) we finally get
\[ S + (-1)^n \times \left( -\frac{1}{3} \right)^n (-3)^n + (-1)^n \times \left( -\frac{1}{3} \right)^n (-3)^n = 0 \]
or
\[ S = 2 \times 3^{n-1}. \]

This was math.stackexchange.com problem 2054777.

19 Two companion identities by Gould (B₁)

Suppose we seek to evaluate
\[ Q(x, \rho) = \sum_{k=0}^{\rho} \binom{2x+1}{2k} \binom{x-k}{\rho-k} \]
where \( x \geq \rho \).

Introduce
\[ \binom{x-k}{\rho-k} = \binom{x-k}{x-\rho} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{x-\rho+1}(1+z)^{x-k}} dz. \]

Note that this controls the range being zero when \( \rho < k \leq x \) so we can extend the sum to \( x \) supposing that \( x > \rho \). And when \( x = \rho \) we may also set the upper limit to \( x \).

We get for the sum
\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{x-\rho+1}(1+z)^x} \sum_{k=0}^{x} \binom{2x+1}{2k} \frac{1}{(1+z)^k} dz. \]

This is
\[ \frac{1}{2} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{x-\rho+1}(1+z)^x} \left( \left( 1 + \frac{1}{\sqrt{1+z}} \right)^{2x+1} + \left( 1 - \frac{1}{\sqrt{1+z}} \right)^{2x+1} \right) dz \]
\[ = \frac{1}{2} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{x-\rho+1}} \frac{1}{\sqrt{1 + z}} \left( (1 + \sqrt{1 + z})^{2x+1} + (1 - \sqrt{1 + z})^{2x+1} \right) \, dz. \]

Observe that the second term in the parenthesis (i.e. \(1 - \sqrt{1 + z}\)) has no constant term and hence starts at \(z^{2x+1}\) making for a zero contribution. This leaves

\[ = \frac{1}{2} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{x-\rho+1}} \frac{1}{\sqrt{1 + z}} (1 + \sqrt{1 + z})^{2x+1} \, dz. \]

Now put \(1 + z = w^2\) so that \(dz = 2w \, dw\) to get

\[ = \frac{1}{2\pi i} \int_{|w-1| = \epsilon} \frac{1}{(w^2 - 1)^{x-\rho+1}} \frac{1}{w} \frac{1}{w} (1 + w)^{2x+1} \, w \, dw \]
\[ = \frac{1}{2\pi i} \int_{|w-1| = \epsilon} \frac{1}{(w-1)x^{x-\rho+1}} (1 + w)^{2x+1} \, dw \]
\[ = \frac{1}{2\pi i} \int_{|w-1| = \epsilon} \frac{1}{(w-1)^{x-\rho+1}} (1 + w)^{x+\rho} \, dw \]
\[ = \frac{1}{2\pi i} \int_{|w-1| = \epsilon} \frac{1}{(w-1)^{x-\rho+1}} \sum_{q=0}^{x+\rho} \binom{x+\rho}{q} (1 + w)^{x+\rho-q} (w-1)^q \, dw. \]

This is

\[ \left[(w-1)^{x-\rho} \right] \sum_{q=0}^{x+\rho} \binom{x+\rho}{q} 2^{x+\rho-q} (w-1)^q \]
\[ = \binom{x+\rho}{x-\rho} 2^{x+\rho-(x-\rho)} = \binom{x+\rho}{x-\rho} 2^{2\rho} = \left( \frac{x + \rho}{2\rho} \right) 2^{2\rho}. \]

We can also prove the companion identity from above. Suppose we seek to evaluate

\[ Q(x, \rho) = \sum_{k=0}^{\rho} \binom{2x + 1}{2k + 1} \binom{x - k}{\rho - k} \]

where \(x \geq \rho\).

Introduce

\[ \binom{x - k}{\rho - k} = \binom{x - k}{x - \rho} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{x-\rho+1}} (1 + z)^{x-k} \, dz. \]

Note that this controls the range being zero when \(\rho < k \leq x\) so we can extend the sum to \(x\) supposing that \(x > \rho\). And when \(x = \rho\) we may also set the upper limit to \(x\).

We get for the sum

\[ = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{x-\rho+1}} (1 + z)^x \sum_{k=0}^{x} \binom{2x + 1}{2k + 1} \frac{1}{(1 + z)^k} \, dz. \]

71
This is
\[
\frac{1}{2} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^x}{z^{x - \rho + 1}} \sqrt{1 + z} \left( \left( 1 + \frac{1}{\sqrt{1 + z}} \right)^{2x + 1} - \left( 1 - \frac{1}{\sqrt{1 + z}} \right)^{2x + 1} \right) dz
\]
\[
= \frac{1}{2} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{x - \rho + 1}} \left( (1 + \sqrt{1 + z})^{2x + 1} - (1 - \sqrt{1 + z})^{2x + 1} \right) dz.
\]

Observe that the second term in the parenthesis (i.e. $1 - \sqrt{1 + z}$) has no constant term and hence starts at $z^{2x + 1}$ making for a zero contribution. This leaves
\[
\frac{1}{2} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{x - \rho + 1}} (1 + \sqrt{1 + z})^{2x + 1} dz.
\]

Now put $1 + z = w^2$ so that $dz = 2w\, dw$ to get
\[
\frac{1}{2\pi i} \int_{|w - 1| = \epsilon} \frac{1}{(w^2 - 1)^{x - \rho + 1}} (1 + w)^{2x + 1} \, w \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w - 1| = \epsilon} \frac{1}{(w - 1)^{x - \rho + 1} (w + 1)^{x - \rho + 1}} (1 + w)^{2x + 1} \, w \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w - 1| = \epsilon} \frac{1}{(w - 1)^{x - \rho + 1}} (1 + w)^{x + \rho} \, w \, dw.
\]

Writing $w = (w - 1) + 1$ this produces two pieces, the first is
\[
\frac{1}{2\pi i} \int_{|w - 1| = \epsilon} \frac{1}{(w - 1)^{x - \rho}} \sum_{q=0}^{x+\rho} \binom{x + \rho}{q} 2^{x+\rho-q}(w - 1)^q \, dw.
\]

This is
\[
[(w - 1)^{x - \rho - 1}] \sum_{q=0}^{x+\rho} \binom{x + \rho}{q} 2^{x+\rho-q}(w - 1)^q = \binom{x + \rho}{x - \rho - 1} 2^{x+\rho - (x - \rho - 1)} = \binom{x + \rho}{x - \rho} 2^{2\rho+1} = \binom{x + \rho}{2\rho + 1} 2^{2\rho+1}.
\]

The second piece is
\[
[(w - 1)^{x - \rho}] \sum_{q=0}^{x+\rho} \binom{x + \rho}{q} 2^{x+\rho-q}(w - 1)^q = \binom{x + \rho}{x - \rho} 2^{x+\rho - (x - \rho)} = \binom{x + \rho}{x - \rho} 2^{2\rho} = \binom{x + \rho}{2\rho} 2^{2\rho}.
\]

Joining the two pieces we finally obtain
\[
\left( 2 \times \frac{x - \rho}{2\rho + 1} + 1 \right) \times \binom{x + \rho}{2\rho} 2^{2\rho}
\]
\[
= \frac{2x + 1}{2\rho + 1} \binom{x + \rho}{2\rho} 2^{2\rho}.
\]

This was [math.stackexchange.com problem 1383343](http://math.stackexchange.com).
20  Exercise 1.3 from Stanley’s Enumerative Combinatorics ($B_2$)

We will do this one using coefficient extractors as in the second half of this document. We seek to verify that

$$\sum_{k=0}^{\min(a,b)} \binom{x + y + k}{k} \binom{x}{b-k} \binom{y}{a-k} = \binom{x + a}{b} \binom{y + b}{a}.$$

where we take $y \geq a$ and $x \geq b$.

Now introduce

$$\binom{x}{b-k} = \binom{x}{x-b+k} = [z^{b-k}] \frac{1}{(1-z)^{x-b+k+1}}$$

and

$$\binom{y}{a-k} = \binom{y}{y-a+k} = [w^{a-k}] \frac{1}{(1-w)^{y-a+k+1}}.$$

We get for the sum

$$[z^b][w^a] \frac{1}{(1-z)^{x-b+1}} \frac{1}{(1-w)^{y-a+1}} \sum_{k=0}^{\min(a,b)} \binom{x + y + k}{k} z^k w^k \frac{1}{(1-z)^k (1-w)^k}.$$

The coefficient extractors provide range control and we may continue with

$$[z^b][w^a] \frac{1}{(1-z)^{x-b+1}} \frac{1}{(1-w)^{y-a+1}} \sum_{k=0}^{\min(a,b)} \binom{x + y + k}{k} z^k w^k \frac{1}{(1-z)^k (1-w)^k}$$

$$= [z^b][w^a] \frac{1}{(1-z)^{x-b+1}} \frac{1}{(1-w)^{y-a+1}} \frac{1}{(1-z w/(1-z)/(1-w))^{x+y+1}}$$

$$= [z^b][w^a] (1-z)^{y+b} (1-w)^{x+a} \frac{1}{(1-z w/(1-z)/(1-w))^{x+y+1}}$$

$$= [z^b][w^a] (1-z)^{y+b} (1-w)^{x+a} \frac{1}{(1-z w/(1-z)/(1-w))^{x+y+1}}$$

$$= [z^b][w^a] \frac{1}{(1-z)^{x-b+1}} \sum_{k=0}^{a} \binom{x + a}{k} (-1)^k \binom{a - k + x + y}{x + y} \frac{1}{(1-z)^{a-k}}$$

$$= \sum_{k=0}^{a} \binom{x + a}{k} (-1)^k \binom{a - k + x + y}{x + y} \frac{1}{(1-z)^{a-b-k+1}}$$

$$= \sum_{k=0}^{a} \binom{x + a}{k} (-1)^k \binom{a - k + x + y}{x + y} \binom{x + a - k}{b}.$$
Now
\[
\binom{x+a}{k} (x+a-k) = \frac{(x+a)!}{k! \times b! \times (x+a-b-k)!} = \binom{x+a}{b} \binom{x+a-b}{k}
\]
so we obtain
\[
\binom{x+a}{b} \sum_{k=0}^{a} \binom{x+a-b}{k} (-1)^k \binom{a-k+x+y}{a-k}
\]
\[
= \binom{x+a}{b} [z^a](1+z)^{a+x+y} \sum_{k=0}^{a} \binom{x+a-b}{k} (-1)^k z^k \frac{1}{(1+z)^k}.
\]
Here the coefficient extractor once more enforces the range and we get
\[
\binom{x+a}{b} [z^a](1+z)^{a+x+y} \sum_{k=0}^{a} \binom{x+a-b}{k} (-1)^k z^k \frac{1}{(1+z)^k}
\]
\[
= \binom{x+a}{b} [z^a](1+z)^{a+x+y} \left(1 - \frac{z}{1+z}\right)^{x+a-b}
\]
\[
= \binom{x+a}{b} [z^a](1+z)^{y+b} = \binom{x+a}{b} \binom{y+b}{a}.
\]
This is the claim.
This was math.stackexchange.com problem 1426447.

21 Counting m-subsets \((B_1 I)\)

Permit me to contribute an algebraic proof.
Suppose we seek to verify that
\[
\sum_{q=0}^{n} \binom{n}{2q} \binom{n-2q}{p-q} 2^{2q} = \binom{2n}{2p}.
\]
Observe that the sum is
\[
\sum_{q=0}^{n} \binom{n}{p-q} \binom{n-p+q}{n-p} 4^q.
\]
which is
\[
\sum_{q=0}^{p} \binom{n}{p-q} \binom{n-p+q}{n-p-q} 4^q = 4^p \sum_{q=0}^{p} \binom{n}{q} \binom{n-q-2p}{n+q-2p} 4^{-q}.
\]
Introduce the Iverson bracket
\[ [[0 \leq q \leq p]] = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^q}{z^{p+1}} \frac{1}{1-z} \, dz. \]

This provides range control so we may extend \( q \) to \( n \).

Introduce furthermore
\[ \frac{n-q}{n+q-2p} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{n-q}}{w^{n+q-2p+1}} \, dw. \]

We thus get for the sum
\[
\frac{4p}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^n}{w^{n-2p+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{p+1}} \frac{1}{1-z} \sum_{q=0}^{n} \binom{n}{q} z^q \frac{1}{w^q(1+w)^q} 4^{-q} \, dz \, dw
\]
\[
= \frac{4p}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^n}{w^{n-2p+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{p+1}} \frac{1}{1-z} \left( 1 + z \frac{1}{4w(1+w)} \right)^n \, dz \, dw
\]
\[
= \frac{4^{p-n}}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n-2p+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{p+1}} \frac{1}{1-z} (4w(1+w) + z)^n \, dz \, dw.
\]

We evaluate the inner integral using the negative of the residue of the pole at \( z = 1 \) which yields
\[
\frac{4^{p-n}}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n-2p+1}} (4w + 4w^2 + 1)^n \, dw
\]
\[
= \frac{4^{p-n}}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n-2p+1}} (2w + 1)^{2n} \, dw
\]
\[
= 4^{p-n} \binom{2n}{2n-2p} 2^{2n-2p} = \binom{2n}{2p}
\]

If we want to be rigorous we need to verify that the contribution from the residue at infinity of the last integral in \( z \) is zero when \( n \geq p \). We get for the residue
\[
-\text{Res}_{z=0} \frac{1}{z^2} \frac{z^{p+1}}{1-1/z} (4w(1+w) + 1/z)^n
\]
\[
= -\text{Res}_{z=0} \frac{1}{z^2} \frac{1}{z-1} (4w(1+w) + 1/z)^n
\]
\[
= -\text{Res}_{z=0} \frac{1}{z^{n-p}} \frac{1}{z-1} (4zw(1+w) + 1)^n.
\]

This is clearly zero when \( n = p \). For \( n > p \) we obtain
\[
\sum_{q=0}^{n-p-1} \binom{n}{q} 4^q w^q (1+w)^q.
\]
This polynomial has degree $2n - 2p - 2$ but the integral in $w$ extracts the coefficient on $2n - 2p$ for a zero contribution.

**Addendum.** We can use the same method to prove the companion identity

$$\sum_{q=0}^{n} \binom{n}{2q+1} \binom{n-2q-1}{p-q} 2^{2q+1} = \binom{2n}{2p+1}.$$ 

The sum is

$$\sum_{q=0}^{n} \binom{n}{p-q} \binom{n-p+q}{n-p-q-1} 2^{2q+1}$$

which is

$$\sum_{q=0}^{p} \binom{n}{p-q} \binom{n-p+q}{n-p-q-1} 2^{2q+1} = 2^{2p+1} \sum_{q=0}^{p} \binom{n}{q} \binom{n-q}{n+q-2p-1} 2^{-2q}.$$ 

Using exactly the same substitution as before we obtain the integral

$$\frac{2^{2p+1-2n}}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n-2p}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{2^{p+1} (1-z)^{n} (4w(1+w) + z)^{n} dz dw.$$ 

This time we get from the residue at the pole $z = 1$

$$2^{2p+1-2n} \binom{n}{2n} \binom{n-p+q}{n-2p-1} 2^{2n-2p} = \binom{2n}{2p+1}.$$ 

For the residue at infinity we are extracting the coefficient on $w^{2n-2p-1}$ but the inner term has degree $2n - 2p - 2$, again for a contribution of zero.

**Addendum II.** We can actually eliminate the Iverson bracket starting from

$$4^{p} \sum_{q=0}^{p} \binom{n}{q} \binom{n-q}{n+q-2p} 4^{-q}.$$ 

and observing that this is

$$4^{p} \sum_{q=0}^{p} \binom{n}{q} \binom{n-q}{2p-2q} 4^{-q}.$$ 

Now introduce

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{2^{p+1} (1+z)^{n} (1+z)^{n} dz.$$ 

This is zero when $q > p$ so it provides the range control, which we have now obtained without the Iverson bracket.

We get for the sum

$$4^{p} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{2^{p+1} (1+z)^{n} \sum_{q=0}^{n} \binom{n}{q} 4^{-q} \frac{z^{2q}}{(1+z)^{q}} dz.$$ 

76
Now put $z = 2w$ to get

$$4^{p} \int_{|z| = \epsilon} \frac{1}{z^{2p+1}} (1 + z)^{n} \left(1 + z + \frac{z^2}{4} \right)^{n} \, dz$$

Now put $z = 2w$ to get

$$4^{p} \int_{|z| = \epsilon} \frac{1}{z^{2p+1}w^{2p+1}} (1 + 2w + w^2)^{n} \, 2dw$$

$$= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{w^{2p+1}} (1 + w)^{2n} \, dw.$$

This is

$$\left(\frac{2n}{2p}\right)$$

as claimed. This was math.stackexchange.com problem 1430202.

\section*{22 Method applied to an iterated sum ($B_1 R$)}

Suppose we seek to show that

$$\sum_{k=0}^{n-1} \left( \sum_{q=0}^{k} \binom{n}{q} \right) \left( \sum_{q=k+1}^{n} \binom{n}{q} \right) = \frac{1}{2^n} \binom{2n}{n}.$$ 

Using the integral representation

$$\binom{n}{q} = \binom{n}{n-q} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n-q+1}} \, dz$$

we get for the first factor

$$\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \sum_{q=0}^{k} z^q \, dz = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \frac{1 - z^{k+1}}{1 - z} \, dz$$

$$= 2^n - \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \frac{z^{k+1}}{1 - z} \, dz$$

and for the second factor

$$\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \frac{z^{k+1} - z^{n+1}}{1 - z} \, dz = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^n}{z^{n+1}} \frac{z^{k+1}}{1 - z} \, dz.$$ 

These add to $2^n$ as they obviously should.

Summing from $k = 0$ to $n-1$ we get a positive and a negative piece. The positive piece is
\[ 2^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^n} \sum_{k=0}^{n-1} \frac{z^k}{1 - z} \, dz = 2^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^n} \frac{1 - z^n}{(1 - z)^2} \, dz = 2^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^n} \frac{1}{1 - z} \, dz. \]

The negative piece is

\[ \frac{1}{2\pi i} \int_{|z_1|=\epsilon} \frac{(1 + z_1)^n}{z_1^n (1 - z_1)} \frac{1}{2\pi i} \int_{|z_2|=\epsilon} \frac{(1 + z_2)^n}{z_2^n (1 - z_2)} \sum_{k=0}^{n-1} z_1^k z_2^k \, dz_2 \, dz_1 = \frac{1}{2\pi i} \int_{|z_1|=\epsilon} \frac{(1 + z_1)^n}{z_1^n (1 - z_1)} \frac{1}{2\pi i} \int_{|z_2|=\epsilon} \frac{(1 + z_2)^n}{z_2^n (1 - z_2)} \frac{1 - z_1^n z_2^n}{1 - z_1 z_2} \, dz_2 \, dz_1 = \frac{1}{2\pi i} \int_{|z_1|=\epsilon} \frac{(1 + z_1)^n}{z_1^n (1 - z_1)} \frac{1}{2\pi i} \int_{|z_2|=\epsilon} \frac{(1 + z_2)^n}{z_2^n (1 - z_2)} \frac{1}{1 - z_1 z_2} \, dz_2 \, dz_1. \]

We evaluate the inner integral by taking the sum of the negatives of the residues of the poles at \( z_2 = 1 \) and \( z_2 = 1/z_1 \) instead of computing the residue of the pole at zero by using the fact that the residues sum to zero.

Re-write the integral as follows.

\[ \frac{1}{2\pi i} \int_{|z_1|=\epsilon} \frac{(1 + z_1)^n}{z_1^n (1 - z_1)} \frac{1}{2\pi i} \int_{|z_2|=\epsilon} \frac{(1 + z_2)^n}{z_2^n (1 - z_2)} \frac{1}{z_1 z_2 - 1} \, dz_2 = \frac{1}{2\pi i} \int_{|z_2|=\epsilon} \frac{(1 + z_2)^n}{z_2^n (z_2 - 1)} \frac{1}{z_2 - 1/z_1} \, dz_2. \]

Now the negative of the residue at \( z_2 = 1 \) is

\[ -\frac{1}{z_1} 2^n \frac{1}{1 - 1/z_1} = 2^n \frac{1}{1 - z_1}. \]

Substituting this into the outer integral we get

\[ 2^n \frac{1}{2\pi i} \int_{|z_1|=\epsilon} \frac{(1 + z_1)^n}{z_1^n (1 - z_1)^2} \, dz_1. \]

We see that this piece precisely cancels the positive piece that we obtained first.

Continuing the negative of the residue at \( z_2 = 1/z_1 \) is

\[ -\frac{1}{z_1} \frac{(1 + 1/z_1)^n}{1/z_1} = -\frac{1}{z_1} \frac{(1 + z_1)^n}{z_1} = -\frac{(1 + z_1)^n}{z_1 (1/z_1 - 1)}. \]
We now substitute this into the outer integral flipping the sign because this was the negative piece to get

\[ \frac{1}{2\pi i} \int_{|z_1| = \epsilon} \frac{(1 + z_1)^{2n}}{z_1^n (1 - z_1)^2} \, dz_1. \]

Extracting the residue at \( z_1 = 0 \) we get

\[ \sum_{q=0}^{n-1} \left( \frac{2n}{n-1-q} \right) (q+1) = \sum_{q=0}^{n-1} \left( \frac{2n}{n+q+1} \right) (q+1) \]

\[ = -n \sum_{q=0}^{n-1} \left( \frac{2n}{n+q+1} \right) + \sum_{q=0}^{n-1} \left( \frac{2n}{n+q+1} \right) (n+q+1) \]

\[ = -n \left( \frac{1}{2}2^{2n} - \frac{1}{2} \left( \frac{2n}{n} \right) \right) + 2n \sum_{q=0}^{n-1} \left( \frac{2n-1}{n+q} \right) \]

\[ = -n \left( \frac{1}{2}2^{2n} - \frac{1}{2} \left( \frac{2n}{n} \right) \right) + 2n \frac{1}{2}2^{2n-1} \]

\[ = \frac{1}{2}n \left( \frac{2n}{n} \right). \]

**Remark.** If we want to do this properly we also need to verify that the residue at infinity of the inner integral is zero. We use the formula for the residue at infinity

\[ \text{Res}_{z=\infty} h(z) = \text{Res}_{z=0} \left[ -\frac{1}{z^2} h \left( \frac{1}{z} \right) \right] \]

which in the present case gives for the inner term in \( z_2 \)

\[ -\text{Res}_{z_2=0} \frac{1}{z_2} \left( \frac{1 + 1/z_2}{z_2} \right)^n \frac{1}{(1 - 1/z_2)(1 - z_1/z_2)} \]

\[ = -\text{Res}_{z_2=0} \frac{1}{z_2^2} \left( \frac{1 + z_2}{z_2} \right)^n \frac{1}{(1 - 1/z_2) \frac{1}{(z_2 - 1)} z_2 - z_1} \]

which is zero by inspection.

This was [math.stackexchange.com problem 889892](https://math.stackexchange.com/questions/889892/).
23 A pair of two double hypergeometrics \((B_1)\)

We seek to show that

\[
(1 - x)^{2k+1} \sum_{n \geq 0} \binom{n+k-1}{k} \binom{n+k}{k} x^n = \sum_{j \geq 0} \binom{k-1}{j-1} \binom{k+1}{j} x^j.
\]

Suppose we start by evaluating the two sums in turn, where the parameter \(k \geq 1\). For the first we will be using the following integral representation:

\[
\binom{n+k}{k} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{n+k}}{z^{k+1}} \, dz.
\]

We seek

\[
\sum_{n \geq 1} \binom{n-1+k}{k} \binom{n+k}{k} x^n.
\]

Using the integral we find

\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \sum_{n \geq 1} \binom{n-1+k}{k} x^n \frac{(1 + z)^{n+k}}{z^{k+1}} \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^k}{z^{k+1}} \sum_{n \geq 1} \binom{n-1+k}{k} (1 + z)^n x^n \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{x(1 + z)^{k+1}}{z^{k+1}} \sum_{n \geq 1} \binom{n-1+k}{k} (1 + z)^{n-1} x^{n-1} \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{x(1 + z)^{k+1}}{z^{k+1}} \frac{1}{(1 - x(1 + z))^{k+1}} \, dz
\]

\[
= \frac{1}{1 - x} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{x(1 + z)^{k+1}}{z^{k+1}} \frac{1}{(1 - xz/(1 - x))^{k+1}} \, dz
\]

\[
= \frac{x}{(1 - x)^{k+1}} \sum_{q=0}^{k} \binom{k+1}{k-q} \binom{q+k}{k} \left( \frac{x}{1-x} \right)^q
\]

\[
= \frac{x}{(1 - x)^{k+1}} \sum_{q=0}^{k} \binom{k+1}{q+1} \binom{q+k}{k} \left( \frac{x}{1-x} \right)^q.
\]

Applying the integral representation from the beginning a second time we obtain for this sum

\[
\frac{x}{(1 - x)^{k+1}} \frac{1}{2\pi i} \int_{|z| = \epsilon} \sum_{q=0}^{k} \binom{k+1}{q+1} \frac{(1 + z)^{q+k}}{z^{k+1}} \left( \frac{x}{1-x} \right)^q \, dz
\]

80
We have $k + 1 - (k - 1) = 2$, so the first component inside the parentheses drops out, leaving

$$\frac{1}{(1 - x)^{k+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{k-1}}{z^{k+1}} \left(1 + (1 + z) \frac{x}{1 - x}\right)^{k+1} dz$$

We need one more simplification on this and put $z = 1/w$, getting

$$\frac{1}{(1 - x)^{k+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1 + 1/w}{w^{k+1}} \left(1 + x/w\right)^{k+1} \frac{1}{w^2} dw$$

The reason this works is because we are essentially evaluating the residue at infinity and the residues sum to zero. This concludes the evaluation of the first sum. For the second we will be using the following integral representation:

$$\binom{k - 1}{j - 1} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{k-1}}{z^j} \ dz.$$
\[ = \frac{1}{2\pi i} \int_{|z| = \epsilon} (1 + z)^{k-1} \sum_{j \geq 1} \binom{k+1}{j} \frac{x^j}{z^j} \, dz \]

\[ = \frac{1}{2\pi i} \int_{|z| = \epsilon} (1 + z)^{k-1} (-1 + (1 + x/z)^{k+1}) \, dz. \]

The entire component drops out, leaving

\[ \frac{1}{2\pi i} \int_{|z| = \epsilon} (1 + z)^{k-1} (1 + x/z)^{k+1} \, dz \]

\[ = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{k-1}}{z^{k+1}} (z + x)^{k+1} \, dz. \]

This however is precisely the integral that we had for the first sum without the factor in front, done.

The only infinite sum appearing here is the first one with convergence when \(|(1 + z)x| < 1\). Therefore choosing \(|x| < 1/Q \) and \(|z| < 1/Q\) with \(Q \geq 2\) we have \(|(Q+1)/Q/Q| = |1/Q^2 + 1/Q| < 1\) and get convergence of the first LHS integral in a neighborhood of zero.

This is math.stackexchange.com problem 869982.

24 A two phase application of the method \((B_1)\)

We seek to show that

\[ \sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k \binom{n+1}{k} \binom{2n-3k}{n} = \sum_{k=\lfloor n/2 \rfloor}^{n} \binom{n+1}{k} \binom{k}{n-k}. \]

Note that the second binomial coefficient in both sums controls the range of the sum, so we can write our claim like this:

\[ \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k \binom{2n-3k}{n-3k} = \sum_{k=0}^{n+1} \binom{n+1}{k} \binom{k}{n-k}. \]

To evaluate the LHS introduce the integral representation

\[ \binom{2n-3k}{n-3k} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{2n-3k}}{z^{n-3k+1}} \, dz. \]

We can check that this really is zero when \(k > \lfloor n/3 \rfloor\).

This gives for the sum the representation

\[ \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{2n}}{z^{n+1}} \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k \binom{z^3}{(1 + z)^3} \, dz \]
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^{n+1}} \left(1 - \frac{z^3}{(1+z)^3}\right)^{n+1} dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{(1+z)^{n+3}} (3z^2 + 3z + 1)^{n+1} dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1} (1+z)^{n+3}} \sum_{q=0}^{n+1} \binom{n+1}{q} 3^q z^q (1+z)^q dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \sum_{q=0}^{n+1} \binom{n+1}{q} 3^q z^q (1+z)^{q-3} dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \sum_{q=0}^{n+1} \binom{n+1}{q} 3^q z^{n+q-1} (1+z)^{n+3-q} dz.
\]

Computing the residue we find
\[
\sum_{q=0}^{n+1} \binom{n+1}{q} 3^q (-1)^{n-q} \binom{n-q+n+2}{n+2-q}
\]
\[
= \sum_{q=0}^{n+1} \binom{n+1}{q} 3^q (-1)^{n-q} \binom{2n-2q+2}{n-q+2}.
\]

Now introduce the integral representation
\[
\binom{2n-2q+2}{n-q+2} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n-2q+2}}{z^{n+q+3}} dz
\]
which gives for the sum the integral
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+2}}{z^{n+3}} \sum_{q=0}^{n+1} \binom{n+1}{q} 3^q (-1)^{n-q} \left(\frac{z}{(1+z)^2}\right)^q dz
\]
\[
= -\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+2}}{z^{n+3}} \left(\frac{3z}{(1+z)^2} - 1\right)^{n+1} dz
\]
\[
= -\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+3}} (-1 + z - z^2)^{n+1} dz.
\]

Put \( w = -z \) which just rotates the small circle to get
\[
\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{(-w)^{n+3}} (-1 - w - w^2)^{n+1} dw
\]
\[
= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+3}} (1 + w + w^2)^{n+1} dw.
\]

83
We get for the final answer
\[ [w^{n+2}] (1 + w + w^2)^{n+1} \]
but we have \(2n - n - 2 = n\) and thus exploiting the symmetry of \(1 + w + w^2\) we get
\[ [w^n] (1 + w + w^2)^{n+1}. \]
To evaluate the RHS introduce the integral representation
\[
\binom{k}{n-k} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^k}{z^{n-k+1}} \, dz.
\]
This gives for the sum the representation
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{n+1}} \sum_{k=0}^{n+1} \binom{n+1}{k} (1+z)^k \, dz
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{n+1}} (1+z(1+z))^{n+1} \, dz.
\]
The answer is
\[ [z^n] (1 + z + z^2)^{n+1}, \]
the same as the LHS, and we are done.
This was math.stackexchange.com problem 664823.

25 An identity from Mathematical Reflections \((B_1)\)

Suppose we seek to evaluate
\[
\sum_{k=0}^{[(m+n)/2]} \binom{n}{k} (-1)^k \binom{m+n-2k}{n-1}.
\]
Observe that in the second binomial coefficient we must have \(m + n - 2k \geq n - 1\) in order to avoid hitting the zero value in the product in the numerator of the binomial coefficient, so the upper limit for the sum is in fact \(m + 1 \geq 2k\) with the sum being
\[
\sum_{k=0}^{[(m+1)/2]} \binom{n}{k} (-1)^k \binom{m+n-2k}{n-1}.
\]
Introduce
\[
\binom{m+n-2k}{n-1} = \binom{m+n-2k}{m+1-2k} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1+z)^{m+n-2k}}{z^{m+2-2k}} \, dz.
\]
84
This integral correctly encodes the range for $k$ being zero when $k$ is larger than $\lfloor (m + 1)/2 \rfloor$. Therefore we may let $k$ go to infinity in the sum and obtain for $n > m$

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{m+n}}{z^{m+2}} \sum_{k \geq 0} \binom{n}{k} (-1)^k \frac{z^{2k}}{(1 + z)^{2k}} \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{m+n}}{z^{m+2}} \left( 1 - \frac{z^2}{(1 + z)^2} \right)^n \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{(1 + z)^{n-m} z^{m+2}} (1 + 2z)^n \, dz.
\]

This produces the closed form

\[
\sum_{q=0}^{m+1} \binom{n}{q} q^q (-1)^{m+1-q} \binom{m+1-q}{n-m-1} = (-1)^{m+1} \sum_{q=0}^{m+1} \binom{n}{q} (-1)^q q^q \binom{n-q}{m+1-q}.
\]

This is

\[
(-1)^{m+1} \sum_{q=0}^{m+1} \binom{n}{q} (-1)^q q^q \binom{n-q}{m+1-q}.
\]

Introduce

\[
\binom{n-q}{m+1-q} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{n-q}}{z^{m+2-q}} \, dz
\]

which once more correctly encodes the range with the pole at $z = 0$ disappearing when $q > m + 1$. Therefore we may extend the range to $n$ to get

\[
\frac{(-1)^{m+1}}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^{m+2}} \sum_{q=0}^{n} \binom{n}{q} (-1)^q q^q \frac{z^q}{(1 + z)^q} \, dz
\]

\[
= \frac{(-1)^{m+1}}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^{m+2}} \left( 1 - \frac{2z}{1 + z} \right)^n \, dz
\]

\[
= \frac{(-1)^{m+1}}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n (1 - z)^n}{z^{m+2}} \, dz
\]

\[
= \frac{(-1)^{m+1}}{2\pi i} \int_{|z|=\epsilon} \frac{(1 - z)^n}{z^{m+2}} \, dz
\]

\[
= (-1)^{m+1} \binom{n}{m+1} (-1)^{m+1} = \binom{n}{m+1}.
\]

This was [math.stackexchange.com problem 390321](https://math.stackexchange.com/questions/390321).
A triple Fibonacci-binomial coefficient convolution \((B_1)\)

Here is a proof using complex variables. We seek to show that

\[
\sum_{k=0}^{n} \binom{n+k}{k} F_{k+1} = \sum_{k=0}^{n} \binom{n+k}{k} (-1)^{n-k} F_{2k+1}.
\]

Start from

\[
\binom{n+k}{k} = \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{z^{k+1}} (1+z)^{n+k} \, dz.
\]

This yields the following expression for the sum on the LHS

\[
\frac{1}{2\pi i} \int_{|z|=1} \sum_{k=0}^{n} \binom{n+k}{k} \frac{1}{z^{k+1}} (1+z)^{n+k} \frac{\varphi^{k+1} - (-1/\varphi)^{k+1}}{\sqrt{5}} \, dz
\]

This simplifies to

\[
\frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|z|=1} \frac{(1+z)^n}{z} \sum_{k=0}^{n} \binom{n}{k} \left( \varphi \left( \frac{1+z}{z} \right)^k + \frac{1}{\varphi} \left( 1 - \frac{1+1+z}{z} \right)^k \right) \, dz
\]

This finally yields

\[
\frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|z|=1} \frac{(1+z)^n}{z} \left( \varphi \left( 1 + \frac{1+z}{z} \right)^n + \frac{1}{\varphi} \left( 1 - \frac{1+1+z}{z} \right)^n \right) \, dz
\]

or

\[
\frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|z|=1} \frac{(1+z)^n}{z^{n+1}} \left( \varphi (z+\varphi(1+z))^n + \frac{1}{\varphi} (z - \varphi(1+z))^n \right) \, dz
\]

Continuing we have the following expression for the sum on the RHS

\[
\frac{1}{2\pi i} \int_{|z|=1} \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} \frac{1}{z^{k+1}} (1+z)^{n+k} \frac{\varphi^{2k+1} - (-1/\varphi)^{2k+1}}{\sqrt{5}} \, dz
\]

This simplifies to

\[
\frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|z|=1} \frac{(1+z)^n}{z} \times \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} \left( \varphi \left( \varphi^2 \frac{1+z}{z} \right)^k + \frac{1}{\varphi} \left( \frac{1+1+z}{z} \right)^k \right) \, dz
\]

This finally yields

\[
\frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|z|=1} \frac{(1+z)^n}{z} \left( \varphi \left( -1 + \varphi^2 \frac{1+z}{z} \right)^n + \frac{1}{\varphi} \left( -1 + \frac{1+1+z}{z} \right)^n \right) \, dz
\]
or
\[ \frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|z|=1} \frac{(1+z)^n}{z^{n+1}} \left( \varphi (-z + \varphi^2 (1+z))^n + \frac{1}{\varphi} \left(-z + \frac{1}{\varphi^2} (1+z)\right)^n \right) \, dz \]

Apply the substitution \( z = 1/w \) to this integral to obtain (the sign to correct the reverse orientation of the circle is canceled by the minus on the derivative)
\[ \frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|w|=1} \left(\frac{1}{1+w}\right)^n w^{n+1} \times \left( \varphi \left(-\frac{1}{w} + \varphi^2 \left(1 + \frac{1}{w}\right)\right)^n + \frac{1}{\varphi} \left(-\frac{1}{w} + \frac{1}{\varphi^2} \left(1 + \frac{1}{w}\right)\right)^n \right) \frac{1}{w^2} \, dw \]
which is
\[ \frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|w|=1} \left(\frac{1}{1+w}\right)^n \frac{1}{w} \times \left( \varphi \left(-1 + \varphi^2 (w+1)\right)^n + \frac{1}{\varphi} \left(-1 + \frac{1}{\varphi^2} (w+1)\right)^n \right) \, dw \]
which finally yields
\[ \frac{1}{\sqrt{5}} \frac{1}{2\pi i} \int_{|w|=1} \frac{(1+w)^n}{w^{n+1}} \times \left( \varphi \left(-1 + \varphi^2 (w+1)\right)^n + \frac{1}{\varphi} \left(-1 + \frac{1}{\varphi^2} (w+1)\right)^n \right) \, dw \]

This shows that the LHS is the same as the RHS because
\[-1 + \varphi^2 (w+1) = -1 + (1 + \varphi) (w+1) = w + \varphi (w+1)\]
and
\[-1 + \frac{1}{\varphi^2} (w+1) = -1 + (1 - \frac{1}{\varphi}) (w+1)\
= -1 + (w+1) - \frac{1}{\varphi} (w+1) = w - \frac{1}{\varphi} (w+1).\]

This is math.stackexchange.com problem 53830.

27 Fibonacci numbers and the residue at infinity \((B_2 R)\)

Suppose we seek to evaluate in terms of Fibonacci numbers
\[ \sum_{p,q \geq 0} \binom{n-p}{q} \binom{n-q}{p}. \]
We use the integrals
\[
\left(\frac{n-p}{q}\right) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{(1-z)^{q+1}z^{n-p-q+1}} \, dz
\]
and
\[
\left(\frac{n-q}{p}\right) = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{(1-w)^{p+1}w^{n-p-q+1}} \, dw.
\]
These correctly control the range so we may let \(p\) and \(q\) go to infinity to get for the sum
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{(1-z)z^{n+1}} \frac{1}{(1-w)w^{n+1}} \sum_{p,q\geq 0} \frac{z^{p+q}w^{p+q}}{(1-w)^p(1-z)^q} \, dw \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{(1-z)z^{n+1}} \frac{1}{(1-w)w^{n+1}} \frac{1}{1-zw/(1-w)} \, dw \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}} \frac{1}{1-w-zw} \, dw \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+2}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+2}} \frac{1}{w(1+z)w^{n+1} \left(1/(1+z) - (1-z)/z\right)} \, dw \, dz.
\]
We evaluate the inner integral using the fact that the residues of the function in \(w\) sum to zero. We have two simple poles. We get for the first pole at \(w = (1-z)/z\)
\[
\frac{z^{n+1}}{(1-z)z^{n+1}} \frac{1}{(1-z)/(1+z) - 1/(1+z)} = \frac{z^{n+1}}{(1-z)^{n+1}} \frac{z(1+z)}{(1-z)(1+z) - z}
\]
\[
= \frac{z^{n+2}}{(1-z)^{n+1}} \frac{1+z}{(1-z)(1+z) - z}.
\]
Substituting this expression into the outer integral we see that the pole at \(z = 0\) is canceled making for a contribution of zero.
For the second pole at \(w = 1/(1+z)\) we get
\[
\frac{1}{(1+z)^{n+1}} \frac{1}{1/(1+z) - (1-z)/z} = (1+z)^{n+1} \frac{z(1+z)}{z - (1-z)(1+z)}.
\]
This yields the contribution (taking into account the sign flip from the sum of residues)
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+2}(1+z)} (1+z)^{n+1} \frac{z(1+z)}{1-z-z^2} \, dz.
\]
\[ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{1 - z - z^2} \, dz. \]

We evaluate this using again the fact that the residues sum to zero. There are simple poles at \( z = -\varphi \) and \( z = 1/\varphi \).

These yield

\[
\left( \frac{1}{-\varphi} \right)^{n+1} \frac{1}{-1 + 2\varphi} + \left( \frac{1}{\varphi} \right)^{n+1} \frac{1}{-1 - 2/\varphi} = \frac{1}{\sqrt{5}} \varphi^{2n+2} - \frac{1}{\sqrt{5}} \varphi^{2n+2}.
\]

Taking into account the sign flip this is obviously Binet / de Moivre for \( F_{2n+2} \).

**Remark.** If we want to do this properly we also need to verify that the residue at infinity in both cases is zero. For example in the first application we use the formula for the residue at infinity

\[
\text{Res}_{z=\infty} h(z) = \text{Res}_{z=0} \left[ -\frac{1}{z^2} h \left( \frac{1}{z} \right) \right]
\]

which in the present case gives for the inner term in \( w \)

\[
-\text{Res}_{w=0} \frac{1}{w^2} w^{n+1} \frac{1}{1/w - 1/(1 + z)} \frac{1}{1/w - (1 - z)/z} = -\text{Res}_{w=0} w^{n+1} \frac{1}{1 - w/(1 + z)} \frac{1}{1 - w(1 - z)/z}
\]

which is zero by inspection.

This was [math.stackexchange.com problem 801730](https://math.stackexchange.com/question/801730).

### 28 Permutations containing a given subsequence \((B_1I)\)

The WZ machinery is very powerful but it is also an incentive to evaluate these sums manually e.g. by using the Egorychev method which I hope will make for a rewarding read.

Suppose as before that we are trying to evaluate

\[ S = \sum_{r=0}^{n} \binom{r + n - 1}{n-1} \binom{3n - r}{n} \]

which is

\[ S_2 - S_1 = \sum_{r=0}^{2n} \binom{r + n - 1}{n-1} \binom{3n - r}{n} - \sum_{r=n+1}^{2n} \binom{r + n - 1}{n-1} \binom{3n - r}{n}. \]
Start by evaluating $S_2$.

Put
\[
\binom{3n-r}{n} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n-r+1}} \frac{1}{(1-w)^{n+1}} \, dw.
\]

and use the following Iverson bracket
\[
[[0 \leq r \leq 2n]] = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^r}{z^{2n+1}} \frac{1}{1-z} \, dz.
\]

This second integral controls the range so that we may extend the sum to infinity to get
\[
\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n+1}} \frac{1}{(1-w)^{n+1}} \int_{|z|=\epsilon} \frac{1}{z^{2n+1}} \frac{1}{1-z} \sum_{r=0}^{\infty} \binom{r+n-1}{n-1} z^r w^r \, dz \, dw.
\]

This simplifies to
\[
\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n+1}} \frac{1}{(1-w)^{n+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2n+1}} \frac{1}{1-z} \frac{1}{1-(1-wz)^n} \, dz \, dw.
\]

We evaluate the inner integral using the fact that the residues at the three poles sum to zero. The residue at $z = 0$ is the sum $S_2$ which we are trying to compute. The residue at $z = 1$ yields
\[
-\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n+1}} \frac{1}{(1-w)^{n+1}} \, dw = -\binom{2n+2n}{2n} = -\binom{4n}{2n}.
\]

For the residue at $z = 1/w$ re-write the integral as follows:
\[
\frac{(-1)^n}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{2n+1}} \frac{1}{(1-w)^{n+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2n+1}} \frac{1}{1-z} \frac{1}{1-(1-1/w)^n} \, dz \, dw.
\]

We require a derivative which we compute using Leibniz’ rule:
\[
\frac{1}{(n-1)!} \left( \frac{1}{z^{2n+1}} \frac{1}{1-z} \right)^{(n-1)} = \frac{1}{(n-1)!} \sum_{q=0}^{n-1} \binom{n-1}{q} (-1)^q \frac{(2n+q)!}{(2n)!} \frac{(n-1-q)!}{z^{2n+1+q} (1-z)^{1+n-1-q}}
\]
\[
= \sum_{q=0}^{n-1} \binom{2n+q}{2n} (-1)^q \frac{1}{z^{2n+1+q} (1-z)^{n-q}}.
\]

Evaluate at $z = 1/w$ to get
\[
\sum_{q=0}^{n-1} \binom{2n+q}{2n} (-1)^q w^{2n+1+q} \frac{w^{n-q}}{(w-1)^{n-q}}.
\]
Substitute this back into the integral in $w$ to obtain

$$\sum_{q=0}^{n-1} \binom{2n + q}{2n} (-1)^q \frac{(-1)^n}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{3n+1}} \frac{1}{(1-w)^{n+1}} \frac{w^{3n+1}}{(w-1)^{n-q}} \, dw$$

$$= \sum_{q=0}^{n-1} \binom{2n + q}{2n} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{(1-w)^{2n-q+1}} \, dw = 0.$$  

We have shown that $S_2 = \binom{4n}{2n}$. 

Continuing with $S_1$ we see that

$$S_1 = \sum_{r=0}^{n-1} \binom{r + 2n}{n - 1} \binom{2n - 1 - r}{n} = \sum_{r=0}^{n-1} \binom{r + 2n}{n - 1} \binom{2n - 1 - r}{n}.$$  

For this sum no Iverson bracket is needed as the second binomial coefficient controls the range via the following integral:

$$\binom{2n - 1 - r}{n - 1 - r} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{2n-1-r}}{w^{n-r}} \, dw.$$  

Furthermore introduce

$$\binom{r + 2n}{n - 1} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{r+2n}}{z^n} \, dz.$$  

This gives the integral

$$\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{2n-1}}{w^n} \, dw \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^n} \sum_{r \geq 0} \frac{w^r(1+z)^r}{(1+w)^r} \, dz \, dw$$

$$= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{2n-1}}{w^n} \, dw \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^n} \frac{1}{1-w(1+z)/(1+w)} \, dz \, dw$$

$$= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{2n}}{w^n} \, dw \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^n} \frac{1}{1+w-w(1+z)} \, dz \, dw$$

$$= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{2n}}{w^n} \, dw \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^n} \frac{1}{1-wz} \, dz \, dw.$$  

Extracting the inner residue we obtain

$$\sum_{q=0}^{n-1} \binom{2n}{n-1-q} w^q.$$  

91
which yields
\[ \sum_{q=0}^{n-1} \left( \frac{2n}{n - 1 - q} \right) \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{2n}}{w^{n-q}} \, dw \]
\[ = \sum_{q=0}^{n-1} \left( \frac{2n}{n - 1 - q} \right) \left( \frac{2n}{n - 1 - q} \right). \]
This is
\[ \sum_{q=0}^{n-1} \left( \frac{2n}{q} \right)^2 \]
which may be evaluated by inspection as in the first version and we are done.

**Remark.** To be fully rigorous we must also show that the residue at infinity of
\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2n+1}} \frac{1}{1 - z} \frac{1}{(1 - wz)^n} \, dz \]
is zero. Recall the formula for the residue at infinity
\[ \text{Res}_{z=\infty} h(z) = \text{Res}_{z=0} \left[ -\frac{1}{z^2} h \left( \frac{1}{z} \right) \right] \]
which in this case yields
\[ -\text{Res}_{z=0} \frac{1}{z^2} z^{2n+1} \left( \frac{1}{1 - z} \frac{1}{(1 - wz)^n} \right) \]
\[ = -\text{Res}_{z=0} z^{2n} \left( \frac{1}{1 - z} \frac{1}{(1 - wz)^n} \right) \]
\[ = -\text{Res}_{z=0} z^{3n} \left( \frac{1}{1 - z} \frac{1}{(z - w)^n} \right) \]
which is zero by inspection.

This is [math.stackexchange.com problem 1255356](https://math.stackexchange.com/questions/1255356).

### 29 An example of Lagrange inversion \((B_1)\)

We seek to use Lagrange Inversion to show that
\[ s(x, y) = \frac{1}{2} \left( 1 - x - y - \sqrt{1 - 2x - 2y - 2xy + x^2 + y^2} \right) \]
has the series expansion
\[ \sum_{p, q \geq 1} \frac{1}{p^p q^q} \binom{p + q - 1}{p} \binom{p + q - 1}{q} x^p y^q. \]

On squaring we obtain
\[4s(x, y)^2 = (1 - x - y)^2 + 1 - 2x - 2y - 2xy + x^2 + y^2
= -2(1 - x - y)(1 - x - y - 2s(x, y))
= 2(1 - x - y)^2 - 4xy - 2(1 - x - y)(1 - x - y - 2s(x, y))
= -4xy + 4(1 - x - y)s(x, y).\]

We finally get
\[s(x, y)^2 = -xy + (1 - x - y)s(x, y).\]

This implies
\[x = \frac{s(x, y)(1 - y - s(x, y))}{y + s(x, y)}.\]

We get with \(p \geq 1\)
\[\lfloor x^p \rfloor s(x, y) = \frac{1}{p} [x^{p-1}] \frac{d}{dx} s(x, y) = \frac{1}{p} \frac{1}{2\pi i} \int_{|x|=\varepsilon} \frac{1}{x^p} \frac{d}{dx} s(x, y) \, dx.\]

Now put \(s(x, y) = u\) so that \(\frac{d}{dx} s(x, y) \, dx = du\) and \(x = 0\) maps to \(u = 0\) to get
\[\frac{1}{p} \frac{1}{2\pi i} \int_{|u|=\gamma} \frac{(y+u)^p}{u^p(1 - y - u)^p} \, du\]
\[= \frac{1}{p} \frac{1}{(1 - y)^p} \frac{1}{2\pi i} \int_{|u|=\gamma} \frac{(y+u)^p}{u^p(1 - u/(1 - y))} \, du.\]

This is
\[\frac{1}{p} \frac{1}{(1 - y)^p} \sum_{r=0}^{p-1} \binom{p}{r} y^{p-r} \left(\frac{2p - 2 - r}{p - 1}\right) \frac{1}{(1 - y)^{p-1-r}}.\]

Extracting the coefficient on \([y^q]\) where we see that \(q \geq 1\):
\[\frac{1}{p} \sum_{r=0}^{p-1} \binom{p}{r} [y^q] y^{p-r} \left(\frac{2p - 2 - r}{p - 1}\right) \frac{1}{(1 - y)^{2p-1-r}}\]
\[= \frac{1}{p} \sum_{r=0}^{p-1} \binom{p}{r} \left(\frac{2p - 2 - r}{p - 1}\right) \left(\frac{q + p - 2}{2p - 2 - r}\right).\]

Next observe that
\[\left(\frac{2p - 2 - r}{p - 1}\right) \left(\frac{q + p - 2}{2p - 2 - r}\right) = \frac{(q + p - 2)!}{(p - 1)! \times (p - 1 - r)! \times (q + r - p)!}.\]
\[ = \binom{p+q-2}{p-1} \binom{q-1}{p-1-r}. \]

We get for our sum
\[
\begin{align*}
\frac{1}{p} \left( \frac{p+q-2}{p-1} \right) & \sum_{r=0}^{p-1} \binom{p}{r} \binom{q-1}{p-1-r} \\
= \frac{1}{p} \left( \frac{p+q-2}{p-1} \right) [z^{p-1}] (1+z)^{q-1} & \sum_{r=0}^{p-1} \binom{p}{r} z^r.
\end{align*}
\]

The term in \( r = p \) does not pass the coefficient extractor and we may raise \( r \) to \( p \):
\[
\frac{1}{p} \left( \frac{p+q-2}{p-1} \right) [z^{p-1}] (1+z)^{q+p-1} = \frac{1}{p} \left( \frac{p+q-2}{p-1} \right) \left( \frac{p+q-1}{p-1} \right).
\]

This was Vandermonde. Some binomial coefficient algebra now yields
\[
\frac{1}{p+q-1} \left( \frac{p+q-1}{p} \right) \left( \frac{p+q-1}{q} \right)
\]
as claimed.

**Remark.** For the contour of the integral in \( u \) to make a single turn the coefficient on \( x \) must be non-zero. We differentiate the functional equation with respect to \( x \) to get
\[
2s(x, y)s'(x, y) = -y - s(x, y) + (1 - x - y)s'(x, y)
\]
Together with the fact that we choose the branch with \( s(0, y) = s(x, 0) = 0 \) this yields \( s'(0, y) = y/(1-y) \) as required.

### 30 A binomial coefficient - Catalan number convolution \((B_1)\)

Suppose we seek to show that
\[
\sum_{r=1}^{n+1} \frac{1}{r+1} \binom{2r}{r} \binom{m+n-2r}{n+1-r} = \binom{m+n}{n}.
\]

We will assume familiarity with the generating function of the Catalan numbers (which seems like a reasonable assumption). This generating function is given by
\[
\sum_{r \geq 0} \frac{1}{r+1} \binom{2r}{r} z^r = \frac{1 - \sqrt{1 - 4z}}{2z}
\]
so that

$$\frac{1}{r + 1} \left( \frac{2r}{r} \right) = \frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{1}{z^{r+1}} \frac{1 - \sqrt{1 - 4z}}{2z} \, dz.$$

Note in particular that this generating function is analytic in a neighborhood of the origin $|z| < 1/4$ with the branch cut $[1/4, \infty)$. Furthermore introduce

$$\left( m + n - 2r \right) = \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n-2r}}{w^{n+2-r}} \, dw.$$

Observe carefully that this last integral is zero when $r > n + 1$, so we may extend the range of the sum to infinity.

This yields for the sum

$$\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n}}{w^{n+2}} \frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{1}{z} \frac{1 - \sqrt{1 - 4z}}{2z} \sum_{r \geq 1} \frac{w^r}{(1 + w)^{2r} z^r} \, dz \, dw$$

$$= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n}}{w^{n+2}} \frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{1 - \sqrt{1 - 4z}}{2z^2} \frac{w/(1 + w)^2/z}{1 - w/(1 + w)^2/z} \, dz \, dw$$

$$= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n}}{w^{n+2}} \frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{1 - \sqrt{1 - 4z}}{2z^2} \frac{1}{z(1 + w)^2/w - 1} \, dz \, dw.$$

Observe that with the principal branch of the logarithm

$$1 - \sqrt{1 - 4z} = 2z + 2z^2 + 4z^3 + \ldots$$

and

$$\frac{1}{z(1 + w)^2/w - 1} = -1 - \frac{z}{w}(1 + w)^4 - z^2 \frac{(1 + w)^4}{w^2} - \ldots,$$

so that the contribution from the pole at $z = 0$ is

$$\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n}}{w^{n+2}} \frac{1}{2} \times (-2) \, dw = -\left( \frac{m+n}{n+1} \right).$$

On the other hand the contribution from the simple pole at $z = w/(1 + w)^2$ which is inside the contour is

$$\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n}}{w^{n+2}} \frac{1 - \sqrt{1 - 4w/(1 + w)^2}}{2w^2/(1 + w)^4} \frac{w}{(1 + w)^2} \, dw$$

$$= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n-2}}{w^{n+1}} \frac{(1 + w)^4 - (1 + w)^3 \sqrt{(1 + w)^2 - 4w}}{2w^2} \, dw$$

$$= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n-2}}{2w^{n+3}} \left( (1 + w)^4 - (1 - w)(1 + w)^2 \right) \, dw.$$
\[
\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n-2}}{2w^{n+3}} (1 + w)^3 \times (2w) \, dw
= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n+1}}{w^{n+2}} \, dw.
\]

which yields
\[
\binom{m + n + 1}{n + 1}.
\]

Collecting the two contributions we obtain
\[
\binom{m + n + 1}{n + 1} - \binom{m + n}{n + 1} = \left( \frac{m + n + 1}{n + 1} - \frac{m}{n + 1} \right) \binom{m + n}{n}
= \binom{m + n}{n}
\]
as claimed.

**Addendum.** In fact the above admits considerable simplification. Write
\[
-\binom{m + n}{n + 1} + \sum_{r=0}^{n+1} \frac{1}{r + 1} \binom{2r}{r} \binom{m + n - 2r}{n + 1 - r}
\]
and use the same integral as before for the binomial coefficient to obtain
\[
\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n}}{w^{n+2}} \sum_{r \geq 0} \frac{1}{r + 1} \binom{2r}{r} \frac{w^r}{(1 + w)^{2r}} \, dw
\]
which becomes
\[
\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n}}{w^{n+2}} \frac{1 - \sqrt{1 - 4w/(1 + w)^2}}{2w/(1 + w)^2} \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n}}{w^{n+2}} \frac{1 + w - \sqrt{(1 + w)^2 - 4w}}{2w/(1 + w)} \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n+1}}{w^{n+3}} \left( 1 + w - \sqrt{(1 - w)^2} \right) \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n+1}}{w^{n+2}} \times (2w) \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{(1 + w)^{m+n+1}}{w^{n+2}} \, dw
\]
\[
= \binom{m + n + 1}{n + 1}.
\]

We may then conclude as before.
Addendum, Feb 2021. For the first version to be complete we need the conditions on $\varepsilon$ and $\gamma$ for the geometric series to converge. This requires $|w/(1 + w)^2| < |z|$. Note that if this holds then the pole at $z = w/(1 + w)^2$ is guaranteed to be inside the contour in $|z|$ as claimed. We take $\gamma < 1$ positive somewhere close to zero and we then require $\gamma/(1 - \gamma) < \varepsilon < 1/4$ where the last term is from the Catalan GF. The values $\gamma = 1/7$ and $\varepsilon = 1/5$ will work. This also ensures convergence of the Catalan GF series in the compact version. This was math.stackexchange.com problem 563307.

31 A new obstacle from Concrete Mathematics (Catalan numbers) ($B_1$)

Suppose we seek to evaluate

$$\sum_{k \geq 0} \binom{n + k}{m + 2k} \frac{(-1)^k}{k + 1}$$

where $m, n \geq 0$. In fact we may assume that $n \geq m$ because if $m > n$ when counting down from the non-negative value $n + k$ with $m + 2k$ terms we invariably hit zero and the sum vanishes.

Furthermore observe that when $k = n - m + q$ with $q > 0$ we obtain $(2n - m + q)$ which is zero by the same argument.

This gives

$$\sum_{k=0}^{n-m} \binom{n + k}{n - m - k} \frac{(-1)^k}{k + 1}$$

Introduce

$$\left( \frac{n + k}{n - m - k} \right) = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{n-m-k+1}} (1 + z)^{n+k} \, dz.$$

Observe that this is zero when $k > n - m$ so we may extend $k$ to infinity to get for the sum

$$\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{n-m+1}} (1 + z)^n \sum_{k \geq 0} \frac{2k}{k} \binom{-1}{k} (1 + z)^k \, dz.$$

Here we recognize the generating function of the Catalan numbers

$$\sum_{k \geq 0} \binom{2k}{k} \frac{1}{k + 1} w^k = \frac{1 - \sqrt{1 - 4w}}{2w}$$

where the branch cut of the logarithm is on the negative real axis and hence the branch cut of the square root term is $[1/4, \infty)$ so we certainly have analyticity in a neighborhood of zero. We obtain
\[-\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-m+1}} (1 + z)^n \frac{1 - \sqrt{1 + 4z(1 + z)}}{2z(1 + z)} \, dz \]

\[-\frac{1}{2} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-m+2}} (1 + z)^{n-1} \left( 1 - \sqrt{(1 + 2z)^2} \right) \, dz. \]

Now with \( z \) in a neighborhood of zero the square root produces the positive root so we finally have

\[-\frac{1}{2} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-m+2}} (1 + z)^{n-1} (-2z) \, dz \]

\[= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-m+1}} (1 + z)^{n-1} \, dz \]

which evaluates by inspection to \( \binom{n-1}{m-1} \) which is

\[\binom{n-1}{m-1}.\]

Note that for the series to converge we need \( |z(1+z)| < 1/4 \) (radius of convergence is distance to the nearest singularity). Now \( |z(1+z)| \leq \epsilon(1 + \epsilon) \).

With \( \epsilon \ll 1 \) this is less than \( 2\epsilon \). Therefore \( \epsilon = 1/8 \) will work.

This problem has not yet appeared at math.stackexchange.com.

32 Abel-Aigner identity from Table 202 of Concrete Mathematics \((B_1)\)

Seeking to prove that

\[\sum_k \binom{tk+r}{k} \binom{tn-tk+s}{n-k} \frac{r}{tk+r} = \binom{tn+r+s}{n}\]

we see that our identity is in fact

\[\sum_{k=0}^n \binom{tk+r}{k} \binom{tn-tk+s}{n-k} - \sum_{k=0}^n \binom{tk+r}{k} \binom{tn-tk+s}{n-k} \frac{tk}{tk+r} \]

\[= \binom{tn+r+s}{n}.\]

With integers \( t, r, s \geq 1 \) and starting with the first sum we introduce

\[\binom{tk+r}{k} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{k+1}} (1 + w)^{tk+r} \, dw\]

and
\[
(tn - tk + s) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-k+1}} (1 + z)^{tn - tk + s} \, dz.
\]

This last integral vanishes when \( k > n \) so we may extend the sum to infinity, getting

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{tn + s}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^r}{w} \sum_{k \geq 0} z^k (1 + z)^{-tk} z^{tk} (1 + w)^{tk} \, dw \, dz.
\]

Now with \( \epsilon \) and \( \gamma \) small in a neighborhood of the origin we get that for this to converge we must have \( \epsilon/(1 - \epsilon)^t < \gamma/(1 + \gamma)^t \). We shall see that we may solve this with an additional constraint, namely that \( \gamma > \epsilon \). Doing the summation we find

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{tn + s}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^r}{w} \sum_{k \geq 0} z^k (1 + z)^{-tk} z^{tk} (1 + w)^{tk} \, dw \, dz = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{tn + s}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^r}{w} \frac{1}{1 - z(1 + w)^t/(1 + z)^t} \, dw \, dz.
\]

The pole at \( w = 0 \) has been canceled. There is a pole at \( w = z \) however and with the chosen parameters it is inside the contour. We get for the residue

\[
(1 + w)^r \left. \frac{1}{1 - tz(1 + w)^{t-1}/(1 + z)^t} \right|_{w=z} = (1 + z)^r \frac{1}{1 - tz/(1 + z)}
\]

The derivative would have vanished if the pole had not been simple. Substituting into the outer integral we get

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{tn + r + s + 1}}{z^{n+1}} \frac{1}{1 - (t - 1)z} \, dz.
\]

Continuing with the second sum we obtain

\[
\sum_{k=0}^{n} (tk + r) \binom{tn - tk + s}{k} \frac{tk}{tk + r} = t \sum_{k=1}^{n} \binom{tk + r - 1}{k - 1} \binom{tn - tk + s}{n - k}
\]

\[
= t \sum_{k=0}^{n-1} \binom{tk + t + r - 1}{k} \binom{tk + t + r - 1 - tk + s}{n - 1 - k}.
\]

We can recycle the earlier computation and find

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{tn + r + s + 1}}{z^n} \frac{t}{1 - (t - 1)z} \, dz
\]

99
Subtracting the two the result is

\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{n+r+s}}{z^{n+1}} \frac{tz}{1 - (t - 1)z} \, dz = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{n+r+s}}{z^{n+1}} \, dz.
\]

This evaluates to

\[
\binom{tn + r + s}{n}
\]

by inspection and we have proved the theorem.

To show that the pole at \( w = z \) is the only one inside the contour apply Rouche’s theorem to

\[ h(w) = w(1 + z)^t - z(1 + w)^t \]

with \( f(w) = w(1 + z)^t \) and \( g(w) = z(1 + w)^t \). We need \(|g(w)| < |f(w)|\) on \(|w| = \gamma\) and since \( f(w) \) has only one root there so does \( h(w) \), which must be \( w = z \). We thus require

\[ |g(w)| \leq |z|(1 + \gamma)^t < \gamma|1 + z|^t = |f(w)|. \]

Now \( \gamma/(1 + \gamma)^t \) starts at zero and is increasing since \((1 + \gamma - \gamma t)/(1 + \gamma)^{t+1}\) is positive for \( \gamma < 1/(t - 1) \) with a local maximum there. Since \(|z|/(1 + z)^t \leq \epsilon/(1 + \epsilon)^t\) we may choose \( \epsilon \) for this to take on a value from the range of \( \gamma/(1 + \gamma)^t \) on \([0, 1/(t - 1)]\). Instantiating \( \gamma \) to the right of this point yields a value \( \gamma \) that fulfills the requirements of the theorem. Here we have used that \( \epsilon/(1 + \epsilon)^t < \epsilon/(1 - \epsilon)^t < \gamma/(1 + \gamma)^t \) by construction. No need for Rouche when \( t = 1 \).

This was math.stackexchange.com problem 2814898.

33 Reducing the form of a double hypergeometric \((B_1)\)

Suppose we seek to evaluate

\[
S(n) = \sum_{q=0}^{n-2} \sum_{k=1}^n \binom{k+q}{k} \binom{2n-q-k-1}{n-k+1},
\]

which we re-write as

\[
-\sum_{q=0}^{n-2} \binom{2n-q-1}{n+1} - \sum_{q=0}^{n-2} \binom{n+1+q}{n+1} + \sum_{q=0}^{n-2} \sum_{k=0}^{n-1} \binom{k+q}{k} \binom{2n-q-k-1}{n-k+1}.
\]

Call these pieces up to sign from left to right \( S_1 \), \( S_2 \) and \( S_3 \).
The two pieces in front cancel the quantities introduced by extending $k$ to include the values zero and $n + 1$.

**Evaluation of $S_1$.**

Introduce
\[
\binom{2n - q - 1}{n + 1} = \binom{2n - q - 1}{n - q - 2} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{2n-q-1}}{z^{n-q-1}} \, dz.
\]

This vanishes when $q > n - 2$ so we may extend the sum to infinity to get
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{2n-1}}{z^{n-1}} \sum_{q \geq 0} \frac{z^q}{(1 + z)^q} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{2n-1}}{z^{n-1}} \frac{1}{1 - z/(1 + z)} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{2n}}{z^{n-1}} \, dz
\]
\[
= \binom{2n}{n - 2}.
\]

**Evaluation of $S_2$.**

Introduce
\[
\binom{n + 1 + q}{n + 1} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{n+1+q}}{z^{n+2}} \, dz.
\]

This yields for the sum
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{n+1}}{z^{n+2}} \sum_{q=0}^{n-2} (1 + z)^q \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{n+1}}{z^{n+2}} \frac{(1 + z)^{n-1} - 1}{1 + z - 1} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{n+1}}{z^{n+3}} ((1 + z)^{n-1} - 1) \, dz
\]
\[
= \binom{2n}{n + 2}.
\]

A more efficient evaluation is to notice that when we re-index $q$ as $n - 2 - q$ in $S_2$ we obtain
\[
\sum_{q=0}^{n-2} \binom{n + 1 + n - 2 - q}{n + 1} = \sum_{q=0}^{n-2} \binom{2n - q - 1}{n + 1}
\]
which is $S_1$.

**Evaluation of $S_3$.**
Introduce
\[
\binom{2n - q - k - 1}{n - k + 1} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n-q-k-1}}{z^{n-k+2}} \, dz.
\]

This effectively controls the range so we can let \(k\) go to infinity to get
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n-1}}{z^{n+2}} \sum_{q=0}^{n-2} \binom{k+q}{q} \frac{z^k}{(1+z)^{q+k}} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n-1}}{z^{n+2}} \sum_{q=0}^{n-2} \frac{1}{(1+z)^q} \frac{1}{(1-z/(1+z))^{q+1}} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} (1+z)^{2n} \frac{1}{z^{n+2}} \times (n-1) \times \, dz
\]
\[
= (n-1) \times \binom{2n}{n+1}.
\]

Finally collecting the three contributions we obtain
\[
(n-1) \times \binom{2n}{n+1} - 2 \binom{2n}{n+2} = (n+2) \binom{2n}{n+2} - 2 \binom{2n}{n+2}
\]
\[
= n \times \binom{2n}{n+2}.
\]

This is math.stackexchange.com problem 129913.

34 Basic usage of the Iverson bracket \((B_1 I)\)

Suppose we seek to evaluate
\[
S(k, l) = \sum_{q=0}^{l} \binom{q+k}{k} \binom{l-q}{k}.
\]

We start with the Iverson bracket valid for \(q \geq 0\)
\[
[[0 \leq q \leq l]] = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^q}{z^{l+1}} \frac{1}{1-z} \, dz
\]

This gives for the sum
\[
\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^l}{w^{k+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l+1}} \frac{1}{1-z} \sum_{q=0}^{l} \binom{q+k}{q} \frac{z^q}{(1+w)^q} \, dw \, dz
\]

102
\[
\begin{align*}
&= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^l}{w^{k+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l+1}} \frac{1}{1 - z} \frac{1}{(1 - z/(1 + w))^{k+1}} \, dw \, dz \\
&= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^{l+k+1}}{w^{k+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l+1}} \frac{1}{1 - z} \frac{(1 + w - z)^{k+1}}{(1 + w - z)^{k+1}} \, dw \, dz.
\end{align*}
\]

We evaluate the inner integral by taking the negative of the sum of the residues at \(z = 1\) and at \(z = 1 + w\) and \(z = \infty\). With \(\epsilon\) and \(\gamma\) small the second pole is not inside the contour.

The negative of the residue at \(z = 1\) is
\[
\frac{1}{w^{k+1}}
\]
which when substituted into the outer integral yields
\[
\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^{l+k+1}}{w^{2k+2}} \, dw = \left( \frac{l + k + 1}{2k + 1} \right),
\]
which is the formula we are trying to establish.

Next we prove that the residue at infinity is zero. This is given by
\[
-\text{Res}_{z=\infty} \frac{1}{z^{l+1}} \frac{1}{1 - 1/z (1 + w - 1/z)^{k+1}} = -\text{Res}_{z=0} \frac{1}{z^l} \frac{1}{z - 1} \frac{z^{k+1}}{(z - z/(1 + w))^{k+1}}
\]
This is zero by inspection, which leaves the residue at \(z = 1 + w\). Write
\[
\frac{(-1)^{k+1}}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^{l+k+1}}{w^{k+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l+1}} \frac{1}{1 - z} \frac{1}{(z - (1 + w))^{k+1}} \, dw \, dz.
\]

We require the derivative
\[
\frac{1}{k!} \left( \frac{1}{z^{l+1}} \frac{1}{1 - z} \right)^{(k)} = \frac{1}{k!} \sum_{q=0}^{k} \begin{pmatrix} k \\ q \end{pmatrix} (-1)^q \frac{(l + q)!}{q!} \frac{1}{z^{l+1+q} (1 - z)^{1+k-q}}
\]
Evaluate this at \(z = 1 + w\) to get
\[
\sum_{q=0}^{k} \begin{pmatrix} l + q \\ q \end{pmatrix} (-1)^q \frac{1}{(1 + w)^{l+1+q}} \frac{1}{(-w)^{1+k-q}}
\]
and substitute into the outer integral to obtain
\[
\frac{(-1)^{k+1}}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^{l+k+1}}{w^{k+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l+1}} \frac{1}{1 - z} \frac{1}{(z - (1 + w))^{k+1}} \, dw.
\]
\[
= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{l+q}}{w^{k+1}} \sum_{q=0}^{k} \binom{l+q}{q} \frac{1}{(1+w)^{l+1+q}} \frac{1}{w^{k+q}} \, dw \\
= \sum_{q=0}^{k} \binom{l+q}{q} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{k-q}}{w^{2k+2-q}} \, dw.
\]

The inner term here is \([w^{2k+1-q}](1+w)^{k-q}\).

But we have \(2k+1-q \geq k+1\) while \(k-q \leq k\) so these terms are zero, thus concluding the proof.

**Simplified solution.** As observed elsewhere this can be done without the Iverson bracket.

Introduce
\[
\binom{l-q}{k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l-q-k+1}} \frac{1}{(1-z)^{k+1}} \, dz.
\]

This controls the range becoming zero when \(q > l-k\) so we may extend \(q\) to infinity.

We obtain for the sum
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l-k+1}} \frac{1}{(1-z)^{k+1}} \sum_{q\geq0} \binom{q+k}{k} z^q \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l-k+1}} \frac{1}{(1-z)^{k+1}} \frac{1}{(1-z)^{k+1}} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{l-k+1}} \frac{1}{(1-z)^{2k+2}} \, dz.
\]

This evaluates by inspection to
\[
\binom{l-k+2k+1}{2k+1} = \binom{l+k+1}{2k+1}.
\]

This was [math.stackexchange.com problem](http://math.stackexchange.com)

### 35 Basic usage of the Iverson bracket II \((B_1 I)\)

Suppose we seek to compute
\[
S(n, m) = \sum_{k=0}^{n} k \binom{m+k}{m+1}.
\]

Introduce
\[
\binom{m+k}{m+1} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{m+2}} (1+z)^{m+k} \, dz
\]
as well as the Iverson bracket
\[
[[0 \leq k \leq n]] = \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{w^k}{w^{n+1}} \frac{1}{1-w} \, dw.
\]
This yields for the sum
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{m+2}} (1+z)^m \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{n+1}} \frac{1}{1-w} \sum_{k \geq 0} kw^k (1+z)^k \, dw \, dz.
\]
For this to converge we must have \(|w(1+z)| < 1\). We get
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{m+2}} (1+z)^m \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{n+1}} \frac{1}{1-w} \frac{w(1+z)}{1-w(1+z)^2} \, dw \, dz = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{m+2}} (1+z)^{m+1} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^n} \frac{1}{1-w} \frac{1}{1-w(1+z)^2} \, dw \, dz.
\]
We evaluate the inner integral using the fact that the residues at the poles sum to zero. The residue at \(w = 1\) produces
\[
-\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{m+2}} (1+z)^{m+1} \frac{1}{(-z)^2} \, dz = -\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{m+4}} (1+z)^{m+1} \, dz = 0.
\]
For the residue at \(w = 1/(1+z)\) we re-write the inner integral to get
\[
\frac{1}{(1+z)^2} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^n} \frac{1}{1-w} \frac{1}{(w-1/(1+z))^2} \, dw.
\]
We thus require
\[
\left( \frac{1}{w^n} \frac{1}{1-w} \right)
\]
\[
\left. \frac{1}{w^n} \frac{1}{1-w} \right|_{w=1/(1+z)} = \frac{-n}{w^{n+1}} \frac{1}{1-w} + \frac{1}{w^n (1-w)^2} \right|_{w=1/(1+z)} = -n(1+z)^{n+1}/z + (1+z)^n(1+z^2)/z^2.
\]
Substituting this into the outer integral and flipping signs we get two pieces which are
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{m+2}} (1+z)^{m-1} n(1+z)^{n+2}/z \, dz
\]
\[ \frac{n}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m+3}} (1+z)^{n+m+1} \, dz = n \times \binom{n+m+1}{m+2}. \]

The second piece is
\[ -\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m+2}} (1+z)^{m-1}(1+z)^{n+2}/z^2 \, dz \]
\[ = -\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m+4}} (1+z)^{n+m+1} \, dz = -\binom{n+m+1}{m+3}. \]

It follows that our answer is
\[ \left(n - \frac{n-1}{m+3}\right) \binom{n+m+1}{m+2} = \frac{nm+2n+1}{m+3} \binom{n+m+1}{m+2}. \]

**Remark.** Being rigorous we also verify that the residue at infinity in the calculation of the inner integral is zero. We get
\[ -\text{Res}_{w=0} \frac{1}{w^2} w^n \frac{1}{1 - 1/w (1 - (1 + z)/w)^2} \]
\[ = -\text{Res}_{w=0} w^{n-2} \frac{w^2}{w - 1 (w - (1 + z))^2} = -\text{Res}_{w=0} w^{n+1} \frac{1}{w - 1 (w - (1 + z))^2}. \]

There is certainly no pole at zero here and the residue is zero as claimed (the term 1 + z rotates in a circle around the point one on the real axis and with \( \epsilon < 1 \) it is never zero). This last result could also be obtained by comparing degrees of numerator and denominator.

This was math.stackexchange.com problem 1836190.

### 36 Use of a double Iverson bracket \((B_1 IR)\)

Suppose we seek to evaluate
\[ Y(n) = \sum_{k=1}^{n} 2^{n-k} \binom{k}{[k/2]}, \]

by considering
\[ Y_1(n) = \sum_{k=0}^{[n/2]} 2^{n-2k} \binom{2k}{k} \quad \text{and} \quad Y_2(n) = \sum_{k=0}^{[(n-1)/2]} 2^{n-2k-1} \binom{2k+1}{k}. \]

We will use the following Iverson bracket:
\[ [0 \leq k \leq n] = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^k}{z^{n+1}} \frac{1}{1 - z} \, dz. \]
Evaluation of $Y_1(n)$. Introduce
\[
\binom{2k}{k} = \frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{k+1}} (1 + w)^{2k} \, dw.
\]

With the Iverson bracket controlling the range we can extend $k$ to infinity to get for the sum
\[
\frac{2^n}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{[n/2]+1}} \frac{1}{1 - z} \sum_{k \geq 0} 2^{-2k} z^k \frac{(1 + w)^{2k}}{w^k} \, dz \, dw.
\]

We can instantiate these contours to get convergence of the series. We thus obtain
\[
\frac{2^n}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{[n/2]+1}} \frac{1}{1 - z} \frac{1}{1 - z (1 + w)^2/4} \, dz \, dw = \frac{2^{n+2}}{2\pi i} \int_{|w| = \epsilon} \frac{1}{(1 + w)^2} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{[n/2]+1}} \frac{1}{z - 1} \frac{1}{z - 4w/(1 + w)^2} \, dz \, dw.
\]

We evaluate the inner piece by computing the negative of the sum of the residues at $z = 1$, $z = 4w/(1 + w)^2$ and $z = \infty$. We get for $z = 1$
\[
\frac{1}{1 - 4w/(1 + w)^2} = \frac{(1 + w)^2}{(1 + w)^2 - 4w} = \frac{(1 + w)^2}{(1 - w)^2}
\]
for a zero contribution.

We get for $z = \infty$
\[
-\text{Res}_{z=0} \frac{1}{z^{[n/2]+1}} \frac{1}{1/z - 1} \frac{1}{z - 4w/(1 + w)^2} = -\text{Res}_{z=0} z^{[n/2]+1} \frac{1}{1 - z} \frac{1}{1 - 4wz/(1 + w)^2}
\]
again for a zero contribution.

Finally for $z = 4w/(1 + w)^2$ we get
\[
-\frac{(1 + w)^2 [n/2]+2}{2^{[n/2]+2} w^{[n/2]+1}} \frac{(1 + w)^2}{(1 - w)^2}.
\]
Substitute into the outer integral to obtain
\[
-\frac{2^n \mod 2}{2\pi i} \int_{|w| = \epsilon} \frac{(1 + w)^2 [n/2]+2}{w^{[n/2]+1}} \frac{1}{(1 - w)^2} \, dw.
\]

Extracting the negative of the residue we get the sum
\[
\frac{2^n \mod 2}{2 \sum_{q=0}^{[n/2]} \binom{2[n/2]+2}{q} ([n/2] - q + 1)}.
\]
This yields

\[ 2^n \mod 2([n/2] + 1) \frac{1}{2} \left( 2^2|n/2| + 2 \right) \left( \frac{2|n/2| + 2}{[n/2] + 1} \right) \]

\[ -2^n \mod 2(2|n/2| + 2) \sum_{q=1}^{[n/2]} \left( \frac{2|n/2| + 1}{q - 1} \right) \]

\[ = 2^n \mod 2([n/2] + 1) \frac{1}{2} \left( 2^2|n/2| + 2 \right) \left( \frac{2|n/2| + 2}{[n/2] + 1} \right) \]

\[ -2^n \mod 2([n/2] + 1) \left( 2^2|n/2| + 2 \right) \left( \frac{2|n/2| + 1}{[n/2]} \right) \]

\[ = 2^n \mod 2([n/2] + 1) \left( 2 - \frac{1}{2} \frac{2|n/2| + 2}{[n/2] + 1} \right) \left( \frac{2|n/2| + 1}{[n/2]} \right) \]

\[ = 2^n \mod 2([n/2] + 1) \left( \frac{2|n/2| + 1}{[n/2]} \right). \]

**Evaluation of** \( Y_2(n) \). This is obviously very similar to the first case. We get the integral

\[ \frac{2^{n+1}}{2\pi i} \int_{|w|=\epsilon} \frac{1}{1 + w} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{((n-1)/2)+1}} \frac{1}{z - 1} \frac{1}{z - 4w/(1+w)^2} \, dz \, dw. \]

There is no contribution from \( z = 1 \) and \( z = \infty \) as before which leaves

\[ -\frac{2^{n+1}}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^2[(n-1)/2]+3}{w^{[(n-1)/2]+1}} \frac{1}{(1 - w)^2} \, dw. \]

Extracting the negative of the residue we obtain

\[ 2^{(n+1)} \mod 2 \left( \sum_{q=0}^{[(n-1)/2]} \left( \frac{2\left( (n-1)/2 \right) + 3}{q} \right) \left( \left( (n-1)/2 \right) - q + 1 \right) \right). \]

This yields

\[ 2^{(n+1)} \mod 2\left( \left( \frac{n - 1}{2} \right) + 1 \right) \times \frac{1}{2} \left( 2^2\left[ \frac{n-1}{2} \right] + 3 - 2 \left( \frac{2\left[ \frac{n-1}{2} \right] + 3}{\left[ \frac{n-1}{2} \right] + 1} \right) \right) \]

\[ -2^{(n+1)} \mod 2\left( 2\left[ \frac{n - 1}{2} \right] + 3 \right) \sum_{q=1}^{\left[ \frac{n-1}{2} \right]} \left( \frac{2\left[ \frac{n-1}{2} \right] + 2}{q - 1} \right) \]

\[ = 2^{(n+1)} \mod 2\left( \left( \frac{n - 1}{2} \right) + 1 \right) \times \frac{1}{2} \left( 2^2\left[ \frac{n-1}{2} \right] + 3 - 2 \left( \frac{2\left[ \frac{n-1}{2} \right] + 3}{\left[ \frac{n-1}{2} \right] + 1} \right) \right) \]

108
\[-2^{(n+1) \mod 2(\lfloor \frac{n-1}{2} \rfloor) + 3}\]
\[\times \frac{1}{2}\left(2^{2\lfloor \frac{n-1}{2} \rfloor} - 2\left(2\lfloor \frac{n-1}{2} \rfloor + 2\right)\right)\].

**Evaluation of \(Y(n)\).** Keeping in mind that \(Y(n)\) does not include a term for \(k = 0\) we get for \(n = 2p\) the contributions

\[-2^{2p} + (p + 1)\binom{2p + 1}{p} + p\left(2^{2p+1} - 2\binom{2p + 1}{p}\right)\]
\[-(2p + 1)\left(2^{2p} - 2\binom{2p}{p - 1} - \binom{2p}{p}\right)\]
\[= -2^{2p+1} + (4p + 2)\binom{2p}{p}.\]

On the other hand for \(n = 2p + 1\) we obtain

\[-2^{2p+1} + 2(p + 1)\binom{2p + 1}{p} + \frac{1}{2}(p + 1)\left(2^{2p+3} - 2\binom{2p + 3}{p + 1}\right)\]
\[-\frac{1}{2}(2p + 3)\left(2^{2p+2} - 2\binom{2p + 2}{p} - \binom{2p + 2}{p + 1}\right)\]
\[= -2^{2p+2} + (4p + 5)\binom{2p + 1}{p}.\]

Joining the two formulae we get the compact closed form

\[-2^{n+1} + (2n + 2 + (n \mod 2))\left(\frac{n}{\lfloor n/2 \rfloor}\right).\]

I would conjecture that with the closed form being this simple now that it has been computed we can probably find a much simpler proof.

This was math.stackexchange.com problem 1219731.

### 37  Iverson bracket and an identity by Gosper, generalized \((IR)\)

Suppose we seek to show that

\[\sum_{q=0}^{m-1} \binom{n - 1 + q}{q} x^n (1 - x)^q + \sum_{q=0}^{n-1} \binom{m - 1 + q}{q} x^q (1 - x)^m = 1\]

where \(n, m \geq 1\).

We will evaluate the second term by a contour integral and show that is equal to one minus the first term which is the desired result.
Introduce the Iverson bracket

\[ [[0 \leq q \leq n-1]] = \frac{1}{2\pi i} \int_{|z|=\epsilon} z^q \frac{1}{z^n 1 - z} \, dz. \]

With this bracket we may extend the sum in \( q \) to infinity to get

\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n 1 - z} \sum_{q \geq 0} \frac{(m-1+q)}{q} z^q x^q (1-x)^m \, dz \]

\[ = \frac{(1-x)^m}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n 1 - z} \sum_{q \geq 0} \frac{(m-1+q)}{q} z^q x^q \, dz \]

\[ = \frac{(1-x)^m}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n 1 - z} (1-x)^m \, dz. \]

Now we have three poles here at \( z = 0 \) and \( z = 1 \) and \( z = 1/x \) and the residues at these poles sum to zero, so we can evaluate the residue at zero by computing the negative of the residues at \( z = 1 \) and \( z = 1/x \).

Observe that the residue at infinity is zero as can be seen from the following computation:

\[ -\text{Res}_{z=0} \frac{1}{z^2} z^n \frac{1}{1 - 1/z (1-x/z)^m} \]

\[ -\text{Res}_{z=0} \frac{1}{z^2} z^n \frac{z}{z - 1 (z-x)^m} \]

\[ -\text{Res}_{z=0} z^{n+m-1} \frac{1}{z - 1 (z-x)^m} = 0. \]

Returning to the main thread the residue at \( z = 1 \) as seen from

\[ -\frac{(1-x)^m}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n z - 1 (1-xz)^m} \, dz. \]

is

\[ -(1-x)^m \frac{1}{(1-x)^m} = -1. \]

For the residue at \( z = 1/x \) we consider

\[ \frac{(1-x)^m}{x^m} \cdot \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n 1 - z (1/x - z)^m} \, dz \]

\[ = \frac{(-1)^m (1-x)^m}{x^m} \cdot \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n 1 - z (z - 1/x)^m} \, dz. \]

and use the following derivative:

\[ \frac{1}{(m-1)!} \left( \frac{1}{z^n 1 - z} \right)^{(m-1)} \]

110
\[
\begin{align*}
\text{Evaluate this at } z = 1/x \text{ and multiply by the factor in front to get}
\end{align*}
\]

\[
\frac{(-1)^m(1-x)^m}{x^m} \times \sum_{q=0}^{m-1} \binom{n+q-1}{q} (-1)^q x^{n+q} \frac{1}{(1/x)^m-q}
\]

\[
= \frac{(-1)^m(1-x)^m}{x^m} \times \sum_{q=0}^{m-1} \binom{n+q-1}{q} (-1)^q x^{n+q} \frac{x^{m-q}}{(x-1)^{m-q}}
\]

\[
= (-1)^m(1-x)^m \times \sum_{q=0}^{m-1} \binom{n+q-1}{q} (-1)^q x^{n-q} \frac{1}{(1-x)^{m-q}}
\]

\[
= \sum_{q=0}^{m-1} \binom{n+q-1}{q} x^n (1-x)^q.
\]

This yields for the second sum term the value

\[
1 - \sum_{q=0}^{m-1} \binom{n+q-1}{q} x^n (1-x)^q
\]

showing that when we add the first and the second sum by cancellation the end result is one, as claimed.

This was [math.stackexchange.com problem 538309](http://math.stackexchange.com/problem/538309)

**Special case by formal power series**

Here we show the special case:

\[
\sum_{k=0}^{n} \binom{m+k}{k} 2^{n-k} + \sum_{k=0}^{m} \binom{n+k}{k} 2^{m-k} = 2^{n+m+1}.
\]

which is obtained from \( x = 1/2 \). We have by inspection i.e. same as before that

\[
\sum_{k=0}^{n} \binom{m+k}{k} 2^{n-k} = 2^n [z^n] \frac{1}{1-z} \frac{1}{(1-z/2)^{m+1}}.
\]
This is
\[
2^n \times \text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{1 - z (1 - z/2)^{m+1}} = -2^n \times \text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{z - 1} (2 - z)^{m+1} = 2^{n+m+1}(-1)^m \times \text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{z - 1} (z - 2)^{m+1}.
\]

With
\[
f(z) = 2^{n+m+1}(-1)^m \frac{1}{z^{n+1}} \frac{1}{z - 1} (z - 2)^{m+1},
\]
we will be using the fact that residues sum to zero i.e.
\[
\text{Res}_{z=0} f(z) + \text{Res}_{z=1} f(z) + \text{Res}_{z=2} f(z) + \text{Res}_{z=\infty} f(z) = 0.
\]
The residue at infinity is zero since \(\lim_{R \to \infty} 2\pi R/R^{n+1} = 0\).

The residue at one is
\[
2^{n+m+1}(-1)^m \times (-1)^m = -2^{n+m+1}.
\]

For the residue at two we use the Leibniz rule:
\[
\frac{1}{m!} \left( \frac{1}{z^{n+1}} (1) \right)^{(m)} = \frac{1}{m!} \sum_{k=0}^{m} \binom{m}{k} (-1)^k (n+k)! \frac{1}{z^{n+1+k}} (1)^{m-k} \frac{(m-k)!}{(z - 1)^{m-k+1}}
\]
\[
= (-1)^m \sum_{k=0}^{m} \binom{n+k}{k} \frac{1}{z^{n+1+k}} (1)^{m-k} \frac{1}{(z - 1)^{m-k+1}}.
\]

Restore factor in front and evaluate at \(z = 2\):
\[
2^{n+m+1}(-1)^m \times (-1)^m \sum_{k=0}^{m} \binom{n+k}{k} \frac{1}{2^{n+k}} = \sum_{k=0}^{m} \binom{n+k}{k} 2^{m-k}.
\]

Summing the residues we have shown that
\[
\sum_{k=0}^{n} \binom{m+k}{k} 2^{n-k} + \sum_{k=0}^{m} \binom{n+k}{k} 2^{m-k} - 2^{n+m+1} = 0
\]
which is the claim.
This was math.stackexchange.com problem 3024722.
Factoring a triple hypergeometric sum \((B_1)\)

Suppose we seek to evaluate
\[
\sum_{k=0}^{n}(-1)^k \binom{p+q+1}{k} \binom{p+n-k}{n-k} \binom{q+n-k}{n-k}
\]
which is claimed to be
\[
\binom{p}{n} \binom{q}{n}.
\]

Introduce
\[
\binom{p+n-k}{n-k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{p+n-k}}{z^{n-k+1}} \, dz
\]
and
\[
\binom{q+n-k}{n-k} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{q+n-k}}{w^{n-k+1}} \, dw.
\]

Observe that these integrals vanish when \(k > n\) and we may extend \(k\) to infinity.

We thus obtain for the sum
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{p+n}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{q+n}}{w^{n+1}} \times \sum_{k\geq0} \binom{p+q+1}{k} (-1)^k \frac{z^k w^k}{(1+z)^k(1+w)^k} \, dw \, dz.
\]

Note that while there is no restriction on \(k\) the sum only contains a finite number of terms. Continuing,
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{p+n}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{q+n}}{w^{n+1}} \times \left(1 - \frac{zw}{(1+z)(1+w)}\right)^{p+q+1} \, dw \, dz
\]
or
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{n-q-1}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{n-p-1}}{w^{n+1}} (1+z+w)^{p+q+1} \, dw \, dz.
\]

Supposing that \(p \geq n\) and \(q \geq n\) and \(\epsilon \ll 1\) and \(\gamma \ll 1\) this may be re-written as
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1+z)^{q+1-n} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} (1+w)^{p+1-n} \times (1+z+w)^{p+q+1} \, dw \, dz
\]
Put \(w = (1+z)u\) so that \(dw = (1+z) \, du\) to get with \(\delta < \gamma/(1+\epsilon)\)

113
\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} z^{n+1} (1+z)^{q+1-n} \frac{1}{2\pi i} \int_{|u|=\delta} (1+u)^{n+1} u^{n+1} (1+(1+z)u)^{p+1-n} \times (1+z)^{p+q+1}(1+u)^{p+q+1} (1+z) \, du \, dz \]

Note that the pole at \( u = -1/(1+z) \) has norm \( \delta/\gamma > \delta \) so it is not inside the contour in \( u \). This yields

\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^p}{z^{n+1}} \frac{1}{2\pi i} \int_{|u|=\delta} \frac{1}{u^{n+1}(1+u+z u)^{p+1-n}} \times (1+u)^{p+q+1} \, du \, dz \]

Extracting the residue for \( z \) first we obtain

\[ \sum_{k=0}^{n} \binom{p}{n-k} \frac{(1+u)^{n+q}}{u^{n+1}} \binom{k+p-n}{k} (-1)^k \frac{u^k}{(1+u)^k}. \]

The residue for \( u \) then yields

\[ \sum_{k=0}^{n} (-1)^k \binom{p}{n-k} \binom{k+p-n}{k} \binom{n-k+q}{n-k}. \]

The sum term here is

\[ \frac{p! \times (p+k-n)! \times (q+n-k)!}{(n-k)! (p+k-n)! \times k! (p-n)! \times (n-k)! \times q!} \]

which simplifies to

\[ \frac{p! \times n! \times (q+n-k)!}{(n-k)! \times n! \times k! (p-n)! \times (n-k)! \times q!} \]

which is

\[ \binom{n}{k} \binom{p}{n} \binom{q+n-k}{q} \]

so we have for the sum

\[ \binom{p}{n} \sum_{k=0}^{n} \binom{n}{k} (-1)^k \binom{q+n-k}{q}. \]

To evaluate the remaining sum we introduce

\[ \binom{q+n-k}{q} = \frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{(1+v)^{q+n-k}}{v^{q+1}} \, dv \]

114
getting for the sum

\[
\left(\frac{p}{n}\right) \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + v)^{q + n}}{v^{q+1}} \sum_{k=0}^{n} \binom{n}{k} (-1)^k \frac{1}{1 + v} \, dv
\]

\[
= \left(\frac{p}{n}\right) \frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{(1 + v)^{q + n}}{v^{q+1}} \left(1 - \frac{1}{1 + v}\right)^n \, dv
\]

\[
= \left(\frac{p}{n}\right) \frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{(1 + v)^q}{v^{q-n+1}} \, dv = \left(\frac{p}{n}\right) \left(\frac{q}{q-n}\right)
\]

which is

\[
\left(\frac{p}{n}\right) \left(\frac{q}{n}\right).
\]

This concludes the argument.

**Alternate proof**

We have from first principles that the sum is (we will prove for \(p, q \geq n\)):

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{(1 - z)^{p+1}} \frac{1}{v^{q+1}} \frac{1}{w^{n+1}} \frac{1}{(1 - w)^{q+1}} \times (1 - wz)^{p+q+1} \, dw \, dz.
\]

Now put \(wz = v\) so that \(z \, dw = dv\) to obtain

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+2}} \frac{1}{(1 - z)^{p+1}} \frac{1}{2\pi i} \int_{|v|=\gamma} \frac{1}{v^{n+1}} \frac{1}{w^{q+1}} \frac{1}{(1 - v/z)^{q+1}} \times (1 - v)^{p+q+1} \, dv \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^q}{(1 - z)^{p+1}} \frac{1}{2\pi i} \int_{|v|=\gamma} \frac{1}{v^{n+1}} \frac{1}{(z - v)^{q+1}} \times (1 - v)^{p+q+1} \, dv \, dz.
\]

Now with \(\epsilon \ll 1\) and \(\gamma \ll 1\) the pole at \(v = z\) is outside the contour in \(v\), hence we may evaluate with minus the residue at that pole, minus the residue at infinity. We get for the inner term

\[
-(-1)^{q+1} \frac{1}{(1 - z)^{q+1}} \frac{1}{z^{n+1}} (1 - z - (v - z))^{p+q+1}
\]

\[
= -\frac{(-1)^{q+1}}{z^{n+1}} \frac{1}{(1 - z)^{q+1}} \frac{1}{(1 + (v - z)/z)^{n+1}} (1 - z - (v - z))^{p+q+1}
\]

Computing the residue,

\[
-\frac{(-1)^{q+1}}{z^{n+1}} \sum_{k=0}^{q} \frac{p + q + 1}{k} (-1)^k (1 - z)^{p+q+1-k} (-1)^{q-k} \frac{n + q - k}{q - k} \frac{1}{z^{q-k}}
\]

115
Substituting into the integral in $z$ now yields

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-k+1}} \sum_{k=0}^{q} \binom{p+q+1}{k} (1-z)^{q-k} \binom{n+q-k}{q-k} \, dz$$

$$= (-1)^n \sum_{k=0}^{q} \binom{p+q+1}{k} (-1)^k \binom{n+q-k}{q-k} \binom{q}{n}. \binom{n+q-k}{q}.$$

Observe that

$$\binom{q-k}{n-k} \binom{n+q-k}{q-k} = \frac{(n+q-k)!}{(n-k)! \times (q-n)! \times n!} = \binom{q}{n} \binom{n+q-k}{q}.$$

so that we obtain

$$(-1)^n \binom{q}{n} \sum_{k=0}^{q} \binom{p+q+1}{k} (-1)^k \binom{n+q-k}{q}.$$

We must show that the remaining sum is $\binom{p}{n}$:

$$(-1)^{q-n} \sum_{k=0}^{q} \binom{p+q+1}{k} (-1)^k \binom{n+k}{q}$$

$$= (-1)^{q-n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{p+q+1}} (1+z)^{p+q+1} \sum_{k=0}^{q} z^k (-1)^k \binom{n+k}{q} \, dz.$$

Here we have extended to infinity due to the coefficient extractor in $z$. The sum is

$$\sum_{k\geq q-n} z^k (-1)^k \binom{n+k}{q} = (-1)^{q-n} z^{q-n} \sum_{k\geq 0} z^k (-1)^k \binom{k+q}{q}$$

$$= (-1)^{q-n} z^{q-n} \frac{1}{(1+z)^{q+1}}.$$

Substitute into the integral to obtain

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1+z)^p \, dz = \binom{p}{n}.$$

We have the claim. Now we just need to show that the residue at infinity in $v$ makes a zero contribution. We obtain

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^q}{(1-z)^{p+1}} \frac{1}{2\pi i} \int_{|v|=\delta} \frac{1}{v^{n+1}} \frac{1}{(z-1/v)^{q+1}}$$

$$\times (1-1/v)^{p+q+1} \, dv \, dz.$$
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^q}{(1-z)^{p+1}} \left( \frac{1}{2\pi i} \int_{|v|=\delta} \frac{1}{v^{p-n+1}} \frac{1}{(vz-1)^{q+1}} \right) x(v-1)^{p+q+1} \, dv \, dz.
\]

Now expanding \(1/(vz-1)^{q+1}\) into a convergent power series about zero which converges in the chosen contour we have terms \(\binom{k+q}{k} v^k z^k\), all of which make a zero contribution through the integral in \(z\), there not being a pole at zero and the singularity at one not being inside the contour. Alternatively, switch the integrals and note that the poles of the integrand in \(z\) are at \(z = 1\) and \(z = 1/v\), outside the contour with \(\delta\) being arbitrarily small due to its origin with the residue at infinity.

This is math.stackexchange.com problem 174054.

39 Factoring a triple hypergeometric sum II (\(B_1\))

Suppose we seek to verify that

\[
\sum_{k=0}^{n} \binom{n}{k} \binom{pn-n}{k} \binom{pn+k}{k} = \binom{pn}{n}^2.
\]

We use the integrals

\[
\binom{pn-n}{k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{pn-n}}{z^{k+1}} \, dz
\]

and

\[
\binom{pn+k}{k} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{pn+k}}{w^{k+1}} \, dw.
\]

This yields for the sum

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{pn-n}}{z} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{pn}}{w} \sum_{k=0}^{n} \binom{n}{k} \frac{(1+w)^k}{z^k w^k} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{pn-n}}{z} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{pn}}{w} \left( 1 + \frac{1+w}{zw} \right)^n \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{pn-n}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{pn}}{w^{n+1}} (1+w+zw)^n \, dw \, dz.
\]

Expanding the binomial in the inner sum we get

\[
\sum_{q=0}^{n} \binom{n}{q} w^q (1+z)^q
\]

which yields

\[
\sum_{q=0}^{n} \binom{n}{q} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{pn-n+q}}{z^{n+1}} \binom{pn}{n-q} \, dz
\]
\[ \sum_{q=0}^{n} \binom{n}{q} \binom{pn - n + q}{n} \binom{pn}{n - q}. \]

The inner term is
\[
\binom{n}{q} \binom{pn - n + q}{n} \binom{pn}{pn - n + q} = \frac{(pn)!}{q! \times (n-q)! \times (pn-2n+q)! \times (n-q)!}
\]
\[= \binom{pn}{n} \frac{q! \times (n-q)! \times (pn-2n+q)! \times (n-q)!}{n! \times (pn-n)!}
\]
\[= \binom{pn}{n} \binom{n}{q} \binom{pn-n}{n-q}. \]

Thus it remains to show that
\[\sum_{q=0}^{n} \binom{n}{q} \binom{pn-n}{n-q} = \binom{pn}{n}.\]

This can be done combinatorially or using the integral
\[
\frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{(1 + v)^{pn-n}}{v^{n+1}} \sum_{q=0}^{n} \binom{n}{q} v^q \, dv
\]
\[= \frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{(1 + v)^{pn-n}}{v^{n+1}} (v + 1)^n \, dv
\]
\[= \frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{(1 + v)^{pn}}{v^{n+1}} = \binom{pn}{n}. \]

This was math.stackexchange.com problem 656116.

40 Factoring a triple hypergeometric sum III
(B_1)

Suppose we seek to verify that
\[\min\{m,n,p\} \sum_{r=0}^{\min\{m,n,p\}} \binom{m}{r} \binom{n}{r} \binom{p+m+n-r}{m+n} = \binom{p+m}{m} \binom{p+n}{n}.\]

Introduce
\[\binom{n}{r} = \binom{n}{n-r} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-r+1}} (1 + z)^n \, dz.\]
and
\[ \binom{p + m + n - r}{m + n} = \binom{p + m + n - r}{p - r} \]
\[ = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{p-r+1}} (1 + w)^{p+m+n-r} \, dw. \]

Observe carefully that the first of these is zero when \( r > n \) and the second one when \( r > p \) so we may extend the range of \( r \) to infinity.

This yields for the sum
\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{p+m+n}}{w^{p+1}} \sum_{r \geq 0} \left( \begin{array}{c} m \\ r \end{array} \right) z^r \frac{w^r}{(1 + w)^r} \, dw \, dz \]
\[ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{p+m+n}}{w^{p+1}} \left( 1 + \frac{zw}{1 + w} \right)^m \, dw \, dz \]
\[ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{p+n}}{w^{p+1}} (1 + w + zw)^m \, dw \, dz. \]

The inner integral is
\[ \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{p+n}}{w^{p+1}} \sum_{q=0}^{m} \left( \begin{array}{c} m \\ q \end{array} \right) (1 + z)^q w^q \, dw \]
with residue
\[ \sum_{q=0}^{\min(m,p)} \left( \begin{array}{c} m \\ q \end{array} \right) \left( \begin{array}{c} p + n \\ n - q \end{array} \right) (1 + z)^q \]
which in combination with the outer integral yields
\[ \sum_{q=0}^{\min(m,p)} \left( \begin{array}{c} m \\ q \end{array} \right) \left( \begin{array}{c} p + n \\ n + q \end{array} \right) \left( \begin{array}{c} n + q \\ n \end{array} \right). \]

Now note that
\[ \left( \begin{array}{c} p + n \\ n + q \end{array} \right) \left( \begin{array}{c} n + q \\ n \end{array} \right) = \frac{(p + n)!}{(p-q)!(n+q)!} \frac{(n+q)!}{q!n!} \]
\[ = \frac{(p + n)!}{(p-q)!(n+q)!} \frac{p!}{q!n!} = \left( \begin{array}{c} p + n \\ n \end{array} \right) \left( \begin{array}{c} p \\ q \end{array} \right). \]

Therefore we just need to verify that
\[ \sum_{q=0}^{\min(m,p)} \left( \begin{array}{c} m \\ q \end{array} \right) \left( \begin{array}{c} p \\ n - q \end{array} \right) = \left( \begin{array}{c} p + m \\ m \end{array} \right) \]
which follows by inspection.
It can also be done with the integral
\[
\binom{p}{p-q} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^p}{w^{p-q+1}} \, dw
\]
which is zero when \(q > p\) so we can extend \(q\) to infinity to get for the sum
\[
\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^p}{w^{p+1}} \sum_{q=0} \binom{m}{q} w^q \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{p+m}}{w^{p+1}} \, dw
\]
\[
= \binom{p+m}{m}.
\]
This was math.stackexchange.com problem 1460712.

41 A triple hypergeometric sum IV \((B_1)\)

Suppose we seek to verify that
\[
\sum_{p=0}^{l} \sum_{q=0}^{m-p} (-1)^q \binom{m-p}{m-l} \binom{n}{q} \binom{m-n}{p-q} = 2^l \binom{m-n}{l}
\]
where \(m \geq n\) and \(m - n \geq l\).

This is
\[
\sum_{p=0}^{l} \binom{m-p}{m-l} \sum_{q=0}^{p} (-1)^q \binom{n}{q} \binom{m-n}{p-q}.
\]

Now introduce the integral
\[
\binom{m-n}{p-q} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{p-q+1}} (1+z)^{m-n} \, dz.
\]

Note that this vanishes when \(q > p\) so we may extend the range of \(q\) to infinity, getting for the sum
\[
\sum_{p=0}^{l} \binom{m-p}{m-l} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{p+1}} (1+z)^{m-n} \sum_{q=0} z^q \, dz
\]
\[
= \sum_{p=0}^{l} \binom{m-p}{l-p} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{p+1}} (1+z)^{m-n}(1-z)^n \, dz.
\]

Introduce furthermore
\[
\binom{m-p}{l-p} = \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{l-p+1}} (1 + w)^{m-p} dw.
\]
This too vanishes when \( p > l \) so we may extend \( p \) to infinity, getting
\[
\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{l+1}} (1 + w)^m
\]
\[
\times \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z} (1 + z)^{m-n} (1 - z)^n \sum_{p \geq 0} \frac{w^p}{z^p} \frac{1}{(1 + w)^p} \, dz \, dw.
\]
The geometric series converges when \(|w/z/(1 + w)| < 1\). We get
\[
\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{l+1}} (1 + w)^m
\]
\[
\times \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z} (1 + z)^{m-n} (1 - z)^n \frac{1}{1 - w/z/(1 + w)} \, dz \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{l+1}} (1 + w)^m
\]
\[
\times \frac{1}{2\pi i} \int_{|z| = \epsilon} (1 + z)^{m-n} (1 - z)^n \frac{1}{z - w/(1 + w)} \, dz \, dw.
\]
Now from the convergence we have \(|w/(1 + w)| < |z|\) which means the pole at \( z = w/(1 + w) \) is inside the contour \(|z| = \epsilon\). Extracting the residue yields (the pole at zero has disappeared)
\[
\frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{l+1}} (1 + w)^m \left(1 + \frac{w}{1 + w}\right)^{m-n} \left(1 - \frac{w}{1 + w}\right)^n \, dw
\]
\[
= \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{l+1}} (1 + 2w)^{m-n} \, dw
\]
\[
= 2^l \binom{m-n}{l}.
\]
This was math.stackexchange.com problem 1767709.

42 Basic usage of exponentiation integral to obtain Stirling number formulae \((E)\)

Suppose we seek to evaluate
\[
\sum_{q=0}^{n} (n - 2q) \binom{n}{2q+1}.
\]
We observe that
\[(n - 2q)^k = \frac{k!}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{k+1}} \exp((n - 2q)z) \, dz.\]

This yields for the sum
\[
\frac{k!}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{k+1}} \sum_{q=0}^{n} \binom{n}{2q+1} \exp((-2q - 1)z) \, dz
\]
which is
\[
\frac{1}{2} \frac{k!}{2\pi i} \int_{|z| = \epsilon} \frac{\exp((n+1)z)}{z^{k+1}} (\exp(z) - 1)^n \, dz.
\]

This yields two pieces, call them $A_1$ and $A_2$. Piece $A_1$ is
\[
\frac{1}{2} \frac{k!}{2\pi i} \int_{|z| = \epsilon} \frac{\exp((n+1)z)}{z^{k+1}} (1 + \exp(-z))^n \, dz
\]
and piece $A_2$ is
\[
\frac{1}{2} \frac{k!}{2\pi i} \int_{|z| = \epsilon} \frac{\exp((n+1)z)}{z^{k+1}} (1 - \exp(-z))^n \, dz.
\]

Recall the species equation for labelled set partitions:
\[
\mathbf{p}(U \mathbf{p}_{\geq 1}(Z))
\]
which yields the bivariate generating function of the Stirling numbers of the second kind
\[
\exp(u(\exp(z) - 1)).
\]

This implies that
\[
\sum_{n \geq q} \binom{n}{q} \frac{z^n}{n!} = \frac{(\exp(z) - 1)^q}{q!}
\]

122
and
\[ \sum_{n\geq q} \binom{n}{q} \frac{z^{n-1}}{(n-1)!} = \frac{(\exp(z) - 1)^{q-1}}{(q-1)!} \exp(z). \]

Now to evaluate $A_1$ proceed as follows:
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{\exp(z)}{z^{k+1}} (2 + \exp(z) - 1)^n \, dz
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \exp(z) \sum_{q=0}^n \binom{n}{q} 2^{n-q}(\exp(z) - 1)^q \, dz
= \sum_{q=0}^n \binom{n}{q} 2^{n-q} \times q! \times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{\exp(z) (\exp(z) - 1)^q}{q!} \, dz.
\]

Recognizing the differentiated Stirling number generating function this becomes
\[ \sum_{q=0}^n \binom{n}{q} 2^{n-q-1} \times q! \times \binom{k+1}{q+1}. \]

Now observe that when $n > k+1$ the Stirling number for $k+1 < q \leq n$ is zero, so we may replace $n$ by $k+1$. Similarly, when $n < k+1$ the binomial coefficient for $n < q \leq k+1$ is zero so we may again replace $n$ by $k+1$. This gives the following result for $A_1$:
\[ \sum_{q=0}^{k+1} \binom{n}{q} 2^{n-q-1} \times q! \times \binom{k+1}{q+1}. \]

Moving on to $A_2$ we observe that when $k < n$ the contribution is zero because the series for $\exp(z) - 1$ starts at $z$. This integral is simple and we have
\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{\exp(z) (\exp(z) - 1)^n}{n!} \, dz. \]

Recognizing the Stirling number this yields
\[ \frac{1}{2} \times n! \times \binom{k+1}{n+1}. \]

which correctly represents the fact that we have a zero contribution when $k < n$.

This finally yields the closed form formula
\[ \sum_{q=0}^{k+1} \binom{n}{q} 2^{n-q-1} \times q! \times \binom{k+1}{q+1} - \frac{1}{2} \times n! \times \binom{k+1}{n+1}. \]

confirming the previous results.

This was math.stackexchange.com problem 1353963
Three phase application including Leibniz’ rule \((B_1B_2R)\)

Suppose we seek to verify that

\[
\sum_{q=0}^{n} \binom{2n}{n+q} \binom{m+q-1}{2m-1} = m \times 4^{n-m} \times \binom{n}{m}
\]

where \(n \geq m\).

We use the integrals

\[
\binom{2n}{n+q} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+q+1}} \frac{1}{(1-z)^{n+q+1}} \, dz
\]

and

\[
\binom{m+q-1}{2m-1} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{m+q-1}}{w^{2m}} \, dw.
\]

Observe that the first integral is zero when \(q > n\) so we may extend \(q\) to infinity.

This yields for the sum

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{(1-z)^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{m-1}}{w^{2m}} \sum_{q \geq 0} q z^q (1+w)^q (1-z)^q \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{(1-z)^{n+1}}
\]

\[
\times \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{m-1}}{w^{2m}} \frac{z(1+w)/(1-z)}{(1-z(1+w)/(1-z))^2} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{(1-z)^{n+1}}
\]

\[
\times \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{m-1}}{w^{2m}} \frac{z(1+w)(1-z)}{(1-z-z(1+w))^2} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n} \frac{1}{(1-z)^n}
\]

\[
\times \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^m}{w^{2m}} \frac{1}{(1-2z-w)^2} \, dw \, dz.
\]

We evaluate the inner integral using the negative of the residue at the pole at \(w = (1-2z)/z\), starting from

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+2}} \frac{1}{(1-z)^n} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^m}{w^{2m}} \frac{1}{(w-(1-2z)/z)^2} \, dw \, dz.
\]
Differentiating we have

\[
m \frac{(1 + w)^{m-1}}{w^{2m}} - 2m \frac{(1 + w)^m}{w^{2m+1}} = (w - 2(1 + w)) m \frac{(1 + w)^{m-1}}{w^{2m+1}}
\]

\[
= (-w - 2)m \frac{(1 + w)^{m-1}}{w^{2m+1}}.
\]

The negative of this evaluated at \( w = (1 - 2z)/z \) is

\[
\frac{1}{z} \times m \times \frac{(1 - z)^{m-1}}{z^{m-1}} \times \frac{z^{2m+1}}{(1 - 2z)^{2m+1}}
\]

which finally yields

\[
m \int \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-m+1}} \frac{1}{(1 - z)^{n-m+1}} \frac{1}{(1 - 2z)^{2m+1}} \, dz.
\]

We have that the residues at zero, one and one half sum to zero with the first one being the sum we are trying to compute. Therefore we evaluate these in turn. We will restore the front factor of \( m \) at the end.

For the residue at zero we have using the Cauchy product that

\[
\sum_{q=0}^{n-m} \binom{n-m+q}{q} 2^{n-m-q} \binom{2m+n-m-q}{n-m-q}
\]

\[
= \sum_{q=0}^{n-m} \binom{n-m+q}{q} 2^{n-m-q} \binom{m+n-q}{2m}.
\]

For the residue at one we have that

\[
\frac{(-1)^{n-m+1}}{(n-m)!} \binom{1}{z^{n-m+1}} \binom{1}{(1 - 2z)^{2m+1}}^{(n-m)}
\]

\[
= \frac{(-1)^{n-m+1}}{(n-m)!} \sum_{q=0}^{n-m} \binom{n-m}{q} (-1)^q \frac{(n-m+q)!}{(n-m)!} \times \frac{(n-m+q)!}{z^{n-m+1+q}}
\]

\[
\times 2^{n-m-q} \frac{(2m+n-m-q)!}{(2m)!} \times \frac{(1 - 2z)^{2m+1+n-m-q}}{(1 - 2z)^{m+1+n-q}}
\]

\[
= \frac{(-1)^{n-m+1} 2^{n-m}}{(n-m)!} \sum_{q=0}^{n-m} \binom{n-m}{q} (-1)^q \frac{(n-m+q)!}{(n-m)!} \times \frac{(n-m+q)!}{z^{n-m+1+q}}
\]

\[
\times 2^{-q} \frac{(m+n-q)!}{(2m)!} \times \frac{(1 - 2z)^{m+1+n-q}}{(1 - 2z)^{m+1+n-q}}.
\]

Evaluate this at one to get

\[
2^{n-m} \sum_{q=0}^{n-m} \binom{n-m+q}{q} 2^{-q} \binom{m+n-q}{2m}.
\]
The residue at one evaluates to the sum we seek just like the residue at zero. This leaves the residue at one half, where we find

\[
\frac{(-1)^{2m+1}}{(2m)! \times 2^{2m+1}} \left( \frac{1}{z^{n-m+1}} \right) \left( \frac{1}{(1-z)^{n-m+1}} \right)^{(2m)}
\]

\[
= \frac{(-1)^{2m+1}}{(2m)! \times 2^{2m+1}} \sum_{q=0}^{2m} \frac{(2m)_q}{q!} (-1)^q \frac{(n-m+q)!}{(n-m)! \times z^{n-m+1+q}}
\]

\[
\times \frac{(n-m+2m-q)!}{(n-m)! \times (1-z)^{n-m+1+2m-q}}
\]

\[
= \frac{(-1)^{2m+1}}{(2m)! \times 2^{2m+1}} \sum_{q=0}^{2m} \frac{(2m)_q}{q!} (-1)^q \frac{(n-m+q)!}{(n-m)! \times z^{n-m+1+q}}
\]

\[
\times \frac{(n+m-q)!}{(n-m)! \times (1-z)^{n+m+1-q}}.
\]

Evaluate this at one half to get

\[-\frac{1}{2^{2m+1}} \sum_{q=0}^{2m} \left( \frac{n-m+q}{q} \right) (-1)^q 2^{n-m+1+q} \left( \frac{n+m-q}{2m-q} \right) 2^{n+m+1-q} \]

\[-2^{2n-2m+1} \sum_{q=0}^{2m} \left( \frac{n-m+q}{q} \right) (-1)^q \left( \frac{n+m-q}{2m-q} \right).\]

For this last sum use the integral

\[
\left( \frac{n+m-q}{2m-q} \right) = \left( \frac{n+m-q}{n-m} \right) = \frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{1}{v^{2m-q+1}} \frac{1}{(1-v)^{n-m+1}} \ dv.
\]

This controls the range so we can let \( q \) go to infinity in the sum to get

\[
\frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{1}{v^{2m+1}} \frac{1}{(1-v)^{n-m+1}} \sum_{q=0}^{\infty} \left( \frac{n-m+q}{q} \right) (-1)^q v^q \ dv
\]

\[
= \frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{1}{v^{2m+1}} \frac{1}{(1-v)^{n-m+1}} \frac{1}{(1+v)^{n-m+1}} \ dv
\]

\[
= \frac{1}{2\pi i} \int_{|v|=\epsilon} \frac{1}{v^{2m+1}} \frac{1}{(1-v^2)^{n-m+1}} \ dv = \left( \frac{n-m+m}{m} \right) = \binom{n}{m}.
\]

We have shown that

\[
2S - m \times 2 \times 2^{2n-2m} \times \binom{n}{m} = 0.
\]

126
and hence may conclude that

\[ S = m \times 4^{n-m} \times \binom{n}{m}. \]

**Remark.** If we want to do this properly we also need to verify that the residue at infinity of the integral in \( w \) is zero. Recall the formula for the residue at infinity

\[ \text{Res}_{z=\infty} h(z) = \text{Res}_{z=0} \left[ -\frac{1}{z^2} h \left( \frac{1}{z} \right) \right] \]

In the present case this becomes

\[ -\text{Res}_{w=0} \frac{1}{w^2} \frac{(1 + 1/w)^m}{1/w^{2m}} \frac{1}{(1 - 2z - z/w)^2} \]

\[ = -\text{Res}_{w=0} \frac{(1 + 1/w)^m}{1/w^{2m}} \frac{1}{(w(1 - 2z) - z)^2} \]

\[ = -\text{Res}_{w=0} (1 + w)^m w^m \frac{1}{(w(1 - 2z) - z)^2} \]

which is zero by inspection.

The same procedure applied to the main integral yields

\[ -\text{Res}_{z=0} \frac{1}{z^2} z^{n-m+1} \frac{1}{(1 - 1/z)^{n-m+1}} \frac{1}{(1 - 2/z)^{2m+1}} \]

\[ = -\text{Res}_{z=0} \frac{1}{z^2} z^{n-m+1} \frac{z^{n-m+1}}{(z - 1)^{n-m+1}} \frac{z^{2m+1}}{(z - 2)^{2m+1}} \]

\[ = -\text{Res}_{z=0} z^{2n+1} \frac{1}{(z - 1)^{n-m+1}} \frac{1}{(z - 2)^{2m+1}} \]

which is zero as well.

This was [math.stackexchange.com problem 1247818](https://math.stackexchange.com/questions/1247818).

### 44 Same problem, streamlined proof \((B_1B_2R)\)

Suppose we seek to verify that

\[ S = \sum_{q=0}^{n} q \binom{2n}{n+q} \binom{m+q-1}{2m-1} = m \times 4^{n-m} \times \binom{n}{m} \]

where \( n \geq m \).

This is

\[ \sum_{q=0}^{n} (n-q) \binom{2n}{q} \binom{m+n-q-1}{2m-1} \]

127
which has two pieces. We use the integral

\[
\frac{(m + n - q - 1)}{2m - 1} = \frac{(m + n - q - 1)}{n - m - q} = \frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n-m-q+1}} (1+w)^{m+n-q-1} \, dw.
\]

Observe that this integral vanishes when \( q > n - m \) and we may extend \( q \) to \( 2n \). We get for the first piece

\[
\frac{n}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n-m+1}} (1+w)^{m+n-1} \sum_{q=0}^{2n} \binom{2n}{q} \frac{w^q}{(1+w)^q} \, dw
= \frac{n}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n-m+1}} (1+w)^{n+1-m} (1+2w)^{2n} \, dw.
\]

The second piece is the negative of

\[
\sum_{q=1}^{n} \binom{2n}{q} \left( \frac{(m + n - q - 1)}{2m - 1} \right) = \sum_{q=1}^{n} \binom{2n}{q} \left( \frac{(m + n - q - 1)}{2m - 1} \right)
= 2n \sum_{q=1}^{n} \binom{2n-1}{q-1} \left( \frac{(m + n - q - 1)}{2m - 1} \right)
= 2n \sum_{q=0}^{n-1} \binom{2n-1}{q} \left( \frac{(m + n - q - 2)}{n - m - q - 1} \right).
\]

This vanishes through its integral representation when \( q > n - m - 1 \) and we obtain

\[
\frac{2n}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n-m}} \frac{1}{(1+w)^{n+1-m}} (1+2w)^{2n-1} \, dw.
\]

Joining the two pieces we arrive at the single integral

\[
\frac{n}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n-m+1}} (1+w)^{n+1-m} (1+2w)^{2n-1} \, dw.
\]

We know the residues at zero, minus one and infinity sum to zero, where the first represents the queried sum. For the residue at minus one it is given by

\[
\frac{n}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n-m+1}} \frac{1}{(1+w)^{n+1-m}} (1+2w)^{2n-1} \, dw
= \frac{n}{2\pi i} \int_{|v| = \epsilon} \frac{1}{v^{n-m+1}} \frac{1}{(v-1)^{n+1-m}} (2v-1)^{2n-1} \, dv
= -\frac{n}{2\pi i} \int_{|v| = \epsilon} \frac{1}{(-v-1)^{n-m+1}} \frac{1}{(-v)^{n+1-m}} (-1-2v)^{2n-1} \, dv
\]

128
\[
= \frac{n}{2\pi i} \int_{|v|=\gamma} \frac{1}{(1+v)^{n-m+1}} \frac{1}{vn+1-m} (1+2v)^{2n-1} \, dv.
\]

We see that this residue also represents the queried sum. This leaves the residue at infinity which is
\[
\text{Res}_{w=\infty} \frac{1}{w^{n-m+1}} \frac{1}{(1+w)^{n+1-m}} (1+2w)^{2n-1} = -\text{Res}_{w=0} \frac{1}{w^{m-1}} \frac{1}{(1+w)^{n+1-m}} (1+2w)^{2n-1}.
\]

Extracting coefficients we find
\[
-n \sum_{q=0}^{2m-2} \left( \frac{2n-1}{2m-2-q} \right) 2^{2n-2m+1+q} (-1)^q \binom{n-m+q}{q}.
\]

Introduce (this vanishes when \(q > 2m-2\))
\[
\left( \frac{2n-1}{2m-2-q} \right) = \left( \frac{2n-1}{2n+1-2m+q} \right)
\]
and
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2m-1-q}} \frac{1}{(1-z)^{2n-2m+2+q}} \, dz
\]
to get for the sum
\[
-\frac{n}{2\pi i} 2^{2n-2m+1} \int_{|z|=\epsilon} \frac{1}{z^{2m-1}} \frac{1}{(1-z)^{2n-2m+2}} \sum_{q=0}^{\infty} \binom{n-m+q}{q} 2^q (-1)^q \frac{z^q}{(1-z)^q} \, dz
\]
\[
= -\frac{n}{2\pi i} 2^{2n-2m+1} \int_{|z|=\epsilon} \frac{1}{z^{2m-1}} \frac{1}{(1-z)^{2n-2m+2}} \frac{1}{(1+2z/(1-z))^{n-m+1}} \, dz
\]
\[
= -\frac{n}{2\pi i} 2^{2n-2m+1} \int_{|z|=\epsilon} \frac{1}{z^{2m-1}} \frac{1}{(1-z)^{n-m+1}} \, dz
\]
\[
= -\frac{n}{2\pi i} 2^{2n-2m+1} \frac{1}{(1-z)^{n-m+1}} = -\frac{n}{2\pi i} 2^{2n-2m+1} \frac{1}{(1-z)^{n-m+1}}
\]
\[
= -\frac{n}{2\pi i} 2^{2n-2m+1} \binom{n-m+1}{m-1}.
\]
It follows that
\[ 2S - n2^{2n-2m+1} \binom{n-1}{m-1} = 0 \quad \text{or} \quad S = n4^{n-m} \frac{m}{n} \binom{n}{m} \]
which yields
\[ S = m \times 4^{n-m} \times \binom{n}{m} \]
as claimed.

45 Symmetry of the Euler-Frobenius coefficient
\((B_1 E IR)\)
Suppose we have the coefficient of the Euler-Frobenius polynomial
\[ b^n_k = \sum_{l=1}^{k} (-1)^{k-l} \binom{n+1}{k-l} \]
and we seek to show that \( b^n_k = b^n_{n+1-k} \) where \( 0 \leq k \leq n+1 \).
First re-write this as
\[ \sum_{l=0}^{k} (-1)^l (k-l)^n \binom{n+1}{l} \]
Introduce the Iverson bracket
\[ [[0 \leq l \leq k]] = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{z^l}{z^{k+1}} \frac{1}{1-z} \, dz \]
and the exponentiation integral
\[ (k-l)^n = \frac{n!}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}} \exp((k-l)w) \, dw. \]
To get for the sum (extend the summation to \( n+1 \) since the Iverson bracket controls the range)
\[ \frac{n!}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}} \exp(kw) \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+1}} \frac{1}{1-z} \sum_{l=0}^{n+1} \binom{n+1}{l} (-1)^l z^l \exp(-lw) \, dz \, dw \]
\[ = \frac{n!}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}} \exp(kw) \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+1}} \frac{1}{1-z} (1 - z \exp(-w))^{n+1} \, dz \, dw. \]
Evaluate this using the residues at the poles at \( z = 1 \) and at infinity. We obtain for \( z = 1 \)

\[ -\frac{n!}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n+1}} \exp(kw)(1 - \exp(-w))^{n+1} \, dw, \]

note however that \( 1 - \exp(-w) \) starts at \( w \) so the power starts at \( w^{n+1} \) making for a zero contribution.

We get for the residue at infinity

\[ -\text{Res}_{z=0} \frac{1}{z^2} \frac{k}{1 - 1/z} (1 - \exp(-w)/z)^{n+1} \]

\[ = -\text{Res}_{z=0} z^k \frac{1}{1 - z} (1 - \exp(-w)/z)^{n+1} \]

\[ = \text{Res}_{z=0} z^k \frac{1}{1 - z} (z - \exp(-w))^{n+1}. \]

We need to flip the sign on this one more time since we are exploiting the fact that the residues at the three poles sum to zero. Actually extracting the coefficient we get

\[ -\sum_{q=0}^{n-k} \binom{n+1}{q} (-1)^{n+1-q} \exp(-(n+1-q)w). \]

Substitute this into the integral in \( w \) to get

\[ -\sum_{q=0}^{n-k} \binom{n+1}{q} \left( \frac{n!}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n+1}} \exp(kw)(-1)^{n+1-q} \exp(-(n+1-q)w) \, dw \right) \]

\[ = -\sum_{q=0}^{n-k} \binom{n+1}{q} (-1)^{n+1-q} (-1)^n (n+1-k-q)^n \]

\[ = \sum_{q=0}^{n-k} \binom{n+1}{q} (-1)^q (n+1-k-q)^n. \]

Using the fact that \( n+1-k-q \) is zero at \( q = n+1-k \) we finally obtain

\[ \sum_{q=0}^{n+1-k} \binom{n+1}{q} (-1)^q (n+1-k-q)^n \]

which is precisely \( b_{n+1-k}^n \) by definition, QED.

**Addendum.** An alternate proof (variation on the theme from above) starts from the unmodified definition and introduces

\[ \binom{n+1}{k-l} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{k-l+1}} (1 + z)^{n+1} \, dz. \]
This controls the range so we may extend $l$ to infinity. Introduce furthermore

$$l^n = \frac{n!}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n+1}} \exp(lw) \, dw.$$ 

These two yield for the sum

$$\frac{n!}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n+1}} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(-1)^k}{z^{k+1}} (1 + z)^{n+1} \sum_{l \geq 0} (-1)^l z^l \exp(lw) \, dz \, dw$$

$$= \frac{n!}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n+1}} \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(-1)^k}{z^{k+1}} (1 + z)^{n+1} \frac{1}{1 + z \exp(w)} \, dz \, dw$$

$$= \frac{n!}{2\pi i} \int_{|w| = \epsilon} \exp(-w) \frac{1}{w^{n+1}} \frac{(-1)^k}{z^{k+1}} (1 + z)^{n+1} \frac{1}{z + \exp(-w)} \, dz \, dw.$$ 

We evaluate this using the negatives of the residues at $z = -\exp(-w)$ and at infinity. We get for $z = -\exp(-w)$

$$\frac{n!}{2\pi i} \int_{|w| = \epsilon} \exp(-w) \frac{1}{w^{n+1}} \frac{(-1)^k}{z^{k+1}} (1 + z)^{n+1} \frac{1}{1 + z \exp(-w)} \, dz \, dw$$

$$= \frac{n!}{2\pi i} \int_{|w| = \epsilon} \exp(kw) \frac{1}{w^{n+1}} (1 - \exp(-w))^{n+1} \, dw.$$ 

As before the exponentiated term starts at $w^{n+1}$ so there is no coefficient on $w^n$ for a contribution of zero.

We get for the residue at infinity (starting from the next-to-last version of the integral)

$$-\text{Res}_{z=0} \frac{1}{z^2} (-1)^k z^{k+1} \frac{(1 + z)^{n+1}}{z^{n+1}} \frac{1}{1 + \exp(w)/z}$$

$$= -\text{Res}_{z=0} \frac{1}{z^2} (-1)^k z^{k+1} \frac{(1 + z)^{n+1}}{z^{n+1}} \frac{z \exp(w)}{1 + z \exp(w)}$$

$$= -\text{Res}_{z=0} (-1)^k z^{k} \frac{(1 + z)^{n+1}}{z^{n+1}} \frac{\exp(-w) \exp(w)}{1 + z \exp(w)}.$$ 

Doing the sign flip and simplifying we obtain

$$\exp(-w)(-1)^k \times \text{Res}_{z=0} \frac{(1 + z)^{n+1}}{z^{n-k+1}} \frac{1}{1 + z \exp(w)}.$$ 

Extract the residue to get

$$\exp(-w)(-1)^k \sum_{q=0}^{n-k} \binom{n+1}{q} (-1)^{n-k-q} \exp(-(n-k-q)w)$$

132
Substitute into the integral in \( w \) to obtain

\[
\sum_{q=0}^{n-k}\left( \frac{n+1}{q}\right)\frac{n!}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}}(-1)^{n-q}\exp(-(n+1-k-q)w)\,dw
\]

\[
= \sum_{q=0}^{n-k}\left( \frac{n+1}{q}\right)(-1)^{n-q}(-1)^n(n+1-k-q)^n
\]

\[
= \sum_{q=0}^{n-k}\left( \frac{n+1}{q}\right)(-1)^q(n+1-k-q)^n.
\]

We have obtained \( b_n^{n+1-k} \) as before.

This was math.stackexchange.com problem 1435648.

46 A probability distribution with two parameters \((B_1 B_2)\)

A sum of binomial coefficients CLXVII

Suppose we have a random variable \( X \) where

\[
P[X = k] = \binom{N}{2n+1}^{-1} \binom{N-k}{N} \binom{k-1}{n}
\]

for \( k = n+1, \ldots, N-n \) and zero otherwise.

We seek to show that these probabilities sum to one and compute the mean and the variance.

**Sum of probabilities.** This is given by

\[
\sum_{k=n+1}^{N-n} \binom{N}{2n+1}^{-1} \binom{N-k}{N} \binom{k-1}{n}.
\]

Introduce

\[
\binom{N-k}{n} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{N-n-k+1}} \frac{1}{(1-z)^{n+1}} \,dz
\]

and

\[
\binom{k-1}{n} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{k-1}}{w^{n+1}} \,dw.
\]

Observe carefully that the first integral is zero when \( k > N-n \) and the second one when \( 1 \leq k \leq n \) so we may extend the range of the sum to \( 1 \leq k \).

This gives for the sum (without the scalar)

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{N-n}} \frac{1}{(1-z)^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}} \sum_{k \geq 1} z^{k-1}(1+w)^{k-1} \,dw \,dz
\]
\[= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{N-n}} \frac{1}{(1-z)^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}} \frac{1}{1-z(1+w)} \, dw \, dz.\]

The integral in \(w\) is

\[\frac{1}{1-z} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+1}} \frac{1}{1-wz/(1-z)} \, dw\]

which yields for the integral in \(z\)

\[\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{N-n}} \frac{1}{(1-z)^{n+1}} \frac{1}{1-wz/(1-z)} \, dz\]

which is

\[\left( N - 2n - 1 + 2n + 1 \right) = \left( \frac{N}{2n+1} \right).\]

This confirms that the probabilities sum to one.

**Expectation.** This is given by

\[E[X] = \left( \frac{N}{2n+1} \right)^{-1} \sum_{k=n+1}^{N-n} k \binom{N-k}{n} \binom{k-1}{n}.\]

Introduce

\[k \binom{k-1}{n} = \frac{k!}{n! \times (k-1-n)!} = (n+1) \binom{k}{n+1}\]

which is

\[= (n+1) \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^k}{w^{n+2}} \, dw.\]

The range control from this integral produces zero when \(0 \leq k \leq n\) so we may extend the sum to zero, getting

\[= (n+1) \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{N-n+1}} \frac{1}{(1-z)^{n+1}} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+2}} \sum_{k \geq 0} z^k (1+w)^k \, dw \, dz.\]

The integral in \(w\) is

\[\frac{1}{1-z} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{n+2}} \frac{1}{1-wz/(1-z)} \, dw\]

which yields for the integral in \(z\) including the factor in front

\[\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{N-n+1}} \frac{1}{(1-z)^{n+1}} \frac{1}{(1-z)^{n+2}} \, dz\]
which is
\[(n + 1) \left( \frac{N - 2n - 1 + 2n + 2}{2n + 2} \right) = (n + 1) \left( \frac{N + 1}{2n + 2} \right).\]

We will scale this at the end, same as the variance.

**Variance.** Start by computing
\[E[(X + 1)X] = \left( \frac{N}{2n + 1} \right)^{-1} \sum_{k=n+1}^{N-n} (k+1)k \left( \begin{array}{c} N-k \\ n \end{array} \right) \left( \begin{array}{c} k-1 \\ n \end{array} \right).\]

Introduce
\[(k+1)k \left( \begin{array}{c} k-1 \\ n \end{array} \right) = \frac{(k+1)!}{n! \times (k-1-n)!}\]
\[= (n + 2)(n + 1) \left( \frac{k+1}{n + 2} \right) = (n + 2)(n + 1) \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{k+1}}{w^{n+3}} \, dw.\]

The range control from this integral produces zero when \(0 \leq k \leq n\) as before so we may extend the sum to zero, getting
\[(n + 2)(n + 1) \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{N-n+1}} \frac{1}{(1-z)^{n+1}} \]
\[\times \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1 + w}{w^{n+3}} \sum_{k=0}^{\infty} z^k (1 + w)^k \, dw \, dz.\]

The integral in \(w\) is
\[\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1 + w}{w^{n+3}} \frac{1}{1 - z(1 + w)} \, dw \]
\[= \frac{1}{1 - z} \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1 + w}{w^{n+3}} \frac{1}{1 - wz/(1 - z)} \, dw\]
which yields for the integral in \(z\) including the factor in front
\[(n + 2)(n + 1) \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{N-n+1}} \frac{1}{(1-z)^{n+1}} \left( \frac{z^{n+2}}{(1-z)^{n+3}} + \frac{z^{n+1}}{(1-z)^{n+2}} \right) \, dz\]
which is
\[(n + 2)(n + 1) \left( \frac{N - 2n - 2 + 2n + 3}{2n + 3} \right) + \left( \frac{N - 2n - 1 + 2n + 2}{2n + 2} \right)\]
\[= (n + 2)(n + 1) \left( \frac{N + 1}{2n + 3} \right) + \left( \frac{N + 1}{2n + 2} \right).\]

Simplification for ease of interpretation.
We get for the expectation
\[ E[X] = (n + 1) \frac{(N + 1)!}{(N - 2n - 1)!(2n + 2)!} \frac{(N - 2n - 1)!(2n + 1)!}{N!} \]
\[ = \frac{1}{2} (N + 1). \]

We obtain furthermore
\[ E[(X + 1)X] = (n + 2)(n + 1) \times \left( \frac{(N + 1)!}{(N - 2n - 2)!(2n + 3)!} + \frac{(N + 1)!}{(N - 2n - 1)!(2n + 2)!} \right) \frac{(N - 2n - 1)!(2n + 1)!}{N!} \]
\[ = \frac{1}{2} (N + 1)(n + 2) \left( \frac{N - 2n - 1}{2n + 3} + 1 \right) \]
\[ = \frac{1}{2} (N + 2)(N + 1) \frac{n + 2}{2n + 3}. \]

This yields for the variance
\[ \text{Var}[X] = E[X^2] - E[X]^2 \]
\[ = \frac{1}{2} (N + 2)(N + 1) \frac{n + 2}{2n + 3} - \frac{1}{2} (N + 1) - \frac{1}{4} (N + 1)^2. \]

which simplifies to
\[ \text{Var}[X] = \frac{1}{4} (N + 1) \frac{N - 2n - 1}{2n + 3}. \]

This was math.stackexchange.com problem 1257644.

### 47 An identity involving Narayana numbers \((B_1)\)

Suppose we have the Narayana number
\[ N(n, m) = \frac{1}{n} \binom{n}{m} \binom{n}{m - 1} \]

and let
\[ A(n, k, l) = \sum_{i_0 + i_1 + \cdots + i_k = n} \prod_{t=0}^{k} N(i_t, j_t + 1) \]

where the compositions for \(n\) are regular and the ones for \(l\) are weak and we seek to verify that
\[ A(n, k, l) = \frac{k + 1}{n} \binom{n}{l} \binom{n}{l + k + 1}. \]
Introducing
\[
G(z, u) = \sum_{p \geq 1} z^p \sum_{q \geq 0} u^q \frac{1}{p} \binom{p}{q} \binom{p}{q+1}
\]
we have by inspection that
\[
A(n, k, l) = [z^n] [u^l] G(z, u)^{k+1}.
\]
To evaluate this introduce for the inner sum term
\[
\binom{p}{q+1} = \binom{p}{p-q-1} = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{p-q}} (1+w)^p \, dw.
\]
We get for the inner sum
\[
\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{p-q}} (1+w)^p \sum_{q \geq 0} \binom{p}{q} w^q \, dw
= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{p-q}} (1+w)^p (1+uw)^p \, dw
= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{1}{w^{p-q}} (1+w(1+u+uw)))^p \, dw.
\]
Extracting the coefficient from this we get
\[
[w^{p-1} \sum_{q=0}^p \binom{p}{q} w^q (1+u+uw)^q
= \sum_{q=0}^{p-1} \binom{p}{q} [w^{p-1-q}] (1+u+uw)^q
= \sum_{q=0}^{p-1} \binom{p}{q} \binom{q}{p-1-q} u^{p-1-q} (1+u)^{2q+1-p}.
\]
This is
\[
\sum_{q=0}^{p-1} \binom{p}{p-q-1} \binom{p-1-q}{q} u^{q+1} (1+u)^{p-2q}
= \sum_{q=0}^{p-1} \binom{p}{q+1} \binom{p-1-q}{q} u^{q+1} (1+u)^{p-2q}.
\]
Now observe that
\[
\frac{1}{p} \binom{p}{q+1} \binom{p-1-q}{q} = \frac{1}{q+1} \binom{p-1}{q} \binom{p-1-q}{q}
\]
137
\[
\frac{1}{q+1} \left( \frac{p-1}{p-1-q} \right) \left( \frac{p-1-q}{q} \right) = \frac{1}{q+1} \left( \frac{p-1}{2q} \right) \left( \frac{2q}{q} \right),
\]

where
\[
C_q = \frac{1}{q+1} \binom{2q}{q}
\]
is a Catalan number.

We thus get for the sum
\[
\sum_{p \geq 1} z^p \sum_{q=0}^{p-1} \binom{p-1}{2q} C_q u^q (1 + u)^{p-2q}
\]
\[
= \sum_{p \geq 0} z^p \sum_{q=0}^{p} \binom{p}{2q} C_q u^q (1 + u)^{p-2q}
\]
\[
= \sum_{q \geq 0} C_q u^q (1 + u)^{-2q} \sum_{p \geq 2q} \binom{p}{2q} z^p (1 + u)^p
\]
\[
= \sum_{q \geq 0} C_q u^q (1 + u)^{-2q} \sum_{p \geq 2q} \binom{p + 2q}{2q} z^p (1 + u)^p
\]
\[
= \sum_{q \geq 0} C_q u^q z^{2q} \frac{1}{(1 - z(1 + u))^{2q+1}}.
\]

Using the generating function of the Catalan numbers
\[
Q(w) = \sum_{q \geq 0} C_q w^q = \frac{1 - \sqrt{1 - 4w}}{2w}
\]
which has functional equation
\[
Q(w) = 1 + wQ(w)^2
\]
we obtain
\[
Q \left( \frac{uz^2}{(1 - z(1 + u))^2} \right) = 1 + \frac{uz^2}{(1 - z(1 + u))^2} Q \left( \frac{uz^2}{(1 - z(1 + u))^2} \right)^2
\]
which is
\[
G(z, u) \frac{1 - z(1 + u)}{z} = 1 + uG(z, u)^2.
\]

Extract the coefficient in \(z\) first. We get from the functional equation
\[
z = \frac{G(z, u)}{uG(z, u)^2 + (1 + u)G(z, u) + 1}.
\]

138
The coefficient extractor integral is

$$[z^n]G(z, u) = \frac{1}{2\pi i} \oint_{|z| = \epsilon} \frac{1}{z^{n+1}} G(z, u)^{k+1} \, dz.$$ 

which becomes with $G(z, u) = v$

$$\frac{1}{2\pi i} \int_{|v| = \epsilon} \frac{(uv^2 + (1+u)v+1)^{n+1}}{v^{n+1}} \, dv \times v^{k+1} \left(\frac{1}{uv^2 + (1+u)v+1} - \frac{v}{(uv^2 + (1+u)v+1)^2} (2uv + (1+u))\right) \, dv$$

$$= \frac{1}{2\pi i} \int_{|v| = \epsilon} \frac{(uv^2 + (1+u)v+1)^{n-1}}{v^{n-k}} (1 - uv^2) \, dv.$$

This is

$$\frac{1}{2\pi i} \int_{|v| = \epsilon} \frac{(1+v)^{n-1}(1+uv)^{n-1}}{v^{n-k}} (1 - uv^2) \, dv.$$

Extracting the coefficient on $[u^l]$ we get two pieces which are, first piece $A$

$$\binom{n-1}{l} \frac{1}{2\pi i} \int_{|v| = \epsilon} \frac{(1+v)^{n-1}v^l}{v^{n-k}} \, dv = \binom{n-1}{l} \binom{n-1}{n-k-l-1}$$

which is

$$\binom{n-1}{l} \binom{n-1}{k+l} = \binom{n-1}{l} \frac{k+l+1}{n} \binom{n}{k+l+1}$$

$$= (n-l)^k + l + 1 \frac{n}{n^2} \binom{n-1}{l} \binom{n}{n+k+l+1}.$$

and piece $B$ which is

$$-\binom{n-1}{l-1} \frac{1}{2\pi i} \int_{|v| = \epsilon} \frac{(uv)^{n-1}v^{l-1}}{v^{n-k}} v^2 dv = -\binom{n-1}{l-1} \binom{n-1}{n-k-l-2}$$

which is

$$-\binom{n-1}{l-1} \binom{n-1}{k+l+1} = -\binom{n-1}{l-1} \binom{n-k-l-1}{n} \binom{n}{k+l+1}$$

$$= -l \frac{n-k-l-1}{n^2} \binom{n-1}{l} \binom{n}{n+k+l+1}.$$

Collecting the two pieces we finally obtain

$$\binom{n-1}{l} \frac{k+l+1}{n^2} + l \frac{n+k+l+1}{n^2} \binom{n-1}{l} \binom{n}{n+k+l+1}.$$
\[
= \left( \frac{n \cdot k + l + 1}{n^2} + l \cdot \frac{-n}{n^2} \right) \binom{n}{t} \binom{n}{k + l + 1}
\]
\[
= \frac{k + 1}{n} \binom{n}{t} \binom{n}{k + l + 1}
\]
as claimed, QED.

**Remark.** The closed form of \( G(z, u) \) can be computed as follows:
\[
\frac{z}{1 - z(1 + u)} \frac{1 - \sqrt{1 - 2z(1 + u) + z^2(1 + u)^2 - 4uz}}{2uz^2/(1 - z(1 + u))^2}
\]
\[
= \frac{z}{(1 - z(1 + u))^2} \frac{1 - z(1 + u) - \sqrt{1 - 2z(1 + u) + z^2(1 + u)^2 - 4uz^2}}{2uz^2/(1 - z(1 + u))^2}
\]
\[
= \frac{1 - z(1 + u) - \sqrt{1 - 2z(1 + u) + z^2(1 + u)^2 - 4uz^2}}{2uz}
\]
The above material incorporates data from [OEIS A055151](https://oeis.org/A055151) and from [OEIS A001263](https://oeis.org/A001263) on Narayana numbers.
This was [math.stackexchange.com problem 1498014](https://math.stackexchange.com/questions/1498014).

### 48 Convolution of Narayana polynomials \((B_1)\)

This is basically a re-write of the previous entry with a more general conclusion.

Suppose we define
\[
C_n(1)(t) = 1 \quad \text{and} \quad C_n^{(1)}(t) = \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n+1}{k+1} \frac{1}{n+1} t^k
\]

and let for \( m \geq 2 \)
\[
C_n^{(m)}(t) = \sum_{q=0}^{n} C_q^{(m-1)}(t) C_n^{(1)}(t-q). \]

This definition is equivalent to introducing
\[
G(w) = \sum_{n \geq 1} C_n^{(1)}(t) w^n
\]
and letting
\[
C_n^{(m)}(t) = \left[ w^n \right] \left( 1 + G(w) \right)^m = \left[ w^n \right] \sum_{p=0}^{m} \binom{m}{p} G(w)^p.
\]

We seek to show that
\[
C_0^{(m)}(t) = 1 \quad \text{and} \quad C_n^{(m)}(t) = \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n+m}{k+m} \frac{m}{n+m} t^k.
\]
The proof will consist in doing a coefficient extraction operation from the powers of \( G(w) \) and showing that these match the proposed formula. We require an alternate representation of \( C_n^{(1)}(t) \) and observe that

\[
\binom{n-1}{k} \binom{n+1}{k+1} \frac{n}{n+1} = \frac{1}{n} \binom{n}{k+1} \frac{k+1}{n} \binom{n}{k+1} \frac{n+1}{n+1} = \frac{1}{n} \binom{n}{k+1} \binom{n}{k},
\]

and introduce

\[
\binom{n}{k+1} = \binom{n}{n-k-1} = \frac{1}{2\pi i} \int_{\lvert z \rvert = 1} \frac{1}{z^{n-k}} (1+z)^n \, dz
\]

which conveniently vanishes for \( k \geq n \). We get for \( n \geq 1 \)

\[
C_n^{(1)}(t) = \frac{1}{n} \frac{1}{2\pi i} \int_{\lvert z \rvert = 1} \frac{1}{z^n} (1+z)^n \sum_{k \geq 0} \binom{n}{k} z^k t^k \, dz
\]

\[
= \frac{1}{n} \frac{1}{2\pi i} \int_{\lvert z \rvert = 1} \frac{1}{z^n} (1+z)^n (1+tz)^n \, dz.
\]

We re-write this as

\[
\frac{1}{n} \frac{1}{2\pi i} \int_{\lvert z \rvert = 1} \frac{1}{z^n} (1+z(1+tz))^n \, dz.
\]

Extracting the coefficient yields

\[
\frac{1}{n} \sum_{q=0}^{n-1} \binom{n}{q} \frac{1}{z^{n-1-q}} (1+t+tz)^q
\]

\[
= \frac{1}{n} \sum_{q=0}^{n-1} \binom{n}{q} \frac{1}{n-1-q} (1+t)^{q-(n-1-q)} t^{n-1-q}
\]

\[
= \frac{1}{n} \sum_{q=0}^{n-1} \binom{n}{q} \frac{1}{n-1-q} (1+t)^{2q+1-n-t^{n-1-q}}
\]

\[
= \frac{1}{n} \sum_{q=0}^{n-1} \binom{n}{n-1-q} \frac{1}{n-1-q} (1+t)^{n-1-2q} t^q.
\]

Now we have

\[
\frac{1}{n} \binom{n}{n-1-q} \binom{n-1-q}{q} = \frac{1}{n} \frac{n!}{(q+1)!q!(n-1-2q)!}
\]

\[
= \frac{1}{n} \frac{(2q+1)}{q} \binom{n}{2q+1} = \frac{1}{2q+1} \binom{n}{q} \binom{2q+1}{q}
\]

141
\[
\sum_{n \geq 1} w^n \sum_{q=0}^{n-1} C_q \binom{n-1}{2q} (1+t)^{n-1-2qtq} = w \sum_{n \geq 0} w^n \sum_{q=0}^{n} C_q \binom{n}{2q} (1+t)^{n} w^n (1+t)^n
\]

\[
= w \sum_{q \geq 0} C_q (1+t)^{-2qtq} \sum_{n \geq 0} \binom{n}{2q} w^n (1+t)^n
\]

\[
= w \sum_{q \geq 0} C_q (1+t)^{-2qtq} w^{2q}(1+t)^{2q} \sum_{n \geq 2q} \binom{n+2q}{2q} w^n (1+t)^n
\]

\[
= \frac{w}{1-w(1+t)} \sum_{q \geq 0} C_q t^q w^{2q} \frac{1}{(1-w(1+t))^{2q+1}}
\]

Now the classic generating function of the Catalan numbers is
\[
Q(x) = \frac{1 - \sqrt{1 - 4x}}{2x}.
\]

We have computed the closed form of \(G(w)\) which is
\[
G(w) = \frac{w}{1-w(1+t)} \frac{1 - \sqrt{1 - 4tw^2/(1-w(1+t))^2}}{2tw^2/(1-w(1+t))}
\]

\[
= \frac{1 - w(1+t) - \sqrt{(1-w(1+t))^2 - 4tw^2}}{2tw^2}
\]

Recall the functional equation of the Catalan number generating function which is

\[
142
\]
\[ Q(x) = 1 + xQ(x)^2. \]

We thus obtain
\[
Q \left( \frac{tw^2}{(1 - w(1 + t))^2} \right) = 1 + \frac{tw^2}{(1 - w(1 + t))^2} Q \left( \frac{tw^2}{(1 - w(1 + t))^2} \right)^2
\]

or
\[
\frac{1 - w(1 + t)}{w} G(w) = 1 + tG(w)^2.
\]

Solving for \( w \) we get
\[
G(w) - w(1 + t)G(w) = w(1 + tG(w)^2)
\]

or
\[
G(w) = w(1 + (1 + t)G(w) + tG(w)^2)
\]

which is
\[
w = \frac{G(w)}{1 + (1 + t)G(w) + tG(w)^2}.
\]

Recall that we seek
\[
\left[ t^k \right] \sum_{p=0}^{m} \binom{m}{p} [w^n] G(w)^p.
\]

We establish the coefficient extraction integral (Lagrange inversion)
\[
[w^n] G(w)^p = \frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{1}{w^{n+1}} G(w)^p dw.
\]

Setting \( v = G(w) \) and observing that \( w = 0 \) is mapped to \( v = 0 \) we get
\[
\frac{1}{2\pi i} \int_{|v| = \gamma} \frac{(1 + (1 + t)v + tv^2)^{n+1}}{v^{n+1}}
\]

\[
\times v^n \times \left( \frac{1}{1 + (1 + t)v + tv^2} - \frac{v(1 + t + 2tv)}{(1 + (1 + t)v + tv^2)^2} \right) dv.
\]

This is
\[
\frac{1}{2\pi i} \int_{|v| = \gamma} \frac{(1 + (1 + t)v + tv^2)^{n-1}}{v^{n-p+1}} (1 + (1 + t)v + tv^2 - v(1 + t + 2tv)) dv
\]

\[
= \frac{1}{2\pi i} \int_{|v| = \gamma} \frac{(1 + v)^{n-1}(1 + tv)^{n-1}}{v^{n-p+1}} (1 - tv^2) dv.
\]

Now substituting this into the target formula yields
\[ C^{(m)}_n(t) = \frac{1}{2\pi i} \int_{|v|=\gamma} \frac{(1 + v)^{n-1}(1 + tv)^{n-1}}{v^{n+1}} (1 - tv^2) \sum_{p=0}^{m} \binom{m}{p} v^p \, dv \]
\[ = \frac{1}{2\pi i} \int_{|v|=\gamma} \frac{(1 + v)^{n+m-1}(1 + tv)^{n-1}}{v^{n+1}} (1 - tv^2) \, dv. \]

To conclude the proof we must treat the case of \( n = 0 \) which is different from the case \( n \geq 1 \) and extract coefficients on \([t^k]\) in the latter case. With \( n = 0 \) we get

\[ \frac{1}{2\pi i} \int_{|v|=\gamma} (1 + v)^{m-1} \frac{1}{1 + tv} \frac{1}{1 - tv^2} \, dv. \]

This is the constant coefficient and is equal to

\[ (1 + v)^{m-1} \frac{1}{1 + tv} \frac{1}{1 - tv^2} \bigg|_{v=0} = 1, \]

as required. For the case of \( n \geq 1 \) we have two subcases, \( k = 0 \) and \( k \geq 1 \). For \( k = 0 \) the second term in \( 1 - tv^2 \) does not contribute and we have just

\[ \frac{1}{2\pi i} \int_{|v|=\gamma} \frac{(1 + v)^{n+m-1}}{v^{n-k+1}} \, dv \]
\[ = \binom{n + m - 1}{n} = \binom{n + m - 1}{m - 1} = \binom{n + m}{m} \frac{m}{n + m}. \]

This is again the required value. Finally when \( n \geq 1 \) and \( k \geq 1 \) we get two pieces, namely

\[ \binom{n-1}{k} \frac{1}{2\pi i} \int_{|v|=\gamma} \frac{(1 + v)^{n+m-1}}{v^{n-k+1}} \, dv = \binom{n-1}{k} \binom{n+m-1}{n-k} \]

and

\[ -\binom{n-1}{k-1} \frac{1}{2\pi i} \int_{|v|=\gamma} \frac{(1 + v)^{n+m-1}}{v^{n-k}} \, dv = -\binom{n-1}{k-1} \binom{n+m-1}{n-k-1}. \]

Note that when \( k = n \) the first of these integrals never appears in the first place because \([t^k](1 + tv)^{n-1} = 0\) and the second vanishes due to the residue. When \( k > n \) we have \([t^k](1 + tv)^{n-1}(1 - tv^2) = 0\) and everything vanishes. This is the required behavior. We get for the non-zero cases

\[ \binom{n-1}{k} \binom{n+m-1}{k+m - 1} - \binom{n-1}{k-1} \binom{n+m-1}{k+m} \]
\[ = \binom{n-1}{k} \binom{n+m}{k+m} \frac{k + m}{n + m} - \binom{n-1}{k} \binom{n+m}{n-k} \frac{k}{n-k} \binom{n+m}{k+m} \frac{n-k}{n+m}. \]
We have the required value as was to be shown and may end the computation. This was math.stackexchange.com problem 1997791.

49 A property of Legendre polynomials \((B_1)\)

Suppose we seek to determine the constant \(Q\) in the equality

\[
Q_{n,m} \left( \frac{d}{dz} \right)^{n-m} (1-z^2)^n = (1-z^2)^m \left( \frac{d}{dz} \right)^{n+m} (1-z^2)^n
\]

where \(n \geq m\). We will compute the coefficients on \([z^q]\) on the LHS and the RHS. Writing \(1-z^2 = (1+z)(1-z)\) we get for the LHS

\[
\sum_{p=0}^{n-m} \binom{n-m}{p} \binom{n}{p} p!(1+z)^{n-p} \times \binom{n}{n-m-p}(n-m-p)!(1-z)^{m+p}
\]

\[
= (n-m)!(-1)^{n-m} \sum_{p=0}^{n-m} \binom{n}{p} \binom{n}{n-m-p}(1+z)^{n-p}(-1)^p(1-z)^{m+p}.
\]

Extracting the coefficient we get

\[
(n-m)!(-1)^{n-m} \sum_{p=0}^{n-m} \binom{n}{p} \binom{n}{n-m-p}(-1)^p
\]

\[
\times \sum_{k=0}^{n-p} \binom{n-p}{k}(-1)^{q-k} \binom{m+p}{q-k}.
\]

We use the same procedure on the RHS and merge in the \((1-z^2)^m\) term to get

\[
(n+m)!(-1)^{n+m} \sum_{p=0}^{n+m} \binom{n}{p} \binom{n}{n+m-p}(-1)^p
\]

\[
\times \sum_{k=0}^{n+m-p} \binom{n+m-p}{k}(-1)^{q-k} \binom{p}{q-k}.
\]

Working in parallel with LHS and RHS we treat the inner sum of the LHS first, putting

\[
\binom{m+p}{q-k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q-k+1}} (1+z)^{m+p} \, dz
\]

145
to get
\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1+z)^{m+p} \sum_{k=0}^{n-p} \binom{n-p}{k} (-1)^{q-k} z^k \, dz \]
\[ = \frac{(-1)^q}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1+z)^{m+p}(1-z)^{n-p} \, dz. \]

Adapt and repeat to obtain for the inner sum of the RHS
\[ \frac{(-1)^q}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1+z)^{p}(1-z)^{n+m-p} \, dz. \]

Moving on to the two outer sums we introduce
\[ \binom{n}{n-m-p} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n-m-p+1}} (1+w)^n \, dw \]
to obtain for the LHS
\[ \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n-m+1}} (1+w)^n \]
\[ \times \frac{(-1)^q}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1+z)^{m}(1-z)^n \sum_{p=0}^{n-m} \binom{n}{p} (-1)^p w^p \frac{(1+z)^p}{(1-z)^p} \, dz \, dw \]
\[ = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n-m+1}} (1+w)^n \]
\[ \times \frac{(-1)^q}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1+z)^m(1-z)^n \left(1 - w \frac{1+z}{1-z}\right)^n \, dz \, dw \]
\[ = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n-m+1}} (1+w)^n \]
\[ \times \frac{(-1)^q}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1+z)^m(1-z-w-wz)^n \, dz \, dw. \]

Repeat for the RHS to get
\[ \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+m+1}} (1+w)^n \]
\[ \times \frac{(-1)^q}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1-z)^m(1-z-w-wz)^n \, dz \, dw. \]

Extracting coefficients from the first integral (LHS) we write
\[ (1-z-w-wz)^n = (2 - (1+z)(1+w))^n \]
\[ = \sum_{k=0}^{n} \binom{n}{k} (-1)^k (1 + z)^k (1 + w)^k 2^{n-k} \]

and the inner integral yields

\[ (-1)^q \sum_{k=0}^{n} \binom{n}{k} (-1)^k \binom{m+k}{q} (1 + w)^k 2^{n-k} \]

followed by the outer one which gives

\[ (-1)^q \sum_{k=0}^{n} \binom{n}{k} (-1)^k \binom{m+k}{q} (n + k) 2^{n-k} n^m. \]

For the second integral (RHS) we write

\[ (1 - z - w - wz)^n = ((1 - z)(1 + w) - 2w)^n \]

\[ = \sum_{k=0}^{n} \binom{n}{k} (1 - z)^k (1 + w)^k (-1)^{n-k} 2^{n-k} w^{n-k} \]

and the inner integral yields

\[ (-1)^q \sum_{k=0}^{n} \binom{n}{k} \binom{m+k}{q} (-1)^q (1 + w)^k (-1)^{n-k} 2^{n-k} w^{n-k} \]

followed by the outer one which produces

\[ \sum_{k=0}^{n} \binom{n}{k} \binom{m+k}{q} \binom{n+k}{k+m} (-1)^{n-k} 2^{n-k}. \]

The two sums are equal up to a sign and the RHS for the coefficient on \([z^q]\) is obtained from the LHS by multiplying by

\[ \frac{(n+m)!}{(n-m)!} (-1)^{n-q}. \]

Observe that powers of \(z\) that are present in the LHS and the RHS always have the same parity, the coefficients being zero otherwise (either all even powers or all odd). Therefore \((-1)^{n-q}\) is in fact a constant not dependent on \(q\), the question is which. The leading term has degree \(2n - (n - m) = n + m = (2n - (n + m)) + 2m\) on both sides and the sign on the LHS is \((-1)^n\) and on the RHS it is \((-1)^{n+m}\). The conclusion is that the queried factor is given by

\[ Q_{n,m} = (-1)^m \frac{(n+m)!}{(n-m)!}. \]

This was [math.stackexchange.com problem 2066340](https://math.stackexchange.com/questions/2066340).
50 A sum of factorials, OGF and EGF of the Stirling numbers of the second kind \((B_1)\)

We are given that

\[ r^k(r+n)! = \sum_{m=0}^{k} \lambda_m (r+n+m)! \]

and seek to determine the \(\lambda_m\) independent of \(r\). We claim and prove that

\[ \lambda_m = (-1)^{k+m} \sum_{p=0}^{k-m} \binom{k}{p} \left( \frac{k+1-p}{m+1} \right)^n p. \]

With this in mind we re-write the initial condition as

\[ r^k = \sum_{m=0}^{k} \lambda_m m! \binom{r+n+m}{m}. \]

We evaluate the RHS starting with \(\lambda_m\) using the EGF of the Stirling numbers of the second kind which in the present case says that

\[ \binom{k+1-p}{m+1} = \frac{(k+1-p)!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2-p}} \frac{(\exp(z) - 1)^{m+1}}{(m+1)!} \, dz. \]

We obtain for \(\lambda_m\)

\[ (-1)^{k+m} \sum_{p=0}^{k-m} n^p \binom{k}{p} \frac{(k+1-p)!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2-p}} \frac{(\exp(z) - 1)^{m+1}}{(m+1)!} \, dz. \]

The inner term vanishes when \(p \geq k+2\) but in fact even better it also vanishes when \(p > k - m\) which implies \(m+1 > k+1-p\) because \((\exp(z) - 1)^{m+1}\) starts at \([z^{m+1}]\) and we are extracting the term on \([z^{k+1-p}]\). Hence we may extend \(p\) to infinity without picking up any extra contributions to get

\[ (-1)^{k+m} \frac{k!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2}} \frac{(\exp(z) - 1)^{m+1}}{(m+1)!} \sum_{p \geq 0} (k+1-p)^n \frac{n^p p^p}{p!} \, dz. \]

This is

\[ (-1)^{k+m} \frac{k!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2}} \frac{(\exp(z) - 1)^{m+1}}{(m+1)!} ((k+1)-nz) \exp(nz) \, dz. \]

Substitute this into the outer sum to get

148
\[ (-1)^k \frac{k!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2}} ((k + 1) - nz) \exp(nz) \]
\[ \times \sum_{m=0}^{k} \binom{r + n + m}{m} (-1)^m \frac{(\exp(z) - 1)^{m+1}}{m+1} \, dz. \]

We have
\[ \binom{r + n + m}{m} \frac{1}{m+1} = \binom{r + n + m}{m+1} \frac{1}{r+n} \]
and hence obtain
\[ \frac{(-1)^k}{r+n} \frac{k!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2}} ((k + 1) - nz) \exp(nz) \]
\[ \times \sum_{m=0}^{k} \binom{r + n + m}{m+1} (-1)^m (\exp(z) - 1)^{m+1} \, dz. \]

We may extend \( m \) to \( m > k \) in the remaining sum because the term \( (\exp(z) - 1)^{m+1} \) as before starts at \( z^{m+1} \) which would then be \( > k+1 \) but we are extracting the coefficient on \( z^{k+1} \), which makes for a zero contribution.

Continuing we find
\[ - \sum_{m \geq 0} \binom{r + n + m}{r+n-1} (-1)^{m+1} (\exp(z) - 1)^{m+1} \]
\[ = 1 - \frac{1}{(1 - (1 - \exp(z)))^{r+n}} = 1 - \exp(-(r+n)z). \]

We get two pieces on substituting this back into the main integral, the first is
\[ \frac{(-1)^k}{r+n} \frac{k!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2}} ((k + 1) - nz) \exp(nz) \, dz \]
\[ = \frac{(-1)^k}{r+n} (k+1)! \frac{n^{k+1}}{(k+1)!} \frac{1}{r+n} k!n \frac{n^k}{k!} = 0. \]
and the second is
\[ \frac{(-1)^{k+1}}{r+n} \frac{k!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2}} ((k + 1) - nz) \exp((r+n)z) \exp(-(r+n)z) \, dz \]
\[ = \frac{(-1)^{k+1}}{r+n} \frac{k!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{k+2}} ((k + 1) - nz) \exp(-rz) \, dz \]
\[ = \frac{(-1)^{k+1}}{r+n} (k+1)! \frac{(-r)^{k+1}}{(k+1)!} \frac{1}{r+n} k!n \frac{(-r)^k}{k!} \]
\[
\frac{1}{r+n} \frac{(k+1)!}{(k+1)!} r^{k+1} + \frac{1}{r+n} \frac{k!}{k!} r^k
= \frac{1}{r+n} r^{k+1} + \frac{1}{r+n} n^k = r^k.
\]

This concludes the argument.

**Addendum Nov 27 2016.** Markus Scheuer proposes the identity

\[
\lambda_m = (-1)^{m+k} \sum_{p=m}^k \binom{k}{p} \binom{k}{p} (n+1)^{k-p}.
\]

To see that this is the same as what I presented we extract the coefficient on \([n^q]\) to get

\[
(-1)^{m+k} \sum_{p=m}^k \binom{k}{p} \binom{k-p}{q}.
\]

Now we have

\[
\binom{k}{p} \binom{k-p}{q} = \frac{k!}{p!q!(k-p-q)!} = \binom{k-q}{p}.
\]

We get

\[
(-1)^{m+k} \binom{k}{q} \sum_{p=m}^k \binom{k}{p} \binom{k-q}{p}.
\]

We now introduce

\[
\binom{k-q}{p} = \binom{k-q}{k-q-p} = \frac{1}{2\pi i} \int_{|z|=\epsilon} z^{k-q-p+1} (1+z)^{k-q} \, dz.
\]

This certainly vanishes when \(p > k-q\) so we may extend \(p\) to infinity, getting for the sum

\[
(-1)^{m+k} \binom{k}{q} \frac{1}{2\pi i} \int_{|z|=\epsilon} z^{k-q+1} (1+z)^{k-q} \sum_{p\geq m} \binom{p}{m} z^p \, dz.
\]

Using the OGF of the Stirling numbers of the second kind this becomes

\[
(-1)^{m+k} \binom{k}{q} \frac{1}{2\pi i} \int_{|z|=\epsilon} z^{k-q+1} (1+z)^{k-q-1} \prod_{l=1}^m \frac{z}{1-lz} \, dz.
\]

Now put \(z/(1+z) = w\) to get \(z = w/(1-w)\) and \(dz = 1/(1-w)^2 \, dw\) to get

\[
(-1)^{m+k} \binom{k}{q} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{k-q+1}} \frac{1-w}{w} \frac{1}{(1-w)^2} \prod_{l=1}^m \frac{w/(1-w)}{1-lw/(1-w)} \, dw
\]

150
This is the claim and we are done.

This was math.stackexchange.com problem 2028293.

51 Fibonacci, Tribonacci, Tetranacci ($B_1$)

Suppose we seek to evaluate the following sum (with a condition on the binomial coefficient)

\[ G(n, m) = \sum_{k=0}^{n} \sum_{q=0}^{k} (-1)^q \binom{k}{q} \binom{n-1-qm}{k-1} \]

Now when \( n-1-qm < 0 \) we usually get a non-zero value for the binomial coefficient but this is not wanted here. Therefore we have

\[ G(n, m) = \sum_{k=0}^{n} \sum_{q=0}^{\lfloor (n-k)/m \rfloor} (-1)^q \binom{k}{q} \binom{n-1-qm}{k-1} \]

If we have lost any values for \( q \) above \( \lfloor (n-k)/m \rfloor \) these would render the second binomial coefficient zero. If we have added in any values for \( q \) above \( k \) the first binomial coefficient is zero there.

Now with the integral

\[ \binom{n-1-qm}{k-1} = \binom{n-1-qm}{n-k-qm} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{n-1-qm}}{z^{n-k-qm+1}} \, dz \]

we get range control because the pole vanishes when \( q > (n-k)/m \) and we may extend \( q \) to infinity. We thus obtain for the inner sum

\[ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{n-1}}{z^{n-k+1}} \sum_{q \geq 0} (-1)^q \binom{k}{q} \frac{z^{qm}}{(1+z)^{qm}} \, dz \]
This yields for the outer sum
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^n - 1}{z^{n-k+1}} \left(1 - \frac{z^m}{(1 + z)^m}\right)^k \, dz
\]
which is
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1 + z)^{n+m-1}}{z^{n+1}} \left(1 - \frac{z^m}{(1 + z)^m}\right)^{n+1} \, dz
\]
Extracting the second component from the difference we get
\[
-\frac{1}{2\pi i} \int_{|z|=\epsilon} (1 + z)^{n+m-1} \left(1 - \frac{z^m}{(1 + z)^m}\right)^{n+1} \, dz
\]

The pole at zero has vanished. We now have non-zero poles at \(z = -1\) and from the inverted term. These depend on \(m\) and we can certainly choose \(\epsilon\) small enough so that none of them are inside the contour. Therefore this term does not contribute, leaving only
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} (1 + z)^{n+m-1} \left(1 - \frac{z^m}{(1 + z)^m}\right)^{n+1} \, dz
\]

The generating function \(f(w)\) of these numbers is thus given by
\[
f(w) = \sum_{n \geq 0} w^n \sum_{q=0}^{n} \binom{n + m - 1}{n - q} \left[ z^q \right] \frac{1}{(1 - w)(1 + z)^m + z^{m+1}}.
\]
This is
\[
\sum_{q \geq 0} \frac{1}{(1 - w)(1 + z)^m + z^{m+1}} \sum_{n \geq 0} w^n \left[ z^q \right] \frac{1}{(1 - z)(1 + z)^m + z^{m+1}}
\]
\[
= \sum_{q \geq 0} \left[ z^q \right] \frac{1}{(1 - w)^m} \sum_{n \geq 0} \frac{w^n}{(1 - z)(1 + z)^m + z^{m+1}} \frac{1}{n}.
\]
What we have here is an annihilated coefficient extractor that simplifies to

\[
f(w) = \frac{1}{(1-w)^m (1-w/(1-w))(1+w/(1-w))^m + (w/(1-w))^{m+1}}
\]
\[
= \frac{1}{(1-w)^m (1-2w)/(1-w)/(1-w)^m + w^{m+1}/(1-w)^{m+1}}
\]
\[
= \frac{1-w}{1-2w + w^{m+1}}.
\]

Now observe that

\[
1 - 2w + w^{m+1} = (1-w)(1 - w^2 - \cdots - w^{m-1} - w^m)
\]

so we finally have

\[
f(w) = \left(1 - \sum_{q=1}^{m} w^q\right)^{-1} = \frac{1}{1 - w - w^2 - \cdots - w^m}.
\]

We see that by the basic theory of linear recurrences what we have here is a Fibonacci, Tribonacci, Tetranacci etc. recurrence. The question is what are the initial values.

Observe however that \([w^0] f(w) = 1\) and for \(1 \leq q \leq m\) we have

\[
[w^q] \frac{1-w}{1-2w + w^{m+1}} = [w^q] \frac{1}{1-2w + w^{m+1}} - [w^{q-1}] \frac{1}{1-2w + w^{m+1}}.
\]

But

\[
\frac{1}{1-2w + w^{m+1}} = \frac{1}{1-2w(1-w^m/2)} = \sum_{n \geq 0} 2^n w^n (1 - w^m/2)^n
\]

With the condition on \(q\) and \(n \geq 1\) only the constant term from the term \((1 - w^m/2)^n\) contributes because the degree would be more than \(m\) otherwise. This produces just one matching term with coefficient \(2^q\).

This yields for \(f(w)\)

\[
[w^q] f(w) = 2^q - 2^{q-1} = 2^{q-1}.
\]

Therefore we get for the intial terms starting at \(q = 0\)

\[
1, 1, 2, 4, 8, 16, \ldots, 2^{m-1}\quad \text{with recurrence}\quad f_n = \sum_{q=1}^{m} f_{n-q}.
\]

This recurrence also shows (by subtraction) that the sequence may be produced starting from \(m-1\) zero terms followed by one.

The OEIS has the Fibonacci numbers, OEIS A000045

\[
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots
\]
and the Tribonacci numbers, OEIS A000073

1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ... 

and the Tetranacci numbers, OEIS A000078

1, 2, 4, 8, 15, 29, 56, 108, 208, 401, ... 

and more. 

This was math.stackexchange.com problem 1626949 

52 Stirling numbers of two kinds, binomial coefficients

Suppose we seek to verify that

\[
\left\{ \begin{array}{c}
 n \\
 m \\
 \end{array} \right\} = (-1)^n \sum_{k=m}^{n} \binom{k}{m} (-1)^k \sum_{q=0}^{k} \left\{ \begin{array}{c}
 n+q-m \\
 k \\
 \end{array} \right\} \left[ \begin{array}{c}
 k \\
 q \\
 \end{array} \right] \left( \frac{n}{m-q} \right) \\
\]

where presumably \( n \geq m \). We need for the second binomial coefficient that \( m \geq q \) so this is

\[
\left\{ \begin{array}{c}
 n \\
 m \\
 \end{array} \right\} = (-1)^n \sum_{k=m}^{n} \binom{k}{m} (-1)^k \sum_{q=0}^{m} \left\{ \begin{array}{c}
 n+q-m \\
 k \\
 \end{array} \right\} \left[ \begin{array}{c}
 k \\
 q \\
 \end{array} \right] \left( \frac{n}{m-q} \right). \\
\]

Observe that the Stirling number of the second kind vanishes when \( k > n \) so we may extend the summation to infinity, getting

\[
\left\{ \begin{array}{c}
 n \\
 m \\
 \end{array} \right\} = (-1)^n \sum_{k=m}^{\infty} \binom{k}{m} (-1)^k \sum_{q=0}^{m} \left\{ \begin{array}{c}
 n+q-m \\
 k \\
 \end{array} \right\} \left[ \begin{array}{c}
 k \\
 q \\
 \end{array} \right] \left( \frac{n}{m-q} \right). \\
\]

Recall that

\[
\left[ \begin{array}{c}
 k \\
 q \\
 \end{array} \right] = [w^q] k! \times \binom{w+k-1}{k}. \\
\]

Starting with the inner sum we obtain

\[
n! \sum_{q=0}^{m} \frac{1}{(m-q)!} [z^{n+q-m}] (\exp(z) - 1)^k \left[ \begin{array}{c}
 w^m-q \\
 k \\
 \end{array} \right] \left( \frac{w+k-1}{k} \right) \\
= n! \sum_{q=0}^{m} \frac{1}{q!} [z^{n-q}] (\exp(z) - 1)^k \left[ \begin{array}{c}
 w^{m-q} \\
 k \\
 \end{array} \right] \left( \frac{w+k-1}{k} \right). \\
\]

154
Now when $q > m$ the coefficient extractor in $w$ yields zero, hence we may extend the sum in $q$ to infinity:

$$n! \sum_{q \geq 0} \frac{1}{q!} [z^{n-q}] (\exp(z) - 1)^k w^{m-q} \left( \frac{w+k-1}{k} \right).$$

We thus obtain

$$\frac{n!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (\exp(z) - 1)^k \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \left( \frac{w+k-1}{k} \right) \sum_{q \geq 0} \frac{1}{q!} w^q \, dw \, dz$$

$$= \frac{n!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (\exp(z) - 1)^k \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \left( \frac{w+k-1}{k} \right) \exp(zw) \, dw \, dz.$$

Preparing the outer sum we obtain

$$\sum_{k \geq m} \binom{k}{m} (-1)^k (\exp(z) - 1)^k \left( \frac{w+k-1}{k} \right)$$

$$= \sum_{k \geq m} \binom{k}{m} (-1)^k (\exp(z) - 1)^k [v^k] \frac{1}{(1-v)w}.$$  

Note that for a formal power series $Q(v)$ we have

$$\sum_{k \geq m} \binom{k}{m} (-1)^{k-m} u^{k-m} [v^k] Q(v) = \left. \frac{1}{m!} (Q(v))^{(m)} \right|_{v=-u}.$$  

We get for the derivative in $v$

$$\left( \frac{1}{(1-v)^w} \right)^{(m)} = m! \binom{w+m-1}{m} \frac{1}{(1-v)^{w+m}}.$$  

Substituting $u = \exp(z) - 1$ yields

$$m! \binom{w+m-1}{m} \exp(-(w+m)z).$$  

Returning to the double integral we find

$$\frac{(-1)^n \times n!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (\exp(z) - 1)^m (-1)^m$$

$$\times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \exp(zw) \binom{w+m-1}{m} \exp(-(w+m)z) \, dw \, dz$$

$$= \frac{(-1)^n \times n!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (\exp(z) - 1)^m (-1)^m \exp(-mz)$$
\[ \times \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{m+1}} \binom{w + m - 1}{m} \, dw \, dz \]

\[ = \frac{(-1)^n \times n}{2\pi i \times m!} \int_{|z| = \epsilon} \frac{1}{z^{n+1}} (\exp(z) - 1)^m (-1)^m \exp(-mz) \, dz \]

\[ = \frac{(-1)^n \times n}{2\pi i \times m!} \int_{|z| = \epsilon} \frac{1}{z^{n+1}} (1 - \exp(-z))^m (-1)^m \, dz \]

Finally put \( z = -v \) to get

\[ \frac{(-1)^n \times n}{2\pi i \times m!} \int_{|v| = \epsilon} \frac{(-1)^{n+1}}{v^{n+1}} (\exp(v) - 1)^m \, dv \]

\[ = \frac{n!}{2\pi i \times m!} \int_{|v| = \epsilon} \frac{1}{v^{n+1}} (\exp(v) - 1)^m \, dv. \]

This is

\[ n! \left[ v^n \right] \frac{(\exp(v) - 1)^m}{m!} = \left\{ \frac{n}{m} \right\} \]

and we have the claim.

This was [math.stackexchange.com problem 1926107](https://math.stackexchange.com/questions/1926107). 

### 53 An identity involving two binomial coefficients and a fractional term \((B_1)\)

Suppose we seek to verify that

\[ \sum_{k=0}^{m} \binom{pk + q}{k} \binom{pm - pk}{m - k} = \binom{mp + q}{m}. \]

Observe that

\[ \binom{pk + q}{k} = \frac{pk + q}{k} \binom{pk + q - 1}{k - 1} \]

so that

\[ \binom{pk + q}{k} - p \binom{pk + q - 1}{k - 1} = \frac{q}{k} \binom{pk + q - 1}{k - 1} = \frac{q}{pk + q} \binom{pk + q}{k}. \]

This yields two pieces for the sum, call them \( S_1 \)

\[ \sum_{k=0}^{m} \binom{pk + q}{k} \binom{pm - pk}{m - k} \]

156
and $S_2$

$$-p \sum_{k=0}^{m} \left( \frac{pk + q - 1}{k - 1} \right) \left( \frac{pm - pk}{m - k} \right).$$

For $S_1$ introduce the integrals

$$\left( \frac{pk + q}{k} \right) = \frac{1}{2\pi i} \int_{|z|=\gamma} \frac{(1 + z)^{pk+q}}{z^{k+1}} \, dz$$

and

$$\left( \frac{pm - pk}{m - k} \right) = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{pm-pk}}{w^{m-k+1}} \, dw.$$

The second one controls the range of the sum because the pole at zero vanishes when $k > m$ so we may extend $k$ to infinity, getting for the sum

$$\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{pm}}{w^{m+1}} \, dw \int_{|z|=\gamma} \frac{(1 + z)^q}{z} \sum_{k \geq 0} \frac{w^k}{z^k} \frac{(1 + z)^{pk}}{(1 + w)^{pk}} \, dz \, dw$$

$$= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{pm}}{w^{m+1}} \frac{1}{2\pi i} \int_{|z|=\gamma} \frac{(1 + z)^q}{z} \frac{1}{1 - w(1 + z)^p / z / (1 + w)^p} \, dz \, dw$$

$$= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{pm+p}}{w^{m+1}} \frac{1}{2\pi i} \int_{|z|=\gamma} \frac{(1 + z)^q}{z(1 + w)^p - w(1 + z)^p} \, dz \, dw.$$

Suppose $|\epsilon| < |\gamma|$ which makes $\frac{|w(1 + z)^p|}{z(1 + w)^p} < 1$ so that we have convergence of the geometric series and suppose we can prove that $z = w$ is the only pole inside the contour and it is simple. We have

$$((1 + w)^p z - w(1 + z)^p)' = (1 + w)^p - pw(1 + z)^{p-1}$$

$$= (1 + w)^{p-1}(1 + w - wp).$$

We can choose $|\epsilon|$ small enough such that $|1 + w - wp| > 0$ so the pole is order one which yields

$$\frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{pm+p}}{w^{m+1}} \frac{(1 + w)^q}{(1 + w)^{p-1}} \frac{1}{1 + w - pw} \, dw$$

$$= \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{pm+q+1}}{w^{m+1}} \frac{1}{1 + w - pw} \, dw.$$

Following exactly the same procedure we obtain for $S_2$

$$-p \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1 + w)^{pm+q}}{w^m} \frac{1}{1 + w - pw} \, dw.$$
Adding these two pieces now yields
\[
\frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{(1 + w)^{pm+q}}{w^m} \left( \frac{1 + w}{w} - p \right) \frac{1}{1 + w - pw} \, dw
\]
\[= \frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{(1 + w)^{pm+q}}{w^{m+1}} \, dw
\]
\[= \left( \frac{pm + q}{m} \right).
\]

**Remark Mon Jan 25 2016.**

An alternate proof which is completely rigorous and does not depend on assumptions about the poles of a bivariate complex function proceeds from the integral
\[
\frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{(1 + w)^{pm}}{w^{m+1}} \sum_{k \geq 0} \frac{w^k}{(1 + w)^{pk}} \frac{1}{2\pi i} \int_{|z| = \gamma} \frac{(1 + z)^q}{z^{k+1}} (1 + z)^{pk} \, dz \, dw
\]

Now put
\[u = \frac{z}{(1 + z)^p}\]
and introduce \(g(u) = z\).

We then have
\[du = \left( \frac{1}{(1 + z)^p} - p \frac{z}{(1 + z)^{p+1}} \right) \, dz = \left( \frac{u}{g(u)} - \frac{pu}{1 + g(u)} \right) \, dz\]
and
\[dz = \frac{1}{u} \frac{g(u)(1 + g(u))}{1 + g(u) - pg(u)} \, du.
\]

This yields
\[
\frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{(1 + w)^{pm}}{w^{m+1}} \sum_{k \geq 0} \frac{w^k}{(1 + w)^{pk}}
\times \frac{1}{2\pi i} \int_{|u| = \gamma} \frac{1}{g(u)wk} (1 + g(u))^q \frac{1}{u} \frac{g(u)(1 + g(u))}{1 + g(u) - pg(u)} \, du \, dw
\]
or
\[
\frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{(1 + w)^{pm}}{w^{m+1}} (1 + g(u))^q \frac{1}{u} \frac{g(u)}{1 + g(u) - pg(u)} \bigg|_{u = w/(1+w)^p} \, dw.
\]

Now observe that \(g(w/(1 + w)^p) = w\) by definition so we get
\[
\frac{1}{2\pi i} \int_{|w| = \epsilon} \frac{(1 + w)^{pm}}{w^{m+1}} (1 + w)^q \frac{1 + w}{1 + w - pw} \, dw
\]
\[ = \frac{1}{2\pi i} \int_{|w|=\epsilon} \frac{(1+w)^{m+q+1}}{w^{m+1}} \frac{1}{1+w-pw} \, dw. \]

This is exactly the same as before and the rest of the proof continues unchanged.

This was math.stackexchange.com problem 1620083.

54 Double chain of a total of three integrals \((B_1B_2)\)

Suppose we seek to verify that

\[ \sum_{k=q}^{n-1} \frac{q}{k} \binom{2n-2k}{n-k} \binom{2k-q-1}{k-1} = \binom{2n-q-2}{n-1}. \]

This is the same as

\[ \sum_{k=q}^{n} \frac{q-k}{k} \binom{2n-2k}{n-k} \binom{2k-q-1}{k-1} = \binom{2n-q}{n}. \]

which is equivalent to

\[ \sum_{k=q}^{n} \frac{q-k}{k} \binom{2n-2k}{n-k} \binom{2k-q-1}{k-1} = \binom{2n-q}{n}. \]

Now

\[ \frac{q-k}{k} \binom{2k-q-1}{k-1} = \frac{q-k}{k} \frac{(2k-q-1)!}{(k-1)!(k-q)!} \]

\[ = - \frac{(2k-q-1)!}{k!(k-q-1)!} = - \binom{2k-q-1}{k}. \]

It follows that what we have is in fact

\[ \sum_{k=q}^{n} \binom{2n-2k}{n-k} \left( \binom{2k-q-1}{k-1} - \binom{2k-q-1}{k} \right) = \binom{2n-q}{n} \]

or alternatively

\[ \sum_{k=q}^{n} \binom{2n-2k}{n-k} \left( \binom{2k-q-1}{k} - \binom{2k-q-1}{k-q} \right) = \binom{2n-q}{n}. \]

There are two pieces here, call them \(A\) and \(B\). We use the integral representation
\[
\binom{2n-2k}{n-k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n-2k}}{z^{2k-n-k+1}} \, dz
\]

which is zero when \( k > n \) (pole vanishes) so we may extend \( k \) to infinity. We also use the integral

\[
\binom{2k-q-1}{k-q} = \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{2k-q-1}}{w^{k-q+1}} \, dw
\]

which is zero when \( k < q \) so we may extend \( k \) back to zero. We obtain for piece \( A \)

\[
\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{w^{q-1}}{(1+w)^{q+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^{n+1}} \sum_{k \geq 0} \frac{z^k}{(1+z)^{2k}} \frac{(1+w)^{2k}}{w^k} \, dz \, dw
\]

\[
= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{w^{q-1}}{(1+w)^{q+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^{n+1}} \frac{1}{1-z(1+w)^2/w/(1+z)^2} \, dz \, dw
\]

\[
= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{w^{q-1}}{(1+w)^{q+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+2}}{z^{n+1}} \frac{1}{w(1+z)^2-1} \, dz \, dw
\]

\[
= \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{w^{q-1}}{(1+w)^{q+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+2}}{z^{n+1}} \frac{1}{(z-w)(z-1/w)} \, dz \, dw.
\]

The derivation for piece \( B \) is the same and yields

\[
\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{w^{q}}{(1+w)^{q+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+2}}{z^{n+1}} \frac{1}{(z-w)(z-1/w)} \, dz \, dw.
\]

The difference of these two is

\[
\frac{1}{2\pi i} \int_{|w|=\gamma} \frac{w^{q-1}}{(1+w)^{q+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n+2}}{z^{n+1}} \frac{1}{(z-w)(z-1/w)} \, dz \, dw.
\]

Using partial fractions by residues we get

\[
\frac{1-w}{(z-w)(z-1/w)} = \frac{1-w}{w-1/w} \frac{1}{z-w} + \frac{1-w}{1/w-z-1/w} \frac{1}{w^2-1}
\]

\[
= \frac{w(1-w)}{w^2-1} \frac{1}{z-w} + \frac{1-w}{w^2} \frac{1}{z-1/w} = -\frac{w}{1+w} \frac{1}{z-w} + \frac{w}{1+w} \frac{1}{z-1/w}
\]

\[
= \frac{1}{1+w} \frac{1}{z/w} - \frac{1}{1+w} \frac{1}{w}.
\]

At this point we can see that there will be no contribution from the second term but this needs to be verified. We get for the residue in \( z \)
\[-\frac{w^2}{1+w} \sum_{p=0}^{n} \binom{2n+2}{p} w^{n-p}\]

There is no pole at zero in the outer integral for a contribution of zero. Continuing with the first term we get

\[\frac{1}{1+w} \sum_{p=0}^{n} \binom{2n+2}{p} \frac{1}{w^{n-p}}\]

which yields

\[\sum_{p=0}^{n} \binom{2n+2}{p} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{u^{q-1}}{(1+w)^{q+2}} \frac{1}{w^{n-p}} dw\]

\[= \sum_{p=0}^{n} \binom{2n+2}{p} \frac{1}{2\pi i} \int_{|w| = \gamma} \frac{1}{(1+w)^{q+2}} \frac{1}{w^{n-q-p+1}} dw\]

\[= \sum_{p=0}^{n} \binom{2n+2}{p} (-1)^{n-q-p} \binom{n-p+1}{q+1} \]

This is

\[\sum_{p=0}^{n} \binom{2n+2}{p} (-1)^{n-q-p} \binom{n-p+1}{n-p-q} \]

The last integral we will be using is

\[\binom{n-p+1}{n-p-q} = \frac{1}{2\pi i} \int_{|v| = \gamma} \frac{(1+v)^{n-p+1}}{v^{n-p-q+1}} dv.\]

Observe that this is zero when \(p \geq n\) so we may extend \(p\) to infinity, getting

\[\frac{1}{2\pi i} \int_{|v| = \gamma} \frac{(1+v)^{n+1}}{v^{n-q+1}} \sum_{p \geq 0} \binom{2n+2}{p} (-1)^{n-q-p} \frac{v^p}{(1+v)^p} dv\]

\[= (-1)^{n-q} \frac{1}{2\pi i} \int_{|v| = \gamma} \frac{(1+v)^{n+1}}{v^{n-q+1}} \left(1 - \frac{v}{1+v}\right)^{2n+2} dv\]

\[= (-1)^{n-q} \frac{1}{2\pi i} \int_{|v| = \gamma} \frac{1}{v^{n-q+1}} \frac{1}{(1+v)^{n+1}} dv\]

\[= (-1)^{n-q} (-1)^{n-q} \binom{n-q+n}{n} = \binom{2n-q}{n}\]

This is the claim. QED.

This was math.stackexchange.com problem 1708435.
55 Rothe-Hagen identity

The claim we set out to prove is the Rothe-Hagen identity

\[
\sum_{k=0}^{n} \frac{x}{x+kz} \binom{x+kz}{k} \frac{y}{y+(n-k)z} \binom{y+(n-k)z}{n-k} = \frac{x+y}{x+y+nz} \binom{x+y+nz}{n}.
\]

We prove it for \(x, y, z\) positive integers and since the LHS and the RHS are in fact polynomials in \(x, y, z\) (the fractional terms cancel with the corresponding binomial coefficients e.g. \(\frac{x}{x+kz} \binom{x+kz}{k} = \frac{x}{x+kz} (x+kz-k+1)\) as long as \(x+kz \neq 0\) (consult problem statement)) we then have it for arbitrary values (we also get polynomials when \(k = 0\) or \(k = n\).)

Consider the generating function \(C(v)\) that satisfies the functional equation

\[
C(v) = 1 + vC(v)^z.
\]

We ask about again with \(x\) a positive integer

\[
[v^k]C(v)^z = \frac{1}{k} [v^{k-1}]x C(v)^{x-1} C'(v).
\]

This is by the Cauchy Coefficient Formula

\[
\frac{x}{k \times 2\pi i} \int_{|w|=\gamma} \frac{1}{v^k} C(v)^{x-1} C'(v) \, dv.
\]

Now we put \(C(v) = w\) and we have from the functional equation

\[
v = \frac{w - 1}{w^z}
\]

which yields

\[
\frac{x}{k \times 2\pi i} \int_{|w-1|=\gamma} \frac{w^{z}k}{(w-1)^k} w^{x-1} \, dw
\]

\[
= \frac{x}{k \times 2\pi i} \int_{|w-1|=\gamma} \frac{1}{(w-1)^k} \sum_{p=0}^{kz+x-1} \binom{kz+x-1}{p} (w-1)^p \, dw
\]

\[
= \frac{x}{k} \binom{kz+x-1}{k-1} = \frac{x}{x+kz} \binom{x+kz}{k}.
\]

Note that this yields the correct value including for \(k = 0\).

Now starting from the left of the desired identity we find

\[
\sum_{k=0}^{n} [v^k] C_z(v)^x [v^{n-k}] C_z(v)^y = [v^n] C_z(v)^x C_z(v)^y = [v^n] C_z(v)^{x+y}.
\]
This is the claim.
The same result may be obtained using Lagrange inversion.
For the LIF computation we put \( D(v) = C(v) - 1 \) so that we get the functional equation

\[
D(v) = v(D(v) + 1)^z.
\]

Using the notation from [Wikipedia on LIF](https://en.wikipedia.org/wiki/Lagrange_inversion_formula) we have \( \phi(w) = (w + 1)^z \) and \( H(v) = (v + 1)^x \) and obtain

\[
\frac{1}{k} [w^{k-1}] (x(w + 1)^x - (w + 1)^z)^k = \frac{x}{k} [w^{k-1}] (1 + w)^{kz + x - 1} = \frac{x}{k} \binom{kz + x - 1}{k - 1}.
\]

This matches the first result.
This was [math.stackexchange.com problem 3573304](https://math.stackexchange.com/questions/3573304/abel-polynomials-are-of-binomial-type).

### 56 Abel polynomials are of binomial type

We seek to prove that

\[
P_n(x + y) = \sum_{k=0}^{n} \binom{n}{k} P_k(x) P_{n-k}(y)
\]

where

\[
P_n(x) = x(x + an)^{n-1}
\]

is an Abel polynomial. Introduce \( T(z) \) with functional equation

\[
T(z) = z \exp(aT(z))
\]

Viewing this as an EGF we seek the coefficient

\[
n! [z^n] \exp(xT(z)) = x(n - 1)! [z^{n-1}] \exp(xT(z)) T'(z).
\]

Note that \([z^0] \exp(xT(z)) = 1\). With the Cauchy Coefficient Formula we find for \( n \geq 1 \)

\[
\frac{x(n-1)!}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^n} \exp(xT(z)) T'(z) \, dz.
\]

Now we put \( T(z) = w \) to get \( z = w/ \exp(aw) \) and

\[
\frac{x(n-1)!}{2\pi i} \int_{|w| = \gamma} \exp(aw) \exp(xw) \frac{1}{w^n} \, dw
\]

\[
= \frac{x(n-1)!}{2\pi i} \int_{|w| = \gamma} \exp((x + an)w) \frac{1}{w^n} \, dw
\]
This means that
\[
\exp(xT(z)) = 1 + \sum_{n \geq 1} x(x + an)^{n-1} \frac{z^n}{n!}
\]
\[
= \sum_{n \geq 0} x(x + an)^{n-1} \frac{z^n}{n!} = \sum_{n \geq 0} P_n(x) \frac{z^n}{n!}.
\]

By convolution of EGFs we thus have
\[
P_n(x + y) = n![z^n] \exp((x + y)T(z)) = n![z^n] \exp(xT(z)) \exp(yT(z))
\]
\[
= n! \sum_{k=0}^{n} \frac{P_k(x) P_{n-k}(y)}{k! (n-k)!} = \sum_{k=0}^{n} \binom{n}{k} P_k(x) P_{n-k}(y).
\]

The CCF can also be done by Lagrange Inversion, which goes as follows. Using the notation from [Wikipedia on Lagrange-Buermann] we have \(\phi(w) = \exp(aw)\) and \(H(w) = \exp(xw)\) and we find
\[
n![z^n] \exp(xT(z)) = n! \frac{1}{n} [w^{n-1}] x \exp(xw) \exp(anw)
\]
\[
= (n-1)! [w^{n-1}] (x + an) w = x(x + an)^{n-1}.
\]

This was [math.stackexchange.com problem 3704156](https://math.stackexchange.com/questions/3704156).

57 A summation identity with four poles \((B_2)\)

We seek to show that
\[
\sum_{m=0}^{n} (-1)^m \binom{2n+2m}{n+m} \binom{n+m}{n-m} = (-1)^n 2^{2n}.
\]

The LHS is
\[
[z^n] (1 + z)^n \sum_{m=0}^{n} (-1)^m \binom{2n+2m}{n+m} (1 + z)^m z^m.
\]

The coefficient extractor enforces the upper limit of the sum and we may continue with
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^{n+1}} \sum_{m \geq 0} (-1)^m \binom{2n+2m}{n+m} (1 + z)^m z^m \, dz
\]

164
This is the claim. We will document a choice of \( \gamma \) so that \( w = 0 \) and \( w = -z \) are the only poles inside the contour (pole at \( w = 1 \) not included, nor the pole at \( w = 1 + z \).)

Now we have for the pole at \( w = 0 \)

\[
\frac{1}{(w + z)(w - (1 + z))} = \frac{1}{1 + 2z} \left( \frac{1}{w + z} - \frac{1}{w - (1 + z)} \right) = \frac{1}{z(1 + 2z) w/z} + \frac{1}{1 + z} \frac{1}{1 + 2z} \frac{1}{1 - w/(1 + z)}.
\]

We get from the first piece

\[
-\frac{1}{2\pi i} \int_{|z|=\rho} \frac{(1 + z)^n}{z^{n+2}} \frac{1}{1 + 2z} \sum_{q=0}^{n-1} \left( \frac{q + n - 1}{n - 1} \right) (-1)^{n-1-q} \frac{1}{z^{n-1-q}} \, dz
\]

\[
= -\sum_{q=0}^{n-1} \left( \frac{q + n - 1}{n - 1} \right) (-1)^{n-1-q} \frac{1}{2\pi i} \int_{|z|=\rho} \frac{(1 + z)^n}{z^{2n+1-q}} \frac{1}{1 + 2z} \, dz
\]

\[
= -\sum_{q=0}^{n-1} \left( \frac{q + n - 1}{n - 1} \right) (-1)^{n-1-q} \sum_{p=0}^{n} \left( \frac{n}{p} \right) (-1)^{2n-q-p} 2^{n-q-p}.
\]
\[
\sum_{q=0}^{n-1} \binom{q + n - 1}{n - 1} 2^{n-q} \sum_{p=0}^{n} \binom{n}{p} (-1)^{n-p} 2^{-p} \\
= (-1)^n \sum_{q=0}^{n-1} \binom{q + n - 1}{n - 1} 2^{n-q}.
\]

The second piece yields

\[
-\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{n-1}}{z^{n+1}} \frac{1}{1+2z} \sum_{q=0}^{n-1} \binom{q + n - 1}{n - 1} \frac{1}{(1+z)^{n-1-q}} \, dz \\
= -\sum_{q=0}^{n-1} \binom{q + n - 1}{n - 1} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^q}{z^{n+1}} \frac{1}{1+2z} \, dz \\
= -\sum_{q=0}^{n-1} \binom{q + n - 1}{n - 1} \sum_{p=0}^{q} \binom{q}{p} (-1)^{n-p} 2^{-p} \\
= -\sum_{q=0}^{n-1} \binom{q + n - 1}{n - 1} (-1)^{n-q} 2^{n-q} \sum_{p=0}^{q} \binom{q}{p} (-1)^{q-p} 2^{-p} \\
= -(-1)^n \sum_{q=0}^{n-1} \binom{q + n - 1}{n - 1} 2^{n-q}.
\]

We see that the two pieces from \(w = 0\) cancel so that the contribution is zero. This almost completes the proof, we only need to choose the contour so that \(w = 1\) and \(w = 1 + z\) are not included. For the initial geometric series to converge we need \(|1+z| \epsilon < |1-w| \gamma\). With \(\epsilon\) and \(\gamma\) in a neighborhood of zero we have \(|1+z| \epsilon \leq (1+\epsilon) \epsilon\) and \((1-\gamma) \gamma \leq |1-w| \gamma\). The series converges if \((1+\epsilon) \epsilon < (1-\gamma) \gamma\). Therefore a good choice is \(\epsilon = 1/10\) and \(\gamma = 1/5\). The contour in \(\gamma\) clearly includes \(w = 0\) and \(w = -z\) and definitely does not include \(w = 1\) and \(w = 1 + z\) with leftmost value 9/10. This concludes the proof.

We are not required to simplify the sum that appears in \(w = 0\), but we may do so. We get

\[
S_n = \sum_{q=0}^{n-1} \binom{q + n - 1}{n - 1} 2^{n-q} = 2^n [z^{n-1}] \frac{1}{1-z} \frac{1}{(1-z/2)^n} \\
= (-1)^{n+1} 2^n \text{Res}_{z=0} \frac{1}{z^n} \frac{1}{z - 1} \frac{1}{(z - 2)^n}.
\]

Residues sum to zero and the residue at infinity is zero by inspection. The residue at \(z = 1\) contributes \(-2^{2n}\). The residue at \(z = 2\) requires

\[
\frac{1}{(2+(z-2))^n} \frac{1}{1+(z-2)} = \frac{1}{2^n} \frac{1}{(1+(z-2)/2)^n} \frac{1}{1+(z-2)}.
\]
and we get the contribution

\((-1)^{n+1} 2^n \sum_{q=0}^{n-1} \binom{q + n - 1}{n-1} (-1)^q 2^{-q (-1)^{n-1-q}} = S_n.\)

This shows that \(2S_n - 2^{2n} = 0\) or \(S_n = 2^{2n-1}\).
This was math.stackexchange.com problem 3729998.

58 A summation identity over odd indices with a branch cut \((B_2)\)

In trying to evaluate

\[\sum_{k=0}^{m} \binom{2n}{2n-k} \binom{2m-2n}{m-k}\]

we require

\[\sum_{k=0}^{m} \binom{2n}{2n-k} \binom{2m-2n}{m-k} \quad \text{and} \quad \sum_{k=0}^{m} (-1)^k \binom{2m-2n}{m-k}.
\]

For the first one we find

\[\sum_{k=0}^{m} \binom{2n}{2n-k} \binom{2m-2n}{m-k} = [z^m](1 + z)^{2m-2n} \sum_{k=0}^{m} \binom{2n}{k} z^k.
\]

Here the coefficient extractor enforces the range and we get

\[[z^m](1 + z)^{2m-2n} \sum_{k=0}^{m} \binom{2n}{k} z^k = [z^m](1 + z)^{2m-2n} (1 + z)^{2n}
\]

\[= [z^m](1 + z)^{2m} = \binom{2m}{m}.
\]

This also follows from Chu-Vandermonde.

Continuing with the second piece we obtain

\[\sum_{k=0}^{m} (-1)^k \binom{2m-2n}{m-k} = (-1)^m \sum_{k=0}^{m} (-1)^k \binom{2m-2n}{k} \frac{1}{(1 - z)^{m-k+1}}.
\]

Now when \(k > m\) we have \([z^{2n+k-m}](1 - z)^{k-m-1} = 0\) so the coefficient extractor again enforces the range and we find
\[
\frac{(-1)^m}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2n-m+1}} \frac{1}{(1-z)^m+1} \sum_{k \geq 0} (-1)^k \binom{2m-2n}{k} \frac{(1-z)^k}{z^k} \, dz
\]
\[
= \frac{(-1)^m}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{2n-m+1}} \frac{1}{(1-z)^m+1} \left(1 - \frac{1-z}{z}\right)^{2m-2n} \, dz
\]
\[
= \frac{(-1)^m}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m+1}} \frac{(1-2z)^{2(m+1)}}{(1-z)^{m+1}} \, dz
\]
\[
= \frac{(-1)^m}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m+1}} \frac{(1-2z)^{2(m+1)}}{(1-z)^{m+1}} \frac{1}{(1-2z)^{2n+2}} \, dz.
\]

Now put \(z(1-z)/(1-2z)^2 = w\) so that
\[
z = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 + 4w}.
\]

We have that \(w = z + 3z^2 + 8z^3 + \cdots\) so \(z = 0\) should be mapped to \(w = 0\) and in fact we work with
\[
z = \frac{1}{2} - \frac{1}{2} \sqrt{1 + 4w}.
\]

We also see from the series expansion that the small circle around the origin \(|z| = \epsilon\) is mapped to a contour that encircles \(w = 0\) once and may in turn be deformed to a small circle \(|w| = \gamma\). We choose the branch cut on \((-\infty, -1/4]\) so that we get analyticity in a neighborhood of the origin. We also have
\[
dz = \frac{1}{(1+4w)^{3/2}} \, dw.
\]

At last making the substitution we obtain
\[
\frac{(-1)^m}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \frac{1}{(1/\sqrt{1+4w})^{2n+2}} \frac{1}{(1+4w)^{3/2}} \, dw
\]
\[
= \frac{(-1)^m}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}}(1+4w)^{-n-1/2} \, dw = (-1)^m 4^m \binom{n-1/2}{m}.
\]

Collecting the two pieces we find
\[
\frac{1}{2} \binom{2m}{m} + (-1)^{m+1} 2^{2m-1} \binom{n-1/2}{m}.
\]

This was \url{math.stackexchange.com} problem \#3782050.
59 A stirling number identity

We seek to evaluate (note that this is zero by inspection when \( k > n + m \)):

\[
\sum_{j=0}^{n} (-1)^{n+j} \binom{n}{j} \binom{m+j}{k}
\]

where \( k \leq n \). It is claimed that it is zero for \( k < n \) and \( n^m \) for \( k = n \). Using standard EGFs this becomes

\[
n! \sum_{j=0}^{n} (-1)^{n+j} \frac{1}{j!} \left( \log \frac{1}{1-z} \right)^j \frac{(m+j)!}{(w^{m+j}) \left( \exp(w) - 1 \right)^k}
\]

\[
= (-1)^n n! m! \sum_{j=0}^{n} (-1)^j \binom{m+j}{j} \left( \log \frac{1}{1-z} \right)^j \frac{1}{j!}
\]

\[
\times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \left( \frac{\exp(w) - 1}{k!} \right) \frac{1}{w^j} \, dw
\]

\[
= (-1)^n n! m! \sum_{j=0}^{n} (-1)^j \binom{m+j}{j} \left( \log \frac{1}{1-z} \right)^j \frac{1}{w^j}
\]

\[
\times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \frac{(\exp(w) - 1)^k}{k!} \frac{1}{w^j} \, dw.
\]

Now \( \left( \log \frac{1}{1-z} \right)^j = z^j + \cdots \) so the coefficient extractor \([z^n]\) enforces the upper limit of the sum:

\[
(-1)^n n! m! \sum_{j=0}^{n} (-1)^j \binom{m+j}{j} \left( \log \frac{1}{1-z} \right)^j \frac{1}{w^j}
\]

\[
\times \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \frac{(\exp(w) - 1)^k}{k!} \frac{1}{w^j} \, dw \, dz
\]

\[
= (-1)^n n! m! \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \frac{(\exp(w) - 1)^k}{k!} \frac{1}{w^j} \, dw \, dz
\]

\[
\times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{m+1}} \frac{(\exp(w) - 1)^k}{k!} \frac{1}{1 + \frac{1}{w} \log \frac{1}{1-z}^{m+1}} \, dw \, dz
\]
\[- \times \frac{1}{2 \pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \] 

Now observe that for the geometric series in \( j \) to converge we must have \( |z| < |w| \). Note that with \( \log \frac{1}{1-z} = z + \cdots \) the image of \( |z| = \epsilon \) makes one turn around the origin, a circle of radius \( \epsilon \) plus additional lower order fluctuations. We therefore choose \( \epsilon \) to shrink this pseudo-circle to be entirely contained in \( |w| = \gamma \). With this choice the pole at \( -\log \frac{1}{1-z} \) is inside the contour in \( w \). We thus require

\[
\frac{1}{k! \times m!} \left( \sum_{q=0}^{k} \binom{k}{q} (-1)^{k-q} \exp(qw) \right)^{(m)} = \frac{1}{k! \times m!} \sum_{q=0}^{k} \binom{k}{q} (-1)^{k-q} q^m \exp(qw).
\]

Evaluating the integral in \( w \) we find

\[
(-1)^n n! \frac{1}{2 \pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \sum_{q=0}^{k} \binom{k}{q} (-1)^{k-q} q^m (1-z)^q \, dz
\]

which is

\[
\frac{n!}{k!} \sum_{q=0}^{k} \binom{k}{q} \binom{n}{q} (-1)^{k-q} q^m.
\]

Now when \( k < n \) we have \( \binom{n}{k} = 0 \) so the entire sum vanishes as claimed. We get just one term when \( k = n \) namely

\[
\frac{n!}{n!} \binom{n}{n} n (-1)^{n-n} n^m = n^m
\]

also as claimed. This concludes the argument.

This was math.stackexchange.com problem 3852633.

60  A Catalan-Central Binomial Coefficient Convolution

We seek to show that with

\[
Q(z) = \frac{1}{\sqrt{1-4z}} \left( \frac{1 - \sqrt{1-4z}}{2z} \right)^n
\]

we have
Now with the branch cut on \([1/4, \infty)\) for \(\sqrt{1-4z}\) we have analyticity of \(Q(z)\) in a neighborhood of the origin (note that the exponentiated term does not in fact have a pole at \(z = 0\)) and the Cauchy Coefficient Formula applies. We obtain

\[ [z^k]Q(z) = \frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{1}{z^{k+1}} \frac{1}{\sqrt{1-4z}} \left( \frac{1-\sqrt{1-4z}}{2z} \right)^n \, dz. \]

We put \(\sqrt{1-4z} = w\) so that \(\frac{1}{\sqrt{1-4z}} \, dz = -\frac{1}{2} \, dw\) and \(z = (1-w^2)/4\). With \(w = 1-2z - \cdots\) we get as the image of \(|z| = \varepsilon\) a contour that winds around \(w = 1\) counterclockwise once and may be deformed to a circle, so that we obtain

\[ [z^k]Q(z) = -\frac{1}{2} \frac{1}{2\pi i} \int_{|w-1| = \gamma} \frac{4^{k+1}}{(1-w^{2k+1}) (1-w)^n} \left( \frac{1}{2w} \right)^n \frac{1}{2^n (1-w^2)^n} \, dw \]

\[ = \frac{(-1)^k \times 2^{n+2k+1}}{2\pi i} \int_{|w-1| = \gamma} \frac{(w-1)^n}{(w^2-1)^{n+k+1}} \, dw \]

\[ = \frac{(-1)^k \times 2^{n+2k+1}}{2\pi i} \int_{|w-1| = \gamma} \frac{1}{(w-1)^{k+1}} \frac{1}{(w+1)^{n+k+1}} \, dw \]

Apply the Cauchy Residue Theorem to get

\[ (-1)^k \times 2^k \times (-1)^k \frac{1}{2^k} \binom{n+2k}{n+k} = \binom{n+2k}{k} \]

as claimed.

This was math.stackexchange.com problem 4025969.

61 Post Scriptum I: A trigonometric sum

Suppose we seek to evaluate

\[ S = \sum_{k=1}^{m-1} \sin^2(2q(k\pi/m)) = \sum_{k=0}^{m-1} \sin^2(2\pi k/2/m). \]

Introducing \(\zeta_k = \exp(2\pi ik/2/m)\) (root of unity) we get

\[ S = \sum_{k=0}^{m-1} \frac{1}{(2i)^{2q}} (\zeta_k - 1/\zeta_k)^{2q}. \]
We also have
\[ \sum_{k=m}^{2m-1} \frac{1}{(2i)^{2q}} (\zeta_k - 1/\zeta_k)^{2q} \]
\[ = \sum_{k=0}^{m-1} \frac{1}{(2i)^{2q}} (\zeta_k \exp(2\pi im/2m) - 1/\zeta_k)^{2q} \exp(2\pi im/2m))^{2q} \]
\[ = \sum_{k=0}^{m-1} \frac{1}{(2i)^{2q}} (-\zeta_k + 1/\zeta_k)^{2q} \]
\[ = \sum_{k=0}^{m-1} \frac{1}{(2i)^{2q}} (\zeta_k - 1/\zeta_k)^{2q} = S. \]

We conclude that
\[ S = \frac{1}{2} \sum_{k=0}^{2m-1} \frac{1}{(2i)^{2q}} (\zeta_k - 1/\zeta_k)^{2q}. \]

Introducing
\[ f(z) = \frac{(-1)^q}{2^{2q+1}} \left( z - \frac{1}{z} \right)^{2q} \frac{2mz^{2m-1}}{z^{2m} - 1} \]
\[ = \frac{(-1)^q}{2^{2q+1}} \frac{(z^2 - 1)^{2q}}{z^{2q}} \frac{2mz^{2m-1}}{z^{2m} - 1} \]
we then have
\[ S = \sum_{k=0}^{2m-1} \text{Res}_{z=\zeta_k} f(z). \]

Observe that the term \((z^2 - 1)^{2q}\) cancels the poles at ±1 produced by \(z^{2m} - 1\) which however is perfectly acceptable as they correspond to \(\zeta_0 = 1\) and \(\zeta_m = -1\) where \(\zeta_k - 1/\zeta_k\) is zero as well.

Residues sum to zero so we obtain
\[ S + \text{Res}_{z=0} f(z) + \text{Res}_{z=\infty} f(z) = 0. \]

Now for the residue at zero we see that when \(2q - 1 < 2m - 1\) or \(q < m\) the residue is zero. Otherwise we get
\[ \frac{(-1)^q}{2^{2q+1}} \frac{1}{z^{2q-2m}} (z^2 - 1)^{2q} \frac{2m}{z^{2m} - 1} \]
\[ = \frac{(-1)^q}{2^{2q+1}} \frac{1}{z^{2q}} (z^2 - 1)^{2q} \frac{2mz^{2m}}{z^{2m} - 1} \]

= -2m \frac{(-1)^q}{2^{2q+1}} \sum_{p=0}^{q} \binom{2q}{p} (-1)^{2q-p} z^{2q-p} \frac{z^{2m}}{1-z^{2m}}.

We must have \( p = q - lm \) where \( l \geq 1 \). This yields

\[-2m \frac{1}{2^{2q+1}} \sum_{l=1}^{\lfloor q/m \rfloor} \binom{2q}{q - lm} (-1)^{lm}.\]

This is correct even when \( q < m \).

Continuing with the residue at infinity we find

\[\text{Res}_{z=\infty} f(z) = -\text{Res}_{z=0} \frac{1}{z^2} f(1/z)\]

\[= -\text{Res}_{z=0} \frac{1}{z^2} \frac{(-1)^q (1/z^2 - 1)^{2q} 2m/z^{2m-1}}{1/z^{2m} - 1}\]

\[= -\text{Res}_{z=0} \frac{1}{z^2} \frac{(-1)^q (1 - z^2)^{2q} 2m z}{z^{2q} - 1 - z^{2m}}\]

\[= -\text{Res}_{z=0} \frac{(-1)^q (z^2 - 1)^{2q} 2m}{2^{2q+1} z^{2q+1} - 1 - z^{2m}}.\]

This is the same as the first residue at zero except now \( l \) starts at \( l = 0 \) and we obtain

\[-2m \frac{1}{2^{2q+1}} \sum_{l=0}^{\lfloor q/m \rfloor} \binom{2q}{q - lm} (-1)^{lm}.\]

Joining the two pieces we finally have

\[m \frac{1}{2^{2q}} \binom{2q}{q} + m \frac{1}{2^{2q-1}} \sum_{l=1}^{\lfloor q/m \rfloor} \binom{2q}{q - lm} (-1)^{lm}.\]

This was [math.stackexchange.com problem 2051454](https://math.stackexchange.com/p/2051454).

### 62 Post Scriptum II: A class of polynomials similar to Fibonacci and Lucas Polynomials \((B_1)\)

Suppose we seek to collect information concerning

\[\sum_{j=-\lfloor n/p \rfloor}^{\lfloor n/p \rfloor} (-1)^j \binom{2n}{n - pj}.\]

We will construct a generating function in \( n \) with \( p \geq 1 \) fixed. We introduce

\[\binom{2n}{n - pj} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n-pj+1}} (1 + z)^{2n} \, dz.\]
Now we examine this integral we see immediately that it vanishes if \( j > \left\lfloor \frac{n}{p} \right\rfloor \) (pole at zero disappears). Moreover when \( j < -\left\lfloor \frac{n}{p} \right\rfloor \) we have that \([z^{n-pj}](1 + z)^{2n} = 0\) so this vanishes as well. Hence with this integral in place we may let \( j \) range from \(-n\) to infinity and get

\[
\int_{|z|=\epsilon} \frac{1}{2\pi i} \frac{1}{z^{n+p+1}} (1 + z)^{2n} \sum_{j=-n}^{\infty} (-1)^j z^{pj} \, dz
\]

\[
= \frac{1}{2\pi i} \sum_{j=0}^{\infty} (-1)^j z^{n-pj-pn} \, dz
\]

\[
= (-1)^n \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{(p+1)n+1}} (1 + z)^{2n} \frac{1}{1 + z^p} \, dz.
\]

We get zero for the residue at infinity, as can be seen from

\[
\text{Res}_{z=\infty} \frac{1}{z^{(p+1)n+1}} (1 + z)^{2n} \frac{1}{1 + z^p} = 0.
\]

With residues adding to zero and introducing \( \rho_k = \exp((2k+1)\pi i/p) \) we thus obtain

\[
- \sum_{k=0}^{p-1} \frac{1}{\rho_k^{n+p+1}} \frac{1}{\rho^{n+p}} (1 + \rho_k)^{2n} = \frac{1}{p} \sum_{k=0}^{p-1} (-1)^n \frac{1}{\rho_k^{n+p+1}} (1 + \rho_k)^{2n}
\]

\[
= \frac{1}{p} \sum_{k=0}^{p-1} \left( \frac{1}{\rho_k} + 2 + \rho_k \right)^n.
\]

At this point we can compute a generating function using the fact that

\[
\sum_{q \geq 0} \rho^q z^q = \frac{1}{1 - \rho z} = -\frac{1}{\rho} \frac{1}{z - 1/p}
\]

and we obtain as a first attempt

\[
G_p(z) = \frac{1}{p} \sum_{k=0}^{p-1} \frac{1}{1 - 2(1 + \cos(\pi/p + 2\pi k/p))z}.
\]

Observe that this correctly represents the cancelation of the pole at \( z = -1 \) when \( p \) is odd, contributing zero when \( n \geq 1 \) and \( 1/p \) otherwise. Furthermore note that with \( \rho_k = \exp)((2k+1)\pi i/p) \) we have
\[
\frac{1}{\rho_{p-1-k}} = \exp\left(-\left(2(p-1-k) + 1\right)i/p\right) = \exp\left((2(k+1-p) - 1)i/p\right)
\]

\[
= \exp\left((-2(k+1) - 1)i/p - 2\pi i\right) = \exp\left((2k+1)i/p\right) = \rho_k
\]

so the poles come in pairs with no pole at \(-1\) when \(p\) is odd. Therefore the set of poles generated by this sum corresponds to the first \((p-1)/2\) poles when \(p\) is odd and the first \(p/2\) when \(p\) is even. Joining these two we get the degree of the denominator once the sum is computed being \([p/2]\).

This first formula enables us to compute a few of these, like for \(p = 8\) we get

\[
G_8(z) = 1 - 6z + 10z^2 - 4z^3 + 1z^4.
\]

Looking up the coefficients we find for the denominator [OEIS A034807] and for the numerator [OEIS A011973] which point us to three types of polynomials, Fibonacci polynomials, Dickson polynomials and Lucas polynomials. With these data we are able to state a conjecture for the closed form of the generating function, which is

\[
G_p(z) = \left(\sum_{q=0}^{\lfloor p/2 \rfloor} \frac{p}{p-q} \binom{p-q}{q} (-1)^q z^q \right)^{-1} \sum_{q=0}^{\lfloor (p-1)/2 \rfloor} \binom{p-1-q}{q} (-1)^q z^q.
\]

To verify this we must show that the poles are at

\[
\left(\frac{1}{\rho_k} + 2 + \rho_k\right)^{-1} \text{ with residue } -\frac{2}{p} \left(\frac{1}{\rho_k} + 2 + \rho_k\right)^{-1}
\]

where the factor two appears because the poles have been paired.

We therefore require the generating functions of the polynomials that appear in \(G_p(z)\). Call the numerator \(A_p(z)\) and the denominator \(B_p(z)\). We first compute the auxiliary generating function

\[
Q_1(t, z) = \sum_{p \geq 0} t^p \sum_{q=0}^{\lfloor p/2 \rfloor} \binom{p-q}{q} (-1)^q z^q = \sum_{q \geq 0} (-1)^q z^q \sum_{p \geq 2q} \binom{p-q}{q} t^p
\]

\[
= \sum_{q \geq 0} (-1)^q z^q t^{2q} \sum_{p \geq 2q} \binom{p+q}{q} t^p = \sum_{q \geq 0} (-1)^q z^q t^{2q} \frac{1}{(1-t)^{q+1}}
\]

\[
= \frac{1}{1-t} \frac{1}{1+zt^2/(1-t)} = \frac{1}{1-t+zt^2}.
\]

We then have \(A(t, z) = tQ_1(t, z)\). With \(p/(p-q) = 1 + q/(p-q)\) we get two pieces for \(B(t, z)\), the first is \(Q_1(t, z)\) and the second is
\[Q_2(t, z) = \sum_{p \geq 0} t^p \sum_{q=1}^{\lfloor p/2 \rfloor} \binom{p-1-q}{q-1} (-1)^q z^q = \sum_{q \geq 1} (-1)^q z^q \sum_{p \geq 2q} \binom{p-1-q}{q-1} t^p\]

\[= \sum_{q \geq 1} (-1)^q z^q t^{2q} \sum_{p \geq 0} \binom{p+q-1}{q-1} t^p = \sum_{q \geq 1} (-1)^q z^q t^{2q} \frac{1}{(1-t)^q}\]

\[\quad = -\frac{zt^2/(1-t)}{1 + zt^2/(1-t)} = -\frac{zt^2}{1 - t + zt^2}\]

and hence we have \(B(t, z) = Q_1(t, z) + Q_2(t, z)\). This yields the closed form

\[G_p(z) = \left[ \frac{t^p}{1 - zt^2} \right] \frac{1}{1 - z^{2p+1}}\]

Now introducing (we meet a shifted generating function of the Catalan numbers)

\[\alpha(z) = \frac{1 + \sqrt{1 - 4z}}{2} \quad \text{and} \quad \beta(z) = \frac{1 - \sqrt{1 - 4z}}{2}\]

we have a relationship that is analogous to that between Fibonacci and Lucas polynomials, namely,

\[A_p(z) = \frac{1}{\alpha(z) - \beta(z)} (\alpha(z)^p - \beta(z)^p) \quad \text{and} \quad B_p(z) = \alpha(z)^p + \beta(z)^p.\]

We now verify that \(B_p(z) = 0\) for \(z\) a value from the claimed poles. Using \(1/(1/\rho_k + 2 + \rho_k) = \rho_k/(1 + \rho_k)^2\) (\(\rho_k = -1\) is not included here) we find

\[\alpha(z) = \frac{1 + \sqrt{1 - 4\rho_k/(1 + \rho_k)^2}}{2} = \frac{1 + (1 - \rho_k)/(1 + \rho_k)}{2} = \frac{1}{1 + \rho_k}\]

and similarly

\[\beta(z) = \frac{\rho_k}{1 + \rho_k}.\]

Raising to the power \(p\) we find

\[\alpha(z)^p + \beta(z)^p = \frac{1^p + \rho_k^p}{(1 + \rho_k)^p} = \frac{1 - 1}{(1 + \rho_k)^p} = 0.\]

We have located \(\lfloor p/2 \rfloor\) distinct zeros here which means given the degree of \(B_p(z)\) the poles are all simple. This means we may evaluate the residue by setting \(z = \rho_k/(1 + \rho_k)^2\) in (differentiate the denominator)
\[
\frac{1}{p} \left( \sum_{q=0}^{\lfloor p/2 \rfloor} \frac{1}{p-q} (p-q)(-1)^q z^{p-q} \right)^{-1} \sum_{q=0}^{\lfloor (p-1)/2 \rfloor} \left( \frac{p-1-q}{q} \right)(-1)^q z^q
\]

which is

\[
\frac{z}{p} \left( \sum_{q=1}^{\lfloor p/2 \rfloor} \left( \frac{p-1-q}{q-1} \right)(-1)^q z^q \right)^{-1} \sum_{q=0}^{\lfloor (p-1)/2 \rfloor} \left( \frac{p-1-q}{q} \right)(-1)^q z^q
\]

The numerator is \(A_p(z)\) and we get

\[
\frac{1 + \rho_k}{1 - \rho_k} \frac{2}{(1 + \rho_k)(1 + \rho_k)^{p+1}} = \frac{2}{(1 - \rho_k)(1 + \rho_k)^{p+1}}.
\]

The denominator is \([t^p]Q_2(t, z)\) which is

\[
[t^p] \frac{-zt^2}{1 - t + zt^2} = [t^p] \frac{1 - zt^2}{1 - t + zt^2} - [t^p] \frac{1}{1 - t + zt^2}
\]

\[
= [t^p] \frac{1 - zt^2}{1 - t + zt^2} - [t^{p+1}] \frac{t}{1 - t + zt^2} = B_p(z) - A_{p+1}(z) = -A_{p+1}(z).
\]

We get

\[
\frac{1 + \rho_k}{1 - \rho_k} \frac{1^{p+1} - \rho_k^{p+1}}{(1 + \rho_k)(1 + \rho_k)^{p+1}} = -\frac{(1 + \rho_k)^2}{(1 - \rho_k)(1 + \rho_k)^{p+1}} = -\frac{1}{(1 - \rho_k)(1 + \rho_k)^{p+1}}.
\]

Joining numerator and denominator and multiplying by \(z/p\) finally produces

\[
\frac{1}{p} \left( \frac{1}{\rho_k} + 2 + \rho_k \right)^{-1} \frac{2/(1 - \rho_k)/(1 + \rho_k)^{p-1}}{-1/(1 - \rho_k)/(1 + \rho_k)^{p-1}} = -\frac{2}{p} \left( \frac{1}{\rho_k} + 2 + \rho_k \right)^{-1}
\]

as claimed. We have proved that the formula from the Egorychev method matches the conjectured form in terms of a certain class of polynomials that are related to Fibonacci and Lucas polynomials as well as Catalan numbers.

This was math.stackexchange.com problem 2237745.

63 Post Scriptum III: Partial row sums of Pascal’s triangle \((B_1)\)

Here we seek to prove that

\[
\sum_{k=0}^{n} \binom{2k+1}{k} \binom{m-(2k+1)}{n-k} = \sum_{k=0}^{n} \binom{m+1}{k}.
\]
This is
\[
[z^n] \sum_{k=0}^{n} \binom{2k+1}{k} z^k (1+z)^{m-(2k+1)}
= [z^n] (1+z)^{m-1} \sum_{k=0}^{n} \binom{2k+1}{k} z^k (1+z)^{-2k}.
\]

Here \([z^n]\) enforces the range of the sum and we find
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{m-1}}{z^{n+1}} \sum_{k=0}^{n} \binom{2k+1}{k} z^k (1+z)^{-2k} \, dz = 1
\]
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{m-1}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1+w}{w} \sum_{k=0}^{n} \frac{(1+w)^{2k}}{w^k} z^k (1+z)^{-2k} \, dw \, dz = 1
\]
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{m+1}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1+w}{w(1+z)^2 - z(1+w)^2} \, dw \, dz = 1
\]
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{m+1}}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1+w}{(1-wz)(w-z)} \, dw \, dz.
\]

There is no pole at \(w = 0\) here. Note however that for the geometric series to converge we must have \(|z(1+w)^2| < |w(1+z)^2|\). We can achieve this by taking \(\gamma = 2\epsilon\) so that
\[
|z(1+w)^2| \leq \epsilon(1+2\epsilon)^2 = 4\epsilon^3 + 4\epsilon^2 + \epsilon \big|_{\epsilon=1/20} = \frac{242}{4000}
\]
and
\[
|w(1+z)^2| \geq 2\epsilon(1-\epsilon)^2 = 2\epsilon^3 - 4\epsilon^2 + 2\epsilon \big|_{\epsilon=1/20} = \frac{361}{4000}.
\]

With these values the pole at \(w = z\) is inside the contour and we get as the residue
\[
\frac{1+z}{1-z^2} = \frac{1}{1-z}.
\]

This yields on substitution into the outer integral
\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{m+1}}{z^{n+1}} \frac{1}{1-z} \, dz = [z^n] \frac{(1+z)^{m+1}}{1-z}
= \sum_{k=0}^{n} \binom{m+1}{k} (1+z)^{n-k} \frac{1}{1-z} = \sum_{k=0}^{n} \binom{m+1}{k}.
\]

178
This is the claim.

**Remark.** For the pole at \( w = 1/z \) to be inside the contour we would need \( 1/\epsilon < 2\epsilon \) or \( 1 < 2\epsilon^2 \) which does not hold here so this pole does not contribute.

This was [math.stackexchange.com problem 3640984](https://math.stackexchange.com/questions/3640984).

### 64 Post Scriptum IV: The Tree function and Eulerian numbers of the second order

We seek to show that the following identity holds:

\[
2^{n+1} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{2^k} = n! [x^n] \frac{1}{1 + W(-\exp((x-1)/2)/2)}.
\]

We will be using data from [Wikipedia on Lambert W](https://en.wikipedia.org/wiki/Lambert_W_function) and work with the combinatorial branch which is \( W_0(z) \).

Recall that

\[
W'(z) \frac{z}{W(z)} = \frac{1}{1 + W(z)}.
\]

We obtain

\[
[z^m] \frac{1}{1 + W(z)} = \frac{1}{2\pi i} \int_{|z|=\gamma} \frac{1}{v} \frac{1}{W(z)} W'(z) \, dz.
\]

Putting \( W(z) = v \) we find

\[
\frac{1}{2\pi i} \int_{|v|=\gamma} v^m \exp(mv) \frac{1}{v} \, dv = \frac{1}{2\pi i} \int_{|v|=\gamma} v^{m+1} \exp(-mv) \, dv = \frac{(-1)^m m^m}{m!}.
\]

so that

\[
\frac{1}{1 + W(z)} = \sum_{m \geq 0} (-1)^m m^m \frac{z^m}{m!}.
\]

We get for the original RHS

\[
n! [x^n] \sum_{m \geq 0} \frac{m^m}{m!} \exp(m(x-1)/2) \frac{1}{2^m}
\]

\[
= n! [x^n] \sum_{m \geq 0} \frac{m^m}{m!} \exp(-m/2) \frac{1}{2^m} \exp(mx/2)
\]

\[
= \sum_{m \geq 0} \frac{m^{m+n} \exp(-m/2)}{m! \cdot 2^{m+n}}.
\]
First part. Introduce the tree function $T(z)$ from combinatorics where $T(z) = z \exp T(z)$ and $T(z) = -W_0(-z)$. Note that we have by Cayley’s theorem that $T(z) = \sum_{m \geq 1} m^{m-1} \frac{z^m}{m!}$. We claim that with $n \geq 1$

$$Q_n(z) = \sum_{m \geq 0} m^{m+n} \frac{z^m}{m!} = \frac{1}{(1 - T(z))^{2n+1}} \sum_{k=1}^{n} \binom{n}{k} T(z)^k.$$

This means the RHS is $\frac{1}{2^n} Q_n(\exp(-1/2)/2)$. To verify this last identity note that $Q_{n+1}(z) = z \frac{d}{dz} Q_n(z)$ so we may prove it by induction.

We get for the RHS of the series identity on differentiating and multiplying by $z$

$$\frac{(2n+1)zT'(z)}{(1 - T(z))^{2n+2}} \sum_{k=1}^{n} \binom{n}{k} T(z)^k + \frac{z}{(1 - T(z))^{2n+2}} \sum_{k=1}^{n} \binom{n}{k} kT(z)^{k-1}T'(z)$$

Extracting the term $zT'(z)/(1 - T(z))^{2n+2}$ in front leaves us with

$$(2n + 1) \sum_{k=1}^{n} \binom{n}{k} T(z)^k + (1 - T(z)) \sum_{k=1}^{n} \binom{n}{k} kT(z)^{k-1}$$

$$= (2n + 1) \sum_{k=1}^{n} \binom{n}{k} T(z)^k + \sum_{k=0}^{n-1} \binom{n}{k+1} (k+1)T(z)^k - \sum_{k=1}^{n} \binom{n}{k} kT(z)^k$$

$$= \sum_{k=1}^{n} \binom{n}{k} (2n + 2 - (k+1))T(z)^k + \sum_{k=0}^{n-1} \binom{n}{k+1} (k+1)T(z)^k.$$  

We may include $k = 0$ in the first sum and $k = n$ in the second. Now the Eulerian number recurrence (second order) according to OEIS A349556 is

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} (2n - k)$$

We have shown that

$$Q_{n+1}(z) = \frac{zT'(z)}{(1 - T(z))^{2n+2}} \sum_{k=0}^{n} \binom{n+1}{k+1} T(z)^k$$

$$= \frac{zT'(z)}{T(z)(1 - T(z))^{2n+2}} \sum_{k=1}^{n+1} \binom{n+1}{k} T(z)^k.$$  

Now we just have to verify that

$$\frac{zT'(z)}{T(z)(1 - T(z))^{2n+2}} = \frac{1}{(1 - T(z))^{2n+3}}$$

or $zT'(z)(1 - T(z)) = T(z).$
The functional equation tells us that $T'(z) = \exp T(z) + z \exp T(z)T'(z)$ so that $T'(z)(1 - T(z)) = \exp T(z) = T(z)/z$ which is just what we need. It remains to verify the base case so the induction starts properly. We seek

$$Q_1(z) = \sum_{m \geq 0} m^{m+1} \frac{z^m}{m!} = \frac{T(z)}{(1 - T(z))^2}.$$ 

We verify this by coefficient extraction. We get

$$m! [z^m] Q_1(z) = \frac{m!}{2\pi i} \int_{|z| = \varepsilon} \frac{1}{z^{m+1}} \frac{T(z)}{(1 - T(z))^3} \, dz.$$ 

With $T(z) = z + \cdots$ this integral will produce the correct value zero for $m = 0$. For $m \geq 1$, we put $T(z) = w$ so that $z = w \exp(-w)$ and $dz = \exp(-w)(1 - w) \, dw$ and obtain

$$m! [z^m] Q_1(z) = \frac{m!}{2\pi i} \int_{|w| = \gamma} \frac{1}{w^{m+1}} \frac{T(z)}{(1 - w)^3} \exp(-w)(1 - w) \, dw.$$ 

This is

$$m! \sum_{q=0}^{m-1} \frac{m^q}{q!} (m - q) = m! \sum_{q=0}^{m-1} \frac{m^q+1}{q!} - m! \sum_{q=1}^{m-1} \frac{m^q}{(q-1)!}$$

$$= m! \sum_{q=0}^{m-1} \frac{m^{q+1}}{q!} - m! \sum_{q=0}^{m-2} \frac{m^{q+1}}{q!} = m! \frac{m^m}{(m-1)!} = m^{m+1}$$

as desired.

**Sequel.** Note that in the identity for $Q_n(z)$ we have by the definition of the Eulerian numbers that $\langle n \rangle_0$ is zero when $n \geq 1$. Therefore we may extend $k$ to include zero (with $n \geq 1$ for the moment) which yields

$$Q_n(z) = \sum_{m \geq 0} m^{m+n} \frac{z^m}{m!} = \frac{1}{(1 - T(z))^{2n+1}} \sum_{k=0}^{n} \langle n \rangle_k T(z)^k.$$ 

Now observe that this will produce $Q_0(z) = \sum_{m \geq 0} m^m \frac{z^m}{m!} = \frac{1}{1 - T(z)}$ due to $\langle 0 \rangle_0 = 1$ which is in fact correct because unlike $Q_n(z)$ with $n \geq 1$, $Q_0(z)$ has a constant term, which is one (this is because $m^{m+n} = 0$ for $m = 0$ and $n \geq 1$ and $m^{m+n} = 1$ for $m = 0$ and $n = 0$). Therefore

$$Q_0(z) = 1 + zT'(z) = 1 + \frac{T(z)}{1 - T(z)} = \frac{1}{1 - T(z)}$$

as obtained from the boxed version of the main identity, which is seen to hold for all $n \geq 0$. 

181
Conclusion. We are now ready to answer the original question. We have shown that the RHS is $\frac{1}{2^n} Q_n(\exp(-1/2)/2)$. By our formula for $Q_n(z)$ in terms of the tree function we obtain with $T(\exp(-1/2)/2) = \frac{1}{2}$ last the closed form

$$\frac{1}{2^n} \frac{1}{(1-1/2)^{2n+1}} \sum_{k=0}^{n} \binom{n}{k} z^k = 2^{n+1} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{2^k}$$

which is the LHS and hence the claim.

This was math.stackexchange.com problem 4040942.

65 Post Scriptum V.1: A Stirling set number generating function and Eulerian numbers of the second order

Supposing that $\left\{\begin{array}{c} n \\ k \end{array}\right\}$ is the Stirling number of the second kind giving the count of partitions of a set of $n$ distinguishable objects into $k$ non-empty subsets we seek to show that

$$\left\{\begin{array}{c} n + r \\ n \end{array}\right\}$$

is a polynomial of degree $2r$ in $n$. We start with the following claim for $r \geq 0$:

$$Q_r(z) = \sum_{n \geq 0} \left\{\begin{array}{c} n + r \\ n \end{array}\right\} z^n = \frac{1}{(1-z)^{2r+1}} \sum_{k=0}^{r} \binom{r}{k} z^k.$$

We will prove this by induction. Note that depending on whether ball $n+r+1$ joins an existing set or becomes a singleton we have

$$\left\{\begin{array}{c} n + r + 1 \\ n \end{array}\right\} = n \left\{\begin{array}{c} n + r \\ n \end{array}\right\} + \left\{\begin{array}{c} n + r \\ n - 1 \end{array}\right\}.$$

Multiply by $z^n$ and sum over $n \geq 0$ to get

$$Q_{r+1}(z) = zQ'_r(z) + \sum_{n \geq 1} \left\{\begin{array}{c} n + r \\ n - 1 \end{array}\right\} z^n = zQ'_r(z) + z \sum_{n \geq 0} \left\{\begin{array}{c} n + r + 1 \\ n \end{array}\right\} z^n$$

$$= zQ'_r(z) + zQ_{r+1}(z).$$

This means we have

$$Q_{r+1}(z) = \frac{z}{1-z} Q'_r(z).$$

Now to prove the claim it certainly holds for $r = 0$ by inspection. It also holds for $r = 1$ since
\[\sum_{n \geq 1} \left(\frac{n+1}{2}\right) z^n = z \sum_{n \geq 1} \left(\frac{n+1}{2}\right) z^{n-1} = z \sum_{n \geq 0} \left(\frac{n+2}{2}\right) z^n = \frac{z}{(1-z)^3}.\]

For the induction step supposing it holds for \( r \geq 1 \) we differentiate and multiply by \( z/(1-z) \) to get for \( Q_{r+1}(z) \)

\[\frac{z}{1-z} \left(\frac{2r+1}{1-z^{2r+3}} \sum_{k=0}^{r} \langle\langle r \rangle_{k}\rangle \right) z^k + \frac{z}{1-z} \left(\frac{1}{(1-z)^2} \sum_{k=1}^{r} \langle\langle r \rangle_{k}\rangle k z^{k-1}\right).\]

Factoring out \( 1/(1-z)^{2r+3} \) for the moment we are left with

\[(2r + 1) \sum_{k=0}^{r} \langle\langle r \rangle_{k}\rangle z^{k+1} + (1-z) \sum_{k=1}^{r} \langle\langle r \rangle_{k}\rangle k z^k\]

\[= (2r + 1) \sum_{k=1}^{r+1} \langle\langle r \rangle_{k-1}\rangle z^k + \sum_{k=0}^{r} \langle\langle r \rangle_{k}\rangle k z^k - \sum_{k=0}^{r} \langle\langle r \rangle_{k}\rangle k z^{k+1}\]

\[= (2r + 1) \sum_{k=1}^{r+1} \langle\langle r \rangle_{k-1}\rangle z^k + \sum_{k=0}^{r} \langle\langle r \rangle_{k}\rangle k z^k - \sum_{k=1}^{r} \langle\langle r \rangle_{k-1}\rangle (k-1) z^k\]

Now with \( r \geq 1 \) we may extend the first and the third sum to include \( k = 0 \) and the second to include \( k = r + 1 \) to obtain

\[\sum_{k=0}^{r+1} \left(2r+2-k\right) \langle\langle r \rangle_{k-1}\rangle z^k + k \langle\langle r \rangle_{k}\rangle z^k.\]

The Eulerian number recurrence (second order) according to OEIS A349556

is

\[\langle\langle n \rangle_{k}\rangle = k \langle\langle n-1 \rangle_{k}\rangle + (2n-k) \langle\langle n-1 \rangle_{k-1}\rangle\]

so this is with the factor in front

\[\frac{1}{(1-z)^{2r+3}} \sum_{k=0}^{r+1} \langle\langle r+1 \rangle_{k}\rangle z^k\]

and the induction goes through.

Now to see that \( \{\binom{n+r}{n}\} \) is a polynomial in \( n \) of degree \( 2r \) we extract the coefficient on \([z^n]\) of \( Q_r(z) \) to get

\[\sum_{k=0}^{r} \langle\langle r \rangle_{k}\rangle \left(\frac{2r+n-k}{2r}\right) = \frac{1}{(2r)!} \sum_{k=0}^{r} \langle\langle r \rangle_{k}\rangle (n+2r-k)^{2r}.\]
The sum terms are products of $2r$ linear terms in $n$ times a coefficient that does not depend on $n$ (Eulerian number) and neither does the range of the sum (finite, $r + 1$ terms) and we have the claim. The coefficient on $n^{2r}$ is

$$\frac{1}{(2r)!} \sum_{k=0}^{r} \left\langle r \atop k \right\rangle = \frac{1}{(2r)!} (2r - 1)!! = \frac{1}{(2r)!} \frac{(2r)!}{2^{r}r!} = \frac{1}{2^{r}r!} \neq 0.$$  

This was math.stackexchange.com problem 4121168.

66 Post Scriptum V.2: A Stirling cycle number generating function and Eulerian numbers of the second order

We start with the following claim

$$Q_r(z) = \sum_{n \geq 0} \left[ \frac{n + r + 1}{n + 1} \right] z^n = \frac{1}{(1 - z)^{2r+1}} \sum_{k=0}^{r} \left\langle \frac{r}{r - k} \right\rangle z^k.$$  

We will prove this by induction. Introduce $P_r(z) = z^r Q_r(z)$. Note that depending on whether ball $n + r + 2$ joins an existing cycle or turns into a fixed point we have

$$\left[ \frac{n + r + 2}{n + 2} \right] = (n + r + 1) \left[ \frac{n + r + 1}{n + 2} \right] + \left[ \frac{n + r + 1}{n + 1} \right].$$

Multiply by $z^{n+r}$ and sum over $n \geq 0$ to get

$$\sum_{n \geq 0} \left[ \frac{n + r + 2}{n + 2} \right] z^{n+r} = \sum_{n \geq 0} (n + r + 1) \left[ \frac{n + r + 1}{n + 2} \right] z^{n+r} + P_r(z).$$

The first term is

$$\frac{1}{z} (P_r(z) - r!z^r)$$

and the second one

$$\left( z \sum_{n \geq 0} \left[ \frac{n + 2 + (r - 1)}{n + 2} \right] z^{n+1+r-1} \right)' = (-r!z^{r-1} + P_{r-1}(z) + zP'_{r-1}(z)).$$

This gives the recurrence

$$P_r(z) - r!z^r = -r!z^{r-1} + zP_{r-1}(z) + z^2 P'_{r-1}(z) + z P_r(z).$$

We obtain

184
\[ P_r(z) = \frac{z}{1-z}(P_{r-1}(z) + zP'_{r-1}(z)) = \frac{z}{1-z}(zP_{r-1}(z))'. \]

We now prove by induction that
\[ P_r(z) = \frac{1}{(1-z)^{2r+3}} \sum_{k=0}^{r} \binom{r}{r-k} z^{r+k}. \]

It certainly holds for \( r = 0 \) where the infinite series gives \( 1/(1-z) \) and it also holds at \( r = 1 \) as well where the sum gives
\[ \sum_{n \geq 1} \binom{n+1}{2} z^n = \sum_{n \geq 0} \binom{n+2}{2} z^n = \frac{z}{(1-z)^3} \]
and the Eulerian numbers produce
\[ \frac{1}{(1-z)^3} [\binom{1}{1} z + \binom{1}{0} z^2] = \frac{z}{(1-z)^3}. \]

Now supposing it holds with \( r \geq 1 \) we must show that it holds for \( r + 1 \). Doing the differentiation and multiplication we obtain
\[ \frac{z}{1-z} \frac{2r+1}{(1-z)^{2r+2}} \sum_{k=0}^{r} \binom{r}{r-k} z^{r+1+k} \]
\[ + \frac{z}{1-z} \frac{1}{(1-z)^{2r+3}} \sum_{k=0}^{r} \binom{r}{r-k} (r+1+k)z^{r+k}. \]

Factoring out \( 1/(1-z)^{2r+3} \) for the moment this becomes
\[ z(2r + 1) \sum_{k=0}^{r} \binom{r}{r-k} z^{r+1+k} + (z - z^2) \sum_{k=0}^{r} \binom{r}{r-k} (r+1+k)z^{r+k}. \]

or
\[ (2r + 1) \sum_{k=-1}^{r} \binom{r}{r-k} z^{r+2+k} + \sum_{k=0}^{r+1} \binom{r}{r-k} (r+1+k)z^{r+1+k} \]
\[ - \sum_{k=-1}^{r} \binom{r}{r-k} (r+1+k)z^{r+2+k}. \]

Here we have included three zero terms, one in every sum. Continuing,
\[ (2r + 1) \sum_{k=0}^{r+1} \binom{r}{r+1-k} z^{r+1+k} + \sum_{k=0}^{r+1} \binom{r}{r-k} (r+1+k)z^{r+1+k} \]

185
We obtain

\[- \sum_{k=0}^{r+1} \left[ (r + 1 - k) \binom{r}{r + 1 - k} + (r + 1 + k) \binom{r}{r - k} \right] z^{r+1+k}.\]

The Eulerian number recurrence (second order) according to OEIS A349556 is

\[\langle\langle \binom{n}{k} \rangle\rangle = k \langle\langle \binom{n-1}{k} \rangle\rangle + (2n - k) \langle\langle \binom{n-1}{k-1} \rangle\rangle\]

Putting \(n := r + 1\) and \(k := r + 1 - k\) and restoring the factor in front now yields

\[\frac{1}{(1 - z)^{2r+3}} \sum_{k=0}^{r+1} \left[ (r + 1 - k) \binom{r}{r + 1 - k} + (r + 1 + k) \binom{r}{r - k} \right] z^{r+1+k}\]

thus concluding the induction.

**Addendum.** The reader might well wonder how the conjecture from the beginning was obtained i.e. how we find the closed form for small \(r\) for lookup in the OEIS, which then points us to Eulerian numbers, enabling the whole computation.

Recall e.g. from *Concrete Mathematics* chapter 6.2. [GKP89] that

\[\left[ \begin{array}{c} n \\ m \end{array} \right] = \frac{(n-1)!}{(m-1)!} [w^{n-m}] \left( \frac{w \exp(w)}{\exp(w) - 1} \right)^n.\]

We get for our series

\[Q_r(z) = [w^r] \sum_{n \geq 0} z^n \frac{(n+r)!}{n!} \left( \frac{w}{1 - \exp(-w)} \right)^{n+r+1}\]

\[= r! [w^r] \left( \frac{w}{1 - \exp(-w)} \right)^{r+1} \sum_{n \geq 0} z^n \binom{n+r}{r} \left( \frac{w}{1 - \exp(-w)} \right)^n\]

\[= r! [w^r] \left( \frac{w}{1 - \exp(-w)} \right)^{r+1} \frac{1}{(1 - zw/(1 - \exp(-w)))^{r+1}}\]

\[= r! [w^r] \frac{w^{r+1}}{(1 - \exp(-w) - zw)^{r+1}}.\]

Note that the fraction is a formal power series in \(w\) with no pole at zero. Continuing,
A CAS like Maple for example can recognize the pole of order \( r + 1 \) at zero which has now appeared and quickly compute the residue by differentiation. This will produce e.g.

\[
Q_5(z) = \frac{z^4 + 52 z^3 + 328 z^2 + 444 z + 120}{(1 - z)^1}
\]

which is enough to spot the pattern.

This was math.stackexchange.com problem 4480877.

67 Post Scriptum VI: Another case of factorization

In seeking to evaluate

\[
\sum_{\ell=0}^{k/2} \left( \frac{q/2 + \ell}{2\ell} \right) \left( \frac{q/2 - j + k - \ell}{k - 2\ell} \right) + \left( \frac{q/2 - j + k - \ell - 1}{k - 2\ell} \right)
\]

We get for the first piece of the sum

\[
\sum_{\ell=0}^{k/2} \left( \frac{q/2 + \ell}{2\ell} \right) \left( \frac{q/2 - j + k - \ell}{k - 2\ell} \right)
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{k+1}} (1+z)^{q/2-j+k} \sum_{\ell=0}^{k/2} \left( \frac{q/2 + \ell}{2\ell} \right) \frac{z^{2\ell}}{(1+z)^{q/2}} \, dz.
\]

Now here the residue vanishes when \( 2\ell > k \) so it enforces the upper limit of the sum and we obtain

\[
\times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{q/2}}{w} \sum_{\ell\geq 0} \frac{z^{2\ell}}{(1+z)^{q/2}} \frac{(1+w)^{\ell}}{w^{2\ell}} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1+z)^{q/2-j+k}}{z^{k+1}}
\]

\[
\times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1+w)^{q/2}}{w} \frac{1}{1 - z^2(1+w)/(1+z)/w} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1+z)^{q/2-j+k+1}}{z^{k+1}}
\]
\[
\times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{(1 + w)^{q/2} w}{(w - z)(w(1 + z) + z)} \, dw \, dz.
\]

The pole at \( w = 0 \) has been canceled. Now observe that for the geometric series to converge we must have

\[
|z^2(1 + w)/w^2/(1 + z)| < 1.
\]

We will choose a contour that includes both simple poles. The first pole is at \(-z/(1 + z)\). We thus require \(|z/(1 + z)| < \gamma\). With \(|z/(1 + z)| \leq \varepsilon/(1 - \varepsilon)\) we get \(\varepsilon/(1 - \varepsilon) < \gamma\) and we furthermore need \(|z^2/(1 + z)| < |w^2/(1 + w)|\). The latter holds if \(\varepsilon^2/(1 - \varepsilon) < \gamma^2/(1 + \gamma)\). Both hold if \(\varepsilon \gamma < \gamma^2/(1 + \gamma)\) or \(\varepsilon < \gamma/(1 + \gamma)\). So \(\varepsilon = \gamma^2/(1 + \gamma)\) will work. Observe that this contour also includes the pole at \(w = z\).

**First pole.** Now to extract the residue at \(w = -z/(1 + z)\) we write

\[
\times \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1 + z)^{q/2-j+k}}{z^{k+1}} \frac{w}{(w - z)(w + z/(1 + z))} \, dw \, dz
\]

and obtain

\[
= \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1 + z)^{q/2-j} - z/(1 + z)}{z^{k+1}} dz
\]

Repeating for the second sum we get

\[
= \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1 + z)^{k-j-1}}{z^{k+1}} \frac{1}{z + 2} \, dz.
\]

Adding the two we find

\[
= \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1 + z)^{k-j-1}(1 + (1 + z))}{z^{k+1}} \frac{1}{z + 2} \, dz = \binom{k-j-1}{k}.
\]

**Second pole.** For the residue at \(w = z\) we obtain for the first sum

\[
= \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1 + z)^{q/2-j+k+1}}{z^{k+1}} \frac{z}{(z(1 + z) + z)} \, dz
\]

Repeating for the second sum we get
Adding the two we find
\[
\frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{(1 + z)^{q-j+k} + 1}{z^{k+1}} \frac{1}{z+2} \, dz = \binom{q-j+k}{k},
\]

**Conclusion.** Collecting everything we obtain \( \binom{q-j+k}{k} + \binom{k-j-1}{k} \).

The second term is \( (k-j-1)^k/k! \). Now if \( 0 \leq j < k \) this is indeed zero because the falling factorial hits the zero value. If \( j \geq k \) all \( k \) terms are negative and we get \( (-j)^k/k! \).

We have at last
\[
\binom{q-j+k}{k} + (-1)^k \binom{j}{k},
\]
as claimed.

**Remark.** The potential square roots that appeared in the above all use the principal branch of the logarithm with branch cut \((-\infty, -1]\) which means everything is analytic in a neighborhood of zero as required.

This was [math.stackexchange.com problem 4155443](https://math.stackexchange.com/questions/4155443).

### 68 Post Scriptum VII: An additional case of factorization

Supposing we seek to simplify
\[
\sum_{j=0}^{k} \binom{2j}{j+q} \binom{2k-2j}{k-j}.
\]

where \( 0 \leq q \leq k \). This is
\[
[z^k](1+z)^{2k} \sum_{j=0}^{k} \binom{2j}{j+q} \frac{z^j}{(1+z)^{2j}}.
\]

Here the coefficient extractor enforces the upper limit of the sum and we find
\[
[z^k](1+z)^{2k} \sum_{j \geq 0} \binom{2j}{j+q} \frac{z^j}{(1+z)^{2j}}.
\]
At this point we see that we will require residues and complex integration and continue with

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k}}{z^{k+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{q+1}} \sum_{j \geq 0} \frac{(1+w)^{2j}}{w^j} \frac{z^j}{(1+z)^{2j}} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k}}{z^{k+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{q+1}} \frac{1}{1-z(1+w)^2/w/(1+z)^2} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k+2}}{z^{k+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{q+1}} \frac{1}{w^q w(1+z)^2-z(1+w)^2} \, dw \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k+2}}{z^{k+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{q+1}} \frac{1}{(w-z)(1-wz)} \, dw \, dz.
\]

For the geometric series to converge we must have \(|z(1+w)^2/w/(1+z)^2| < 1\) or \(|z/(1+z)^2| < |w/(1+w)|^2\). This requires \(\epsilon/(1-\epsilon)^2 < \gamma/(1+\gamma)^2\). We will also require \(w = z\) to be inside the contour for \(w\) so we need \(\epsilon < \gamma\). With \(\epsilon \ll 1\) and \(\gamma \ll 1\) we may take \(\epsilon = \gamma^2\) for the latter inequality. We then get for the inequality from the geometric series \(\gamma^2/(1-\gamma^2)^2 < \gamma/(1+\gamma)^2\) or \(\gamma < (1-\gamma^2)^2/(1+\gamma)^2\) or \(\gamma < (1-\gamma)^2\). This holds for \(\gamma < 1-1/\varphi\) with \(\varphi\) the golden mean.

Now we have the pole at zero and the one at \(w = z\) inside the contour in \(w\). This means we can evaluate the integral by using the fact that residues sum to zero, taking minus the residue at \(w = 1/z\) and minus the residue at infinity, which is zero by inspection, however. (The pole at \(w = 1/z\) has modulus \(1/\epsilon\) and is outside the contour.) Computing minus the residue at \(w = 1/z\) we write

\[
-\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k+2}}{z^{k+2}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{q+1}} \frac{1}{(w-z)(w-1/z)} \, dw \, dz.
\]

With the sign change we obtain

\[
\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k+2}}{z^{k+2}} \frac{1}{z^{q+1}} \frac{1}{1/z-z} \, dz = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k+2}}{z^{k+1}} \frac{1}{z^{q+1}} \frac{1}{1-z^2} \, dz
\]

\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2k+1}}{z^{k+1}} \frac{1}{1-z} \, dz.
\]

This is zero when \(q > k\) and otherwise

\[
\sum_{j=0}^{k-q} \binom{2k+1}{j} = \sum_{j=0}^{k} \binom{2k+1}{j} - \sum_{j=k-q+1}^{k} \binom{2k+1}{j}
\]

or alternatively
\[ 4^k - \sum_{j=k-q+1}^{k} \binom{2k+1}{j} \]

which is a closed form term plus a sum of \( q \) terms. E.g. with \( q = 0 \) we obtain \( 4^k \) and with \( q = 1, 4^k - \binom{2k+1}{k-1} \). For \( q = 2 \) we have \( 4^k - \binom{2k+1}{k-1} - \binom{2k+1}{k} \) and so on.

This was \texttt{math.stackexchange.com} problem 4174584.

69 Post Scriptum VIII: Contours and a binomial square root

Suppose we seek to prove that

\[ \sum_{k=0}^{n} \binom{2n+1}{2k+1} \binom{m+k}{2n} = \binom{2m}{2n}. \]

Introduce the integral representation

\[ \binom{m+k}{2n} = \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{2n+1}} (1+z)^{m+k} \, dz. \]

This gives the following integral

\[ \frac{1}{2\pi i} \int_{|z|=\varepsilon} \sum_{k=0}^{n} \binom{2n+1}{2k+1} \frac{1}{z^{2n+1}} (1+z)^{m+k} \, dz = \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1+z)^m}{z^{2n+1}} \sum_{k=0}^{n} \binom{2n+1}{2k+1} (1+z)^{k} \, dz \]

\[ = \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1+z)^{m-1/2}}{z^{2n+1}} \sum_{k=0}^{n} \binom{2n+1}{2k+1} \sqrt{1+z}^{2k+1} \, dz. \]

The sum is

\[ \sum_{k=0}^{2n+1} \binom{2n+1}{k} (1+z)^{k} \frac{1}{2} (1-(-1)^k) \]

\[ = \frac{1}{2} ((1+\sqrt{1+z})^{2n+1} - (1-\sqrt{1+z})^{2n+1}) \]

and we get for the integral

\[ \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{(1+z)^{m-1/2}}{2z^{2n+1}} \left( (1+\sqrt{1+z})^{2n+1} - (1-\sqrt{1+z})^{2n+1} \right) \, dz. \]
By way of ensuring analyticity we observe that we must have \( \varepsilon < 1 \) owing to the branch cut \((-\infty, -1]\) of the square root. Now put \( 1 + z = w^2 \) so that \( dz = 2w \, dw \) and the integral becomes

\[
\frac{1}{2\pi i} \int_{|w-1|=\gamma} \frac{w^{2m-1}}{(w^2 - 1)^{2n+1}} \left((1+w)^{2n+1} - (1-w)^{2n+1}\right) \, w \, dw.
\]

This is

\[
\frac{1}{2\pi i} \int_{|w-1|=\gamma} w^{2m} \left(\frac{1}{(w-1)^{2n+1}} + \frac{1}{(w+1)^{2n+1}}\right) \, dw.
\]

Treat the two terms in the parentheses in turn. The first contributes

\[
[(w-1)^{2n}]w^{2m} = [(w-1)^{2n}] \sum_{q=0}^{2m} \binom{2m}{q} (w-1)^q = \binom{2m}{2n}.
\]

The second term is analytic on and inside the circle that \( w \) traces round the value 1 with no poles (pole is at \( w = -1 \)) and hence does not contribute anything. This concludes the argument.

**Remark.** We must document the choice of \( \gamma \) so that \( |w-1| = \gamma \) is entirely contained in the image of \( |z| = \varepsilon \), which since \( w = 1 + \frac{1}{2}z + \cdots \) makes one turn around \( w = 1 \) and may then be continuously deformed to the circle \( |w-1| = \gamma \). We need a bound on where this image comes closest to one. We have \( w = 1 + \frac{1}{2}z + \sum_{q \geq 2} (-1)^{q+1} \frac{1}{2q-1} \binom{2q}{q} z^q \). The modulus of the series term is bounded by \( \sum_{q \geq 2} \frac{1}{2q-1} \binom{2q}{q} |z|^q = 1 - \frac{1}{2} |z| - \sqrt{1-|z|} \). Therefore choosing \( \gamma = \frac{1}{2} \varepsilon - 1 + \frac{1}{2} \varepsilon + \sqrt{1-\varepsilon} = \sqrt{1-\varepsilon} + \varepsilon - 1 \) will fit the bill. For example with \( \varepsilon = 1/2 \) we get \( \gamma = (\sqrt{2} - 1)/2 \). It is a matter of arithmetic to verify that with the formula we have \( \gamma < 1 \).

This was [math.stackexchange.com problem 601940](https://math.stackexchange.com/questions/601940).

### 70 Post Scriptum IX: Careful examination of a contour

We seek to show that

\[
\sum_{q=0}^{n} \binom{n}{q} (-1)^{n-q} \binom{2q+1}{q+1} = 2^{n+1} - 1.
\]

The LHS is

\[
\frac{(-1)^n}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \sum_{q=0}^{n} (-1)^q z^q (1+z)^q \frac{(1+w)^{2q+1}}{w^{q+2}} \, dw \, dz.
\]
There is no contribution when \( q > n \) and we may extend \( q \) to infinity:

\[
\frac{(-1)^n}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1 + w}{w^2} \frac{1}{1 + z(1 + z)(1 + w)^2} \frac{1}{w} \, dw \, dz
\]

\[
= \frac{(-1)^n}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{n+1}} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1 + w}{w} \frac{1}{(1 + z + wz)(z + (1 + z)w)} \, dw \, dz.
\]

Now we determine \( \varepsilon \) and \( \gamma \) so that the geometric series converges and the pole at \( w = -z/(1 + z) \) is inside \( |w| = \gamma \) while the pole at \( w = -z/(1 + z) \) is not. For the series we require \( |z(1 + z)(1 + w)^2/w| < 1 \). With \( |z(1 + z)| \leq \varepsilon(1 + \varepsilon) \) and \( |w/(1 + w)^2| \geq \gamma/(1 + \gamma)^2 \) we need \( \varepsilon(1 + \varepsilon) < \gamma/(1 + \gamma)^2 \). Observe that on \([0, 1]\) we have \( \gamma/(1 + \gamma)^2 \geq \gamma/4 \) since \( 4 \geq (1 + \gamma)^2 \). For \( \gamma/4 > \varepsilon(1 + \varepsilon) \) we choose \( \gamma = 8\varepsilon \) with \( \varepsilon \ll 1 \) and we have our pair. Now for the pole at \( -z/(1 + z) \) we need for the maximum norm \( \varepsilon/(1 - \varepsilon) < \gamma = 8\varepsilon \) which holds with \( \varepsilon < 7/8 \) which we will enforce. The second pole under consideration is \( -(1 + z)/z = -1 - 1/z \). The closest this comes to the origin is \(-1 + \varepsilon = -1 + 1/8\). To see that this is outside \( |w| = \gamma \) we need \(-1 + 1/8 < -1 + \gamma < \gamma < 8/9 \). This means we instantiate \( \varepsilon \) to \( \varepsilon < 1/9 \), which completes the discussion of the contour.

Now residues sum to zero and the residue at infinity in \( w \) is zero by inspection which means that the inner integral is minus the residue at \( w = -(1 + z)/z \), as it is equal to the sum of the residues at zero and at \( w = -z/(1 + z) \). We write

\[
-\frac{1}{z} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1 + w}{w} \frac{1}{((1 + z)/z + w)(z + (1 + z)w)} \, dw.
\]

We get from this being a simple pole the contribution (here \$\!(1+w)/w = 1/(1+z) \!\$)

\[
-\frac{1}{z} \frac{1}{1 + z - (1 + z)^2/z} = \frac{1}{1 + z} \frac{1}{1 + 2z}
\]

which combined with the integral in \( z \) gives

\[
(-1)^n [z^n] \frac{1}{1 + z} \frac{1}{1 + 2z} = (-1)^n \sum_{q=0}^{n} (-1)^q 2^q (-1)^{n-q} = \sum_{q=0}^{n} 2^q.
\]

This is indeed

\[
2^{n+1} - 1
\]

as claimed.

This was math.stackexchange.com problem 4196412.
71 Post Scriptum X: Stirling numbers, Bernoulli numbers and Catalan numbers

Suppose we seek to prove that
\[
\sum_{k=0}^{n} \binom{n+k}{k} \binom{2n}{n+k} \frac{(-1)^k}{k+1} = B_n \binom{2n}{n} \frac{1}{n+1}
\]
a unique identity that connects three types of significant combinatorial numbers. We get for the LHS
\[
\sum_{k=0}^{n} \binom{n+k}{k} \binom{2n}{n-k} \frac{(-1)^k}{k+1} = [z^n](1+z)^{2n} \sum_{k=0}^{n} \binom{n+k}{k} \frac{(-1)^k z^k}{k+1}.
\]

The coefficient extractor \([z^n]\) combined with the factor \(z^k\) enforces the upper limit of the sum so we may let \(k\) range to infinity:
\[
[z^n](1+z)^{2n} \sum_{k=0}^{n} \binom{n+k}{k} \frac{(-1)^k z^k}{k+1} = 1 \frac{1}{2} \frac{1}{\pi} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^{n+1}} dz.
\]

Here we see that we will require complex methods and switch to
\[
\frac{(n-1)!}{2\pi i} \int_{|w|=[\gamma]} \frac{1}{w^{n+1}} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^{n+1}} \sum_{k=0}^{n} \binom{n+k}{n-1} (-1)^k z^{k} \frac{(\exp(w) - 1)^k}{w^k} dz dw.
\]

Computing the sum we find
\[
-\frac{1}{z} \frac{w}{\exp(w) - 1} \sum_{k=0}^{n} \binom{n-1+k}{n-1} (-1)^k z^{k} \frac{(\exp(w) - 1)^k}{w^k}
\]

\[
= \frac{1}{z} \frac{w}{\exp(w) - 1} - \frac{1}{z} \frac{w}{\exp(w) - 1} \frac{1}{1 + z(\exp(w) - 1)/w^n}.
\]
The first component yields by inspection
\[
(n-1)! \times \frac{2n}{n+1} \times \frac{1}{n!} = B_n \frac{1}{n!} \frac{2n}{n+1} = B_n \frac{2n}{n} \frac{1}{n+1}.
\]

We have the claim if we can show the second component yields zero. We get
\[
-\frac{(n-1)!}{2\pi i} \int_{|w|=[\gamma]} \frac{1}{w^{n+1}} (\exp(w) - 1)^{n+1} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{2n}}{z^{n+2}} \frac{1}{(z + w/(\exp(w) - 1))^n} dz dw.
\]
At this time we must instantiate our contours. We need for the binomial series to converge that \(|z(\exp(w) - 1)/w| < 1\) or \(|z| < |w/(\exp(w) - 1)|\). Observe that this means the pole at \(z = -w/(\exp(w) - 1)\) is outside the circle \(|z| = \varepsilon\).

To get a lower bound on the norm of the image of \(|w| = \gamma\) we first take \(\gamma \ll 1\) and observe that by expanding the series and bounding \(\sum_{m \geq 1} w^{-m+1}/m!\) by \(\sum_{m \geq 1} \gamma^{m-1}/m!\) we have \(|(\exp(w) - 1)/w| \leq (\exp(\gamma) - 1)/\gamma\). Since the term in \(w\) is non-zero on and inside \(|w| = \gamma\) (there is no pole at zero and the value there is one and the nearest zero is at \(\pm 2\pi i\)) we may invert to get \(|w/(\exp(w) - 1)| \geq \gamma/(\exp(\gamma) - 1)\).

Hence \(\varepsilon = 1 - \frac{1}{2}\gamma\) is an admissible choice and we have determined the contour.

The pair \(\gamma = 1/3\) and \(\varepsilon = 5/6\) will work.

We thus must verify that the pole at \(z = -w/(\exp(w) - 1)\) makes a zero contribution (residues sum to zero and the residue at infinity is zero by inspection).

This requires (Leibniz rule)

\[
\frac{1}{(n-1)!} \left. \left( \frac{1}{z^{n+2}} (1 + z)^{2n} \right) \right|_{z=0}^{(n-1)} = \frac{1}{(n-1)!} \sum_{q=0}^{n-1} \binom{n-1}{q} (-1)^q (\frac{n+1+q}{n+1})! \frac{1}{z^{n+2+q}} \times \frac{(2n)!}{(2n-(n-1-q))!} (1 + z)^{2n-(n-1-q)}
\]

\[
= \sum_{q=0}^{n-1} (-1)^q \binom{n+1+q}{q} \frac{1}{z^{n+2+q}} (\frac{2n}{n+1+q})(1 + z)^{n+1+q}.
\]

Observe that

\[
\binom{n+1+q}{q} \binom{2n}{n+1+q} = \frac{(2n)!}{q! \times (n+1)! \times (n-1-q)!} = \binom{2n}{n+1} \binom{n-1}{q}
\]

so the sum becomes

\[
\binom{2n}{n+1} \frac{(1 + z)^{n+1}}{z^{n+2}} \sum_{q=0}^{n-1} \binom{n-1}{q} (-1)^q \frac{(1 + z)^q}{z^q}
\]

\[
= \binom{2n}{n+1} \frac{(1 + z)^{n+1}}{z^{n+2}} \left( 1 - \frac{1 + z}{z} \right)^{n-1}
\]

\[
= \binom{2n}{n+1} \frac{(-1)^{n-1} (1 + z)^{n+1}}{z^{2n+1}}.
\]

Making the substitution we are left with the integral

\[
195
\]
\[
\left( \frac{2n}{n+1} \right) (-1)^n \frac{(n-1)!}{2\pi i} \int_{|w|=\gamma} \frac{1}{\exp(w) - 1} \left( \frac{1-w/(\exp(w) - 1)}{(-w/(\exp(w) - 1))^{n+1}} \right) dw.
\]

The inner term is
\[
-(\exp(w) - 1)^n \frac{1}{w^{2n+1}} (1 - w/(\exp(w) - 1))^{n+1}
\]
\[
= -\frac{1}{w^{2n+1}} \frac{1}{\exp(w) - 1} (\exp(w) - 1 - w)^{n+1}.
\]

We get for the integral
\[
\left( \frac{2n}{n+1} \right) (-1)^{n+1} \frac{(n-1)!}{2\pi i} \int_{|w|=\gamma} \frac{w}{\exp(w) - 1} \left( \frac{1}{w^{2n+2}} \right) (\exp(w) - 1 - w)^{n+1} dw.
\]

Now this is
\[
[w^{2n+1}] \frac{w}{\exp(w) - 1} (\exp(w) - 1 - w)^{n+1} = 0
\]
because \((\exp(w) - 1 - w)^{n+1} = \frac{1}{2\pi i} w^{2n+2} + \cdots\) which concludes the argument. (The poles at \(\pm 2\pi i k, k \geq 1\) are not inside the contour.)

This problem has not yet appeared at math.stackexchange.com. The source is exercise 6.74 from *Concrete Mathematics* by Graham, Knuth and Patashnik, [GKP89] credited to B.F.Logan.

### 72 Post Scriptum XI: Computing an EGF from an OGF

We seek to compute the EGF of a sequence from its OGF. There may be some cases where complex variables, the residue theorem and the residue at infinity are helpful. Suppose your OGF is \(f(z)\) and the desired EGF is \(g(w)\). Then we have

\[
g(w) = \sum_{n \geq 0} \frac{w^n}{n!} \frac{1}{2\pi i} \int_{|z|=?} \frac{1}{z^{n+1}} f(z) \, dz.
\]

This will simplify together with some conditions on convergence to give

\[
g(w) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{f(z)}{z} \sum_{n \geq 0} \frac{w^n}{n!} \frac{1}{z^n} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{f(z)}{z} \exp(w/z) \, dz.
\]
Example I. Suppose
\[ f(z) = \frac{1}{1 - z}, \]
which yields
\[ \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{1 - z} \frac{1}{z} \exp(w/z) \, dz. \]

Now for \( z = R \exp(i\theta) \) with \( R \) going to infinity we have
\[ 2\pi R \times \frac{1}{R^2} \times \exp(|w|/R) \to 0 \]
as \( R \to \infty \) so this integral is
\[ -\text{Res}_{z=1} \frac{1}{1 - z} \frac{1}{z} \exp(w/z) \]
and we get
\[ g(w) = \exp(w) \]
which is the correct answer.

Example II. This time suppose that
\[ f(z) = \frac{z}{(1 - z)^2} \]
so that we should get
\[ g(w) = \sum_{n \geq 1} \frac{n}{n!} w^n = w \sum_{n \geq 1} \frac{w^{n-1}}{(n-1)!} = w \exp(w). \]
The integral formula yields
\[ \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{z}{(1 - z)^2} \frac{1}{z} \exp(w/z) \, dz \]
\[ = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{(1 - z)^2} \exp(w/z) \, dz. \]
The residue at infinity is zero as before and we have
\[ \exp(w/z) = \sum_{n \geq 0} (\exp(w/z))^{(n)} \bigg|_{z=1} \frac{(z - 1)^n}{n!} \]
The coefficient on \((z - 1)\) is
\[ -\frac{1}{z^2} \exp(w/z) \bigg|_{z=1} = -w \exp(w) \]
which is the correct answer taking into account the sign flip due to \( z = 1 \) not being inside the contour.
Remark. Good news. The sum in the integral converges everywhere.

Addendum: somewhat more involved example. The OGF of Stirling numbers of the second kind for set partitions into \( k \) non-empty sets is

\[
\sum_{n \geq 0} \binom{n}{k} z^n = \prod_{q=1}^{k} \frac{z}{1 - qz}.
\]

We thus have that

\[
g(w) = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z} \exp(w/z) \prod_{q=1}^{k} \frac{z}{1 - qz} \, dz
\]

\[
= (-1)^k \frac{2\pi i}{k!} \int_{|z| = \epsilon} \frac{1}{z} \exp(w/z) \prod_{q=1}^{k} \frac{z}{qz - 1} \, dz
\]

Computing the sum of the residues at the finite poles not including zero we get

\[
\frac{(-1)^k}{k!} \sum_{q=1}^{k} \exp(qw) \times \frac{1}{q} \prod_{m=1}^{q-1} \frac{1/q}{1/q - 1/m} \prod_{m=q+1}^{k} \frac{1}{1/q - 1/m}
\]

\[
= \frac{(-1)^k}{k!} \sum_{q=1}^{k} \exp(qw) \prod_{m=1}^{q-1} \frac{1}{m - q} \prod_{m=q+1}^{k} \frac{1}{m - q}
\]

\[
= \frac{(-1)^k}{k!} \sum_{q=1}^{k} \exp(qw) \frac{k!}{q} \prod_{m=1}^{q-1} \frac{1}{m - q} \prod_{m=q+1}^{k} \frac{1}{m - q}
\]

\[
= \frac{(-1)^k}{k!} \sum_{q=1}^{k} \exp(qw) \frac{k!}{q} \frac{(-1)^{-1} 1}{q (q - 1)! (k - q)!}
\]

\[
= \frac{1}{k!} \sum_{q=1}^{k} \exp(qw) (-1)^{k-q} \binom{k}{q}
\]

\[
= -\frac{(\exp(w) - 1)^k}{k!} - \frac{(-1)^k}{k!}.
\]

This is a case where the residue at infinity is not zero. We have the formula for the residue at infinity

\[
\text{Res}_{z=\infty} h(z) = \text{Res}_{z=0} \left[ -\frac{1}{z^2} h\left(\frac{1}{z}\right) \right]
\]
This yields for the present case

\[-\text{Res}_{z=0} \frac{1}{z^2} z^{-1} \exp(wz) \prod_{q=1}^{k} \frac{1/z}{1 - q/z} = -\text{Res}_{z=0} \frac{1}{z} \exp(wz) \prod_{q=1}^{k} \frac{1/z}{1 - q} \]

\[= - \frac{1}{k!} \text{Res}_{z=0} \frac{1}{z} \exp(wz) \prod_{q=1}^{k} \frac{1}{z/q - 1} \]

\[= - \frac{(-1)^k}{k!} \text{Res}_{z=0} \frac{1}{z} \exp(wz) \prod_{q=1}^{k} \frac{1}{1 - z/q} = - \frac{(-1)^k}{k!}. \]

Adding the residue at infinity to the residues from the poles at \( z = 1/q \) we finally obtain

\[- \left( \frac{(\exp(w) - 1)^k}{k!} - \frac{(-1)^k}{k!} \right) - \frac{(-1)^k}{k!} = - \frac{(\exp(w) - 1)^k}{k!}. \]

Taking into account the sign flip we have indeed computed the EGF of the Stirling numbers of the second kind

\[\sum_{n \geq 0} \left\langle n \right\rangle \frac{z^n}{n!} \]

as can be seen from the combinatorial class equation

\[\text{SET}(U \times \text{SET}_{\geq 1}(Z))\]

which gives the bivariate generating function

\[G(z, u) = \exp(u(\exp(z) - 1)).\]

This was math.stackexchange.com problem 1289377.

73 Post Scriptum XII: Stirling numbers of the first and second kind

We seek an alternate closed form of

\[\sum_{q=0}^{r} (-1)^{q+r} \binom{r}{q} \left\langle n + q - 1 \right\rangle.\]

With the usual EGFs this becomes

\[\sum_{q=0}^{r} (-1)^{q+r} \frac{r!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{r+1} q!} \left( \log \frac{1}{1 - z} \right)^q \]

199
\[ \times \frac{(n + q - 1)!}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+q} k!} (\exp(w) - 1)^k \, dw \, dz. \]

Now we may extend \( q \) beyond \( r \) because \( (\log \frac{1}{1-z})^q = z^q + \cdots \) and hence \( q > r \) produces no pole in a neighborhood of zero (the branch cut of the logarithmic term is \([1, \infty)\)). We find

\[ \times \frac{(-1)^r \times r! \times (n - 1)!}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{r+1}} \int_{|w|=\gamma} \frac{1}{w^n k!} (\exp(w) - 1)^k \]

\[ \times \sum_{q \geq 0} \binom{n + q - 1}{n - 1} \frac{(-1)^q}{w^q} (\log \frac{1}{1-z})^q \, dw \, dz. \]

Next we will sum the binomial series which requires \( |\log \frac{1}{1-z}| < |w| \). Observe that for the image of \(|z|=\varepsilon\) we have \( |\log \frac{1}{1-z}| < \frac{\varepsilon}{1-\varepsilon} \). Therefore choosing \( \gamma \) so that \( \frac{\varepsilon}{1-\varepsilon} \leq \gamma \) will work e.g. for \( \varepsilon = 1/Q \) we take \( \gamma = 1/(Q - 1) \). This yields

\[ = \frac{(-1)^r \times r! \times (n - 1)!}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{r+1}} \int_{|w|=\gamma} \frac{1}{w^n k!} (\exp(w) - 1)^k \]

\[ \times \frac{1}{(w + \log \frac{1}{1-z})^n} \, dw \, dz. \]

The pole at zero for \( w \) has been canceled but the pole at \( w = -\log \frac{1}{1-z} \) now lies inside the contour. Therefore we require

\[ = \frac{1}{(n - 1)! \times k!} \left( \sum_{p=0}^{k} \binom{k}{p} (-1)^{k-p} \exp(pw) \right)^{(n-1)} \]

\[ = \frac{1}{(n - 1)! \times k!} \left( \sum_{p=0}^{k} \binom{k}{p} (-1)^{k-p} p^{n-1} \exp(pw) \right) \]

Evaluate at \( w = -\log \frac{1}{1-z} \) and substitute into the integral in \( z \) to obtain

\[ \frac{(-1)^r \times r!}{k! \times 2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{r+1}} \sum_{p=0}^{k} \binom{k}{p} (-1)^{k-p} p^{n-1} (1-z)^p \, dz \]
\[
(-1)^r \sum_{p=r}^{k} \binom{k}{p} (-1)^{k-p} p^{n-1} (-1)^r \binom{p}{r}.
\]

We have established that the sum vanishes when \(k < r\). Note that
\[
\binom{k}{p} \binom{p}{r} = \frac{k!}{(k-p)! \times r! \times (p-r)!} = \binom{k}{p} \binom{k-r}{p-r}
\]
so this simplifies to
\[
\frac{1}{(k-r)!} \sum_{p=r}^{k} \binom{k-r}{p-r} (-1)^{k-p} p^{n-1}.
\]

We have proved that the alternate closed form is
\[
\frac{(-1)^{k-r}}{(k-r)!} \sum_{p=0}^{k-r} \binom{k-r}{p} (-1)^{p} (p+r)^{n-1}.
\]

An interesting special case is that this evaluates to \(r^{n-1}\) when \(k = r\).

This problem has not appeared at math.stackexchange.com. It is from page 172 eqn. 12.22 of H.W. Gould’s *Combinatorial Identities for Stirling Numbers* [Gou16] where it is attributed to Frank Olson.

### 74 Post Scriptum XIII: An identity by Carlitz

We seek to show that where \(m \geq 1\)
\[
\sum_{k=0}^{n} \binom{n}{k} \binom{k/2}{m} = \frac{n}{m} \binom{n-m-1}{m-1} 2^{n-2m}.
\]

We get for the LHS
\[
[z^m] \sum_{k=0}^{n} \binom{n}{k} \sqrt{1+z}^k = [z^m](1 + \sqrt{1+z})^n.
\]

This is
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{m+1}} (1 + \sqrt{1+z})^n \, dz.
\]

Now put \(1 + \sqrt{1+z} = w\) so that \(z = w(w-2)\) and \(dz = 2(w-1) \, dw\) to get
\[
\frac{1}{2\pi i} \int_{|w-2| = \gamma} \frac{1}{w^{m+1}(w-2)^{m+1}} w^n 2(w-1) \, dw.
\]

Now we have (series need not be finite)
\[
w^{n-m} = (2 + (w-2))^{n-m} = 2^{n-m}(1 + (w-2)/2)^{n-m}
\]

\[= 2^{n-m} \sum_{q \geq 0} \binom{n-m}{q} (w-2)^q / 2^q\]

so we get for the integral
\[
2^{n-m+1} \binom{n-m}{m} 2^{-m} - 2^{n-m} \binom{n-m-1}{m} 2^{-m}
= 2^{n-2m} \binom{n-m}{m-1} \left[ \frac{2n-m-n-2m}{m} \right]
= 2^{n-2m} \binom{n-m}{m-1} \frac{n}{m}.
\]

This is the claim.

\textbf{Remark.} We need to document the choice of \( \gamma \) in terms of \( \varepsilon \ll 1 \). (The square root has the branch cut on \((-\infty, -1]\).) The image of \(|z| = \varepsilon\) is contained in an annulus centered at two of radius \( \sqrt{1 + \varepsilon} - 1 \) and \( 1 - \sqrt{1 - \varepsilon} \). We may deform the image to a circle \(|w-2| = \gamma\) where \( \gamma = \varepsilon / 2 \). This means the pole at \( w = 0 \) is definitely not inside the contour.

\textbf{Using the residue operator}

We get
\[
\text{res}_z \left( \frac{1}{z^{m+1}} (1 + \sqrt{1 + z})^n \right)
= \text{res}_z \left( \frac{1}{z^{m+1}} (-1)^n z^n \frac{1}{(1 - \sqrt{1 + z})^n} \right).
\]

Now we put \( 1 - \sqrt{1 + z} = w \) so that \( z = w(w-2) \) and \( dz = 2(w-1) \, dw \) so that we obtain
\[
\text{res}_w \left( \frac{1}{w^{m+1}(w-2)^m+1} (-1)^n w^n (w-2)^n \frac{1}{w^n} 2(w-1) \right)
= \text{res}_w \left( \frac{1}{w^{m+1}(w-2)^{m-n+1}} (-1)^n 2(w-1) \right)
= 2^{n-m} \text{res}_w \left( \frac{1}{w^{m+1}(w/2-1)^{m-n+1}} (-1)^n (w-1) \right)
= 2^{n-m} (-1)^{m+1} \text{res}_w \left( \frac{1}{w^{m+1}(1 - w/2)^{m-n+1}} (w-1) \right).
\]

Extracting the residue yields
\[
2^{n-m} (-1)^{m+1} \left( \binom{2m-n-1}{m-1} \frac{1}{2^{m-1}} - \binom{2m-n}{m} \frac{1}{2^m} \right)
= 2^{n-m} (-1)^{m+1} \left( (-1)^{m-1} \binom{n-m-1}{m-1} \frac{1}{2^{m-1}} - (-1)^n \binom{n-m-1}{m} \frac{1}{2^m} \right)
\]
\[
= 2^{n-2m} \left( 2 \binom{n-m-1}{m-1} + \binom{n-m-1}{m} \right)
= 2^{n-2m} \left( 2 \binom{n-m-1}{m-1} + \frac{n-2m}{m} \binom{n-m-1}{m-1} \right).
\]

Merge the two binomial coefficients to obtain the same answer as before.
This problem is from page 43 eqn. 3.163 of H.W. Gould’s *Combinatorial Identities* [Gou72].

75 Post Scriptum XIV: Logarithm squared of the Catalan number OGF

Suppose we seek to find

\[
[z^n] \log \left( \frac{2}{1 + \sqrt{1 - 4z}} \right).
\]

This is given by

\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{1}{z^{n+1}} \log \left( \frac{2}{1 + \sqrt{1 - 4z}} \right) \, dz.
\]

Now put \(1 - 4z = w^2\) so that \(z = 1/4(1 - w^2)\) and \(-2 \, dz = w \, dw\) to get

\[
\frac{1}{2\pi i} \int_{|w-1| = \gamma} \frac{4^{n+1}}{(1 - w^2)^{n+1}} \log \left( \frac{2}{1 + w} \right) \left( -\frac{1}{2} \right) w \, dw.
\]

This is

\[
\frac{1}{2} \frac{4^{n+1}}{2\pi i} \int_{|w-1| = \gamma} \frac{1}{(1 - w)^{n+1}} \frac{1}{(1 + w)^{n+1}} \log \left( \frac{1}{1 + (w - 1)/2} \right) \times w \, dw
\]
or

\[
\frac{1}{2} \frac{(-1)^n \times 4^{n+1}}{2\pi i} \int_{|w-1| = \gamma} \frac{1}{(w-1)^n} \frac{1}{(1 + w)^{n+1}} \log \left( \frac{1}{1 + (w - 1)/2} \right) \times w \, dw.
\]

This has two parts, part \(A_1\) is

\[
\frac{1}{2} \frac{(-1)^n \times 4^{n+1}}{2\pi i} \int_{|w-1| = \gamma} \frac{1}{(w-1)^n} \frac{1}{(1 + w)^{n+1}} \log \left( \frac{1}{1 + (w - 1)/2} \right) \, dw
\]

and part \(A_2\) is

\[
\frac{1}{2} \frac{(-1)^n \times 4^{n+1}}{2\pi i} \int_{|w-1| = \gamma} \frac{1}{(w-1)^n} \frac{1}{(1 + w)^{n+1}} \log \left( \frac{1}{1 + (w - 1)/2} \right) \, dw
\]
Part $A_1$ is
\[
\frac{1}{2} \frac{(-1)^n \times 4^{n+1}}{2\pi i} \int_{|w-1|=\gamma} \frac{1}{(w-1)^n} \frac{1}{2 + (w-1))^{n+1}} \log \left( \frac{1}{1 + (w-1)/2} \right) dw
\]
\[
= \frac{(-1)^n \times 2^n}{2\pi i} \int_{|w-1|=\gamma} \frac{1}{(w-1)^n} \frac{1}{1 + (w-1)/2}^{n+1} \log \left( \frac{1}{1 + (w-1)/2} \right) dw.
\]

Extracting coefficients we get
\[
(-1)^n 2^n \sum_{q=0}^{n-2} \binom{q+n}{n} \frac{(-1)^q}{2^n} \frac{(-1)^{n-1-q}}{2^{n-1-q} \times (n-1-q)}
\]
which is
\[
-2 \sum_{q=0}^{n-2} \binom{q+n}{n} \frac{1}{n-1-q}.
\]

Part $A_2$ is
\[
(-1)^n 2^n \sum_{q=0}^{n-1} \binom{q+n}{n} \frac{(-1)^q}{2^n} \frac{(-1)^{n-q}}{2^{n-q} \times (n-q)}
\]
which is
\[
\sum_{q=0}^{n-1} \binom{q+n}{n} \frac{1}{n-q}.
\]

Re-index $A_1$ to match $A_2$, getting
\[
-2 \sum_{q=1}^{n-1} \binom{q-1+n}{n} \frac{1}{n-q}.
\]

Collecting the two contributions we obtain
\[
\frac{1}{n} + \sum_{q=1}^{n-1} \left( \binom{q+n}{n} - 2 \binom{q-1+n}{n} \right) \frac{1}{n-q}
\]
which is
\[
\frac{1}{n} + \sum_{q=1}^{n-1} \binom{q+n}{q} \frac{q-1+n}{n} \frac{1}{n-q}
\]
\[
= \frac{1}{n} + \sum_{q=1}^{n-1} \frac{n-q}{q} \binom{q-1+n}{n} \frac{1}{n-q}
\]
\[
= \frac{1}{n} + \sum_{q=1}^{n-1} \frac{1}{q} \binom{q-1+n}{n}
\]

204
\[
\begin{align*}
&= \frac{1}{n} + \sum_{q=1}^{n-1} \frac{(q - 1 + n)!}{q! \times n!} \\
&= \frac{1}{n} + \frac{1}{n} \sum_{q=1}^{n-1} \frac{(q - 1 + n)!}{q! \times (n - 1)!} \\
&= \frac{1}{n} + \frac{1}{n} \sum_{q=1}^{n-1} \left( \frac{q - 1 + n}{n - 1} \right) = \frac{1}{n} \sum_{q=0}^{n-1} \left( \frac{q - 1 + n}{n - 1} \right).
\end{align*}
\]

To evaluate this last sum we use the integral
\[
\binom{n - 1 + q}{n - 1} = \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{n-1+q}}{z^n} \, dz
\]
which gives for the sum
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{n-1}}{z^n} \sum_{q=0}^{n-1} (1 + z)^q \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{n-1} (1 + z)^n - 1}{1 + z - 1} \, dz
\]
\[
= \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{n-1}}{z^{n+1}} ((1 + z)^n - 1) \, dz.
\]
This also has two components, the second is zero and given by
\[
- \frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{n-1}}{z^{n+1}} \, dz
\]
leaving
\[
\frac{1}{2\pi i} \int_{|z| = \epsilon} \frac{(1 + z)^{2n-1}}{z^{n+1}} \, dz
\]
which evaluates to
\[
\binom{2n - 1}{n}.
\]

We have shown that
\[
[z^n] \log \left( \frac{2}{1 + \sqrt{1 - 4z}} \right) = \frac{1}{n} \left( \binom{2n - 1}{n} \right).
\]

Addendum Feb 27 2022. It appears from the comments that OP wanted to prove
\[
[z^n] \log^2 \frac{2}{1 + \sqrt{1 - 4z}} = \binom{2n}{n} (H_{2n-1} - H_n) \frac{1}{n}.
\]
Using the result from the previous section the LHS becomes

\[ \sum_{k=1}^{n-1} \frac{1}{k} \binom{2k-1}{k} \frac{1}{n-k} \binom{2n-2k-1}{n-k}. \]

Using

\[ \frac{1}{k} \frac{1}{n-k} = \frac{1}{n} \frac{1}{k} + \frac{1}{n} \frac{1}{n-k} \]

this becomes

\[ \frac{2}{n} \sum_{k=1}^{n-1} \frac{1}{n-k} \binom{2k-1}{k} \binom{2n-2k-1}{n-k} \]

\[ = \frac{1}{2n} \sum_{k=1}^{n-1} \frac{1}{n-k} \binom{2k}{k} \binom{2n-2k}{n-k} \]

\[ = -\frac{1}{2n^2} \binom{2n}{n} + \frac{1}{2n} [w^n] \log \frac{1}{1-w} \sum_{k \geq 0} w^k \binom{2k}{k} \binom{2n-2k}{n-k}. \]

Here we have extended to infinity due to the coefficient extractor in \( w \) (note that \( \log \frac{1}{1-w} = w + \cdots \)) and canceled the value for \( k = 0 \) that was included in the sum. Continuing with the inner sum term

\[ [z^n] \frac{1}{\sqrt{1-4wz}} \frac{1}{\sqrt{1-4z}} \]

\[ = [z^n] \frac{1}{\sqrt{(1-4z)^2 - 4z(1-4z)(w-1)}} \]

\[ = [z^n] \frac{1}{1-4z} \frac{1}{\sqrt{1-4z(w-1)/(1-4z)}} \]

\[ = [z^n] \sum_{k=0}^{n} \binom{2k}{k} z^k (w-1)^k \frac{1}{(1-4z)^{k+1}}. \]

This is

\[ \frac{1}{2n} [w^n] \log \frac{1}{1-w} \sum_{k=0}^{n} \binom{2k}{k} (w-1)^k \binom{n}{k} 4^n. \]

Recall from section 76.89 that with \( 1 \leq k \leq n \)

\[ \frac{1}{k} = \binom{n}{k} [w^n] \log \frac{1}{1-w} (w-1)^{n-k}. \]

Hence we get two pieces, the first is
\[
\frac{1}{2n} \sum_{k=0}^{n-1} \binom{2k}{k} \frac{1}{n-k} 4^{n-k}.
\]

and

\[
\frac{1}{2n} \lfloor w^n \rfloor \log \frac{1}{1-w} \left(\frac{2n}{n}\right) (w-1)^n.
\]

We get for the second

\[
\binom{2n}{n} \frac{1}{2n} \text{res}_{w^n+1} \frac{1}{w^n+1} \log \frac{1}{1-w} (-1)^n (1-w)^n.
\]

We put \(w/(1-w) = v\) so that \(w = v/(1+v)\) and \(dw = 1/(1+v)^2\) \(dv\) to get (without the scalar in front)

\[
\text{res}_v \frac{1}{v^{n+1}} (1+v) \log \frac{1}{1-v/(1+v)} (-1)^n \frac{1}{(1+v)^2} = -(-1)^n [v^n] \frac{1}{1+v} \log \frac{1}{1+v}
\]

With the scalar we get

\[-\left(\frac{2n}{n}\right) \frac{1}{2n} H_n.\]

We have the result if we can show that the first piece is

\[
\binom{2n}{n} \left(H_{2n-1} + \frac{1}{2n} - \frac{1}{2} H_n\right) \frac{1}{n} = \binom{2n}{n} \left(H_{2n} - \frac{1}{2} H_n\right) \frac{1}{n}
\]

i.e.

\[F_n = \sum_{k=0}^{n-1} \binom{2k}{k} \frac{1}{n-k} 4^{n-k} = \binom{2n}{n} (2H_{2n} - H_n).\]

We have for the LHS

\[4^n \lfloor w^n \rfloor \log \frac{1}{1-w} \sum_{k=0}^{n-1} \binom{2k}{k} w^k 4^{-k}.\]

The coefficient extractor enforces the upper limit, we may extend to infinity and we find

\[4^n \lfloor w^n \rfloor \log \frac{1}{1-w} \frac{1}{\sqrt{1-w}} = \lfloor w^n \rfloor \log \frac{1}{1-4w} \frac{1}{\sqrt{1-4w}}.\]
Call the OGF $F(w)$. We get

$$F'(w) = \frac{4}{\sqrt{1-4w^3}} + \frac{2}{1-4w}F(w).$$

Extracting the coefficient on $[w^n]$ we get

$$(n+1)F_{n+1} = 4^{n+1}(-1)^n\left(\frac{-3/2}{n}\right) + 2\sum_{q=0}^{n} F_q 4^{n-q}$$

$$= 4^{n+1}(-1)^n\left(\frac{n+1}{-1/2}\right)\left(\frac{-1/2}{n+1}\right) + 2\sum_{q=0}^{n} F_q 4^{n-q}$$

$$= 2(n+1)\left(\frac{2n+2}{n+1}\right) + 2\sum_{q=0}^{n} F_q 4^{n-q}$$

which also yields

$$\frac{1}{4}(n+2)F_{n+2} = \frac{1}{2}(n+2)\left(\frac{2n+4}{n+2}\right) + 2\sum_{q=0}^{n+1} F_q 4^{n-q}.$$ 

Subtract to get

$$\frac{1}{4}(n+2)F_{n+2} = (n+1)F_{n+1} + \frac{1}{2}(n+2)\left(\frac{2n+4}{n+2}\right) - 2(n+1)\left(\frac{2n+2}{n+1}\right) + \frac{1}{2}F_{n+1}. $$

Introducing $G_n = F_n \left(\frac{2n}{n}\right)^{-1}$ and dividing by $\binom{2n+2}{n+1}$ we get

$$\frac{1}{2}(2n+3)G_{n+2} = (n+3/2)G_{n+1} + 1 \quad \text{or} \quad G_n = G_{n-1} + \frac{1}{n-1/2}. $$

so that

$$G_n = \sum_{q=1}^{n} \frac{1}{q - 1/2} = \sum_{q=1}^{n} \frac{1}{2q - 1} = 2H_{2n-1} - H_{n-1} = 2H_{2n} - H_n.$$ 

This is the claim (we have $F_0 = G_0 = 0$ from the generating function) and it completes the entire argument.

This was math.stackexchange.com problem 1148203.
We seek to evaluate
\[
\sum_{l=0}^{m} (-4)^l \binom{m}{l} \binom{2l}{l}^{-1} \sum_{k=0}^{n} (-4)^k \binom{n}{k} \binom{2k}{k}^{-1} \binom{k+l}{l}.
\]

We start with the inner term and use the Beta function identity
\[
\frac{1}{2k+1} \binom{2k}{k}^{-1} = \int_0^1 x^k (1-x)^k \, dx.
\]

We obtain
\[
\int_0^1 [z^l] \sum_{k=0}^{n} \binom{n}{k} (-4)^k x^k (1-x)^k \frac{1}{(1-z)^{k+1}} \, dx
\]
\[
= [z^l] \frac{1}{1-z} \int_0^1 \left(1 - 4x(1-x)\right)^n \, dx
\]
\[
= [z^l] \frac{1}{(1-z)^{n+1}} \int_0^1 ((1-2x)^2 - z)^n \, dx
\]
\[
= \sum_{q=0}^{l} \binom{l-q+n}{n} \binom{n}{q} (-1)^q \int_0^1 (1-2x)^{2n-2q} \, dx
\]
\[
= \sum_{q=0}^{l} \binom{l-q+n}{n} \binom{n}{q} (-1)^q \int_0^1 \frac{1}{2(2n-2q+1)} (1-2x)^{2n-2q+1} \, dx
\]
\[
= \sum_{q=0}^{l} \binom{l-q+n}{n} \binom{n}{q} (-1)^q \frac{1}{2n-2q+1}.
\]

Now we have
\[
\binom{l-q+n}{n} \binom{n}{q} (-1)^q \frac{1}{2n-2q+1}
\]
\[
= \text{Res}_{z=q} \frac{(-1)^n}{2n+1-2z} \prod_{p=0}^{n-1} (l+n-p-z) \prod_{p=0}^{n} \frac{1}{z-p}.
\]

Residues sum to zero and since \(\lim_{R \to \infty} 2\pi R \times \int_0^R R^n/R^{n+1} = 0\) we may evaluate the sum using the negative of the residue at \(z = (2n+1)/2\). We get
\[
\frac{1}{2}(-1)^n \prod_{p=0}^{n-1} (l + n - p - (2n + 1)/2) \prod_{p=0}^{n} \frac{1}{(2n + 1)/2 - p}
= (-1)^n \prod_{p=0}^{n-1} (2l + 2n - 2p - (2n + 1)) \prod_{p=0}^{n} \frac{1}{2n + 1 - 2p}
= (-1)^n \prod_{p=0}^{n-1} (2l - 2p - 1) \frac{2^n n!}{(2n + 1)!}
= (-1)^n \frac{1}{2l + 1} \prod_{p=-1}^{n-1} (2l - 2p - 1) \frac{2^n n!}{(2n + 1)!}
= (-1)^n \frac{2^n n!}{(2n + 1)!} \frac{1}{2l + 1} \prod_{p=0}^{n} (2l - 2p + 1)
= (-1)^n \frac{2^{2n+1} n!}{(2n + 1)!} \frac{1}{2l + 1} \prod_{p=0}^{n} (l + 1/2 - p)
= (-1)^n \frac{2^{2n+1} n!(n + 1)!}{(2n + 1)!} \frac{1}{2l + 1} \left(\frac{l + 1/2}{n + 1}\right).
\]

We obtain for our sum

\[
(-1)^n 2^{2n+1} \binom{2n + 1}{n}^{-1} \sum_{l=0}^{m} (-4)^l \binom{m}{l} \frac{1}{2l + 1} \binom{2l}{l}^{-1} \frac{(l + 1/2)}{(n + 1)}.
\]

We now work with the remaining sum without the factor in front. We obtain

\[
\int_0^1 [z^{n+1}] \sqrt{1 + z} \sum_{l=0}^{m} \binom{m}{l} (-4)^l x^l (1 - x)^l (1 + z)^l \, dx
= [z^{n+1}] \sqrt{1 + z} \int_0^1 (1 - 4x(1 - x)(1 + z))^m \, dx
= [z^{n+1}] \sqrt{1 + z} \int_0^1 \sum_{q=0}^{m} \binom{m}{q} (1 - 2x)^{2m-2q} (-1)^q (4x(1 - x))^q z^q \, dx
= \sum_{q=0}^{m} \binom{m}{q} \binom{1/2}{n + 1 - q} \int_0^1 (1 - 2x)^{2m-2q} (-1)^q (4x(1 - x))^q \, dx
= \sum_{q=0}^{m} \binom{m}{q} \binom{1/2}{n + 1 - q} \int_0^1 (1 - 2x)^{2m-2q} \left(1 - \frac{1}{(1 - 2x)^2}\right)^q \, dx
\]

210
\[= \sum_{q=0}^{m} \binom{m}{q} \left( \frac{1}{n+1-q} \right) \sum_{p=0}^{q} \binom{q}{p} (-1)^p \int_{0}^{1} (1 - 2x)^{2m-2p} \, dx\]

\[= \sum_{q=0}^{m} \binom{m}{q} \left( \frac{1}{n+1-q} \right) \sum_{p=0}^{q} \binom{q}{p} (-1)^p \frac{1}{2m-2p+1}.\]

Re-writing then yields

\[\sum_{p=0}^{m} (-1)^p \frac{1}{2m-2p+1} \sum_{q=p}^{m} \binom{m}{q} \left( \frac{1}{n+1-q} \right) \binom{q}{p} \]

Observe that

\[\binom{m}{q} \binom{q}{p} = \frac{m!}{(m-q)! \times p! \times (q-p)!} = \binom{m}{p} \binom{m-p}{m-q}\]

so that we find

\[= \sum_{p=0}^{m} \binom{m}{p} (-1)^p \frac{1}{2m-2p+1} \sum_{q=0}^{m-p} \binom{m-p}{m-p-q} \left( \frac{1}{n+1-p-q} \right)\]

Continuing we obtain

\[= \sum_{p=0}^{m} \binom{m}{p} (-1)^p \frac{1}{2m-2p+1} [z^{n+1-p}] \sqrt{1+z} \sum_{q=0}^{m-p} \binom{m-p}{q} z^q\]

\[= \sum_{p=0}^{m} \binom{m}{p} (-1)^p \frac{1}{2m-2p+1} [z^{n+1-p}] \sqrt{1+z} \sum_{q=0}^{m-p} \binom{m-p}{q} z^q (1+z)^{p+1/2}\]

\[= (-1)^m \sum_{p=0}^{m} \binom{m}{p} (-1)^p \frac{1}{2p+1} \left( \frac{p+1/2}{n+1-m+p} \right)\]

\[= (-1)^m \sum_{p=0}^{m} \binom{m}{p} (-1)^p \frac{1}{2m-n-1/2} \left( \frac{p-1/2}{n+1-m+p} \right)\]
\[ (-1)^m \frac{1}{2m - 2n - 1} \sum_{p=0}^{m} \binom{m}{p} (-1)^p \left( \frac{p - 1/2}{n + 1 - m + p} \right). \]

Concluding with a closed form we establish at last

\[ (-1)^m \frac{1}{2m - 2n - 1} \sum_{p=0}^{m} \binom{m}{p} (-1)^p [z^{n+1-m}] z^{-p} (1 + z)^{p-1/2} \]

\[ = (-1)^m \frac{1}{2m - 2n - 1} [z^{n+1-m}] (1 + z)^{-1/2} \sum_{p=0}^{m} \binom{m}{p} (-1)^p z^{-p} (1 + z)^p \]

\[ = (-1)^m \frac{1}{2m - 2n - 1} [z^{n+1-m}] (1 + z)^{-1/2} \left( 1 - \frac{1 + z}{z} \right)^m \]

\[ = \frac{1}{2m - 2n - 1} [z^{n+1}] (1 + z)^{-1/2}. \]

We finish by re-introducing the factor in front to obtain

\[ (-1)^n 2^{2n+1} \binom{2n+1}{n}^{-1} \frac{1}{2m - 2n - 1} \left( \frac{-1/2}{n + 1} \right) \]

\[ = (-1)^n 2^{2n+1} \binom{2n+1}{n}^{-1} \frac{1}{2m - 2n - 1} \frac{1}{(n + 1)!} \prod_{q=0}^{n} (-1/2 - q) \]

\[ = (-1)^n 2^{n} \binom{2n+1}{n}^{-1} \frac{1}{2m - 2n - 1} \frac{1}{(n + 1)!} \prod_{q=0}^{n} (-1 - 2q) \]

\[ = 2^n \binom{2n+1}{n}^{-1} \frac{1}{2n + 1 - 2m} \frac{1}{(n + 1)!} \prod_{q=0}^{n} (1 + 2q) \]

\[ = 2^n \binom{2n+1}{n}^{-1} \frac{1}{2n + 1 - 2m} \frac{1}{(n + 1)!} \frac{(2n + 1)!}{2^n n!}. \]

Yes indeed this is

\[ \frac{1}{2n + 1 - 2m}. \]

Here I have chosen to document the simple steps as well as the complicated ones to aid all types of readers.

This was [math.stackexchange.com problem 2384932](http://math.stackexchange.com).
76.2 MSE 2472978

We seek to verify that

\[\sum_{l=0}^{n} \binom{n}{l}^2 (x+y)^{2l} (x-y)^{2n-2l} = \sum_{l=0}^{n} \binom{2l}{l} \binom{2n-2l}{n-l} x^{2l} y^{2n-2l}.\]

Now we see on the LHS that the powers of \(x\) and \(y\) always add up to \(2n\) and the exponent on \(x\) determines the one on \(y\). Extracting the coefficient on \([x^q][y^{2n-q}]\) we obtain

\[\sum_{l=0}^{n} \binom{n}{l}^2 \sum_{p=0}^{q} \left( \binom{2l}{p} (-1)^{2n-2l-(q-p)} \binom{2n-2l}{q-p} \right)\]

\[= n \sum_{l=0}^{n} \binom{n}{l}^2 \sum_{p=0}^{q} \left( \binom{2l}{p} (-1)^{q-p} [z^{q-p}](1 + z)^{2n-2l} \right)\]

\[= [z^q](-1)^q \sum_{l=0}^{n} \binom{n}{l}^2 (1 + z)^{2n-2l} \sum_{p=0}^{q} \binom{2l}{p} (-1)^p z^p.\]

We may extend \(p\) to infinity because with \(p > q\) there is no contribution to \([z^q]\), getting

\[\sum_{l=0}^{n} \binom{n}{l}^2 \sum_{p=0}^{q} \left( \binom{2l}{p} (-1)^p z^p \right) (1 + z)^{2n-2l} (1 - z)^{2l} \]

\[= [z^q](-1)^q [w^n](1 + w(1 - z)^2)^n (1 + w(1 + z)^2)^n\]

We observe at this point that we get zero here when \(q\) is odd, which agrees with the target formula. We are thus justified in putting \(q = 2\) to get

\[\binom{2n}{2} \sum_{p=0}^{n-p} \binom{n}{p}^2 2^{2p} w^{2p} z^{2p} (1 + z)^{2n-2p} (1 + z)^{2n-2p} \]

\[= [z^q] [w^n] (1 + w(1 + z)^2)^n (1 + w(1 - z)^2)^n.\]

We may extend \(p\) to infinity because with \(p > q\) there is no contribution to \([z^q]\), getting

\[\sum_{l=0}^{n} \binom{n}{l}^2 \sum_{p=0}^{q} \left( \binom{2l}{p} (-1)^p z^p \right) (1 + z)^{2n-2l} (1 - z)^{2l} \]

\[= [z^q](-1)^q [w^n](1 + w(1 - z)^2)^n (1 + w(1 + z)^2)^n\]

Re-write this as

\[\binom{2n}{2} \sum_{p=0}^{n-p} \binom{n}{p}^2 2^{2p} w^{2p} z^{2p} (1 + z)^{2n-2p} (1 + z)^{2n-2p} \]

\[= [z^q] [w^n] (1 + w(1 + z)^2)^n (1 + w(1 - z)^2)^n.\]

We observe at this point that we get zero here when \(q\) is odd, which agrees with the target formula. We are thus justified in putting \(q = 2l\) to get

\[\binom{2n}{2} \sum_{p=0}^{n-p} \binom{n}{p}^2 2^{2p} w^{2p} z^{2p} (1 + z)^{2n-2p} (1 + z)^{2n-2p} \]

\[= [z^q] [w^n] (1 + w(1 + z)^2)^n (1 + w(1 - z)^2)^n.\]

We observe at this point that we get zero here when \(q\) is odd, which agrees with the target formula. We are thus justified in putting \(q = 2l\) to get

\[\binom{2n}{2} \sum_{p=0}^{n-p} \binom{n}{p}^2 2^{2p} w^{2p} z^{2p} (1 + z)^{2n-2p} (1 + z)^{2n-2p} \]

\[= [z^q] [w^n] (1 + w(1 + z)^2)^n (1 + w(1 - z)^2)^n.\]
\[ [z^l] \sum_{p=0}^n \binom{2n}{p} (-1)^p 2^{2p} \binom{2n-2p}{l-p} \binom{n-2p}{n-2p} (1+z)^{n-2p} \]

\[ = \sum_{p=0}^n \binom{n}{p} (-1)^p 2^{2p} \binom{2n-2p}{n-2p} \binom{n-2p}{l-p}. \]

Note that

\[ \binom{n}{p} \binom{2n-2p}{l-p} = \frac{(2n-2p)!}{p! \times (n-p)! \times (l-p)! \times (n-l-p)!} \]

\[ = \frac{(2n-2p)!}{(n-p)! \times l! \times (n-l-p)!} = \binom{2n-2p}{n-p} \binom{n-p}{l}. \]

Re-indexing we get for the sum

\[ (-1)^n 2^{2n} \sum_{p=0}^n \binom{l}{n-p} \binom{2p}{p} \binom{p}{l} (-1)^p 2^{-2p} \]

\[ = (-1)^n 2^{2n} \sum_{p=0}^n \binom{2p}{p} (-1)^p 2^{-2p} [z^{n-p}] (1+z)^l [w^l] (1+w)^p \]

\[ = (-1)^n 2^{2n} [z^n] (1+z)^l [w^l] \sum_{p=0}^n \binom{2p}{p} (-1)^p 2^{-2p} z^p (1+w)^p. \]

We may once more extend \( p \) to infinity because there is no contribution from the sum term to the coefficient extractor \([z^n]\) when \( p > n \), obtaining

\[ (-1)^n 2^{2n} [z^n] (1+z)^l [w^l] \sum_{p=0}^n \binom{2p}{p} (-1)^p 2^{-2p} z^p (1+w)^p \]

\[ = (-1)^n 2^{2n} [z^n] (1+z)^l [w^l] \frac{1}{\sqrt{1+z(1+w)}} \]

\[ = (-1)^n 2^{2n} [z^n] (1+z)^l [w^l] \frac{1}{\sqrt{1+z+wz}} \]

\[ = (-1)^n 2^{2n} [z^n] (1+z)^l-1/2 [w^l] \frac{1}{\sqrt{1+wz/(1+z)}} \]

\[ = (-1)^n 2^{2n} [z^n] (1+z)^l-1/2 \binom{2l}{l} (-1)^l 2^{-2l} z^{l-1/2} \frac{1}{(1+z)^l} \]

\[ = (-1)^{n-l} 2^{2n-2l} \binom{2l}{l} [z^{n-l}] \frac{1}{\sqrt{1+z}} \]

\[ = (-1)^{n-l} 2^{2n-2l} \binom{2l}{l} \binom{2n-2l}{n-l} (-1)^{n-l} 2^{-(2n-2l)} \]

214
\[ = \binom{2l}{l} \binom{2n - 2l}{n - l}. \]

This was math.stackexchange.com problem 2472978.

### 76.3 MSE 2719320

The goal here was to investigate closed forms of

\[ \binom{n}{k} \frac{1}{ak + b}. \]

We start by trying to prove the first closed form given to see if a pattern does emerge. We use with \( c \) a positive integer

\[ \binom{n}{k} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{k + c} \]

Now

\[ \binom{n + c}{n} \binom{n}{k} = \frac{(n + c)!}{(c)! \times k! \times (n - k)!} = \binom{n + c}{k + c} \binom{k + c}{k}. \]

Hence we have for the sum

\[ \sum_{k=0}^{n} \binom{n + c}{k + c} \binom{k + c}{k} \frac{1}{k + c} = \frac{1}{c} \sum_{k=0}^{n} \binom{n + c}{k + c} \binom{k + c}{c - 1}. \]

This is

\[ \frac{1}{c} \sum_{k=0}^{n} \binom{k + c - 1}{c - 1} [z^{n-k}] \frac{1}{(1 - z)^{k+c+1}} = \frac{1}{c} \sum_{k=0}^{n} \binom{k + c - 1}{c - 1} [z^{n}] z^{k} \frac{1}{(1 - z)^{k+c+1}}. \]

Here we get no contribution to \([z^n]\) when \( k > n \) so we may continue with

\[ \frac{1}{c} [z^n] \frac{1}{(1 - z)^{c+1}} \sum_{k=0}^{\infty} \binom{k + c - 1}{c - 1} z^k \frac{1}{(1 - z)^k} \]

\[ = \frac{1}{c} [z^n] \frac{1}{(1 - z)^{c+1}} \frac{1}{(1 - z/(1 - z))^c} \]

\[ = \frac{1}{c} [z^n] \frac{1}{1 - z (1 - 2z)^c}. \]

This is

\[ \frac{-1}{c} \text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{1 - z (1 - 2z)^c} \]

\[ = \frac{(-1)^{c+1}}{c^2} \text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{z - 1 (z - 1/2)^c}. \]
With residues summing to zero we can evaluate this using the residues at \( z = 1 \), \( z = 1/2 \) and \( z = \infty \). We get for \( z = 1 \) the residue
\[
\frac{(-1)^{c+1}}{c}.
\]
For the residue at infinity we find
\[
\begin{align*}
&\frac{(-1)^{c+1}}{c} \text{Res}_{z=0} \frac{1}{z^2} \frac{1}{1/z} \frac{1}{1/z - 1} \frac{1}{(1/z - 1/2)^c} \\
&= -\frac{(-1)^{c+1}}{c^{2c}} \text{Res}_{z=0} \frac{1}{z^2} \frac{1}{z^{n+1}} \frac{1}{1 - z} \frac{1}{(1 - z/2)^c} \\
&= -\frac{(-1)^{c+1}}{c^{2c}} \text{Res}_{z=0} z^{n+c} \frac{1}{1 - z} \frac{1}{(1 - z/2)^c} = 0.
\end{align*}
\]
This also follows by inspection. The residue at \( z = 1/2 \) requires the use of Leibniz’ rule as in
\[
\frac{1}{p!} \left( \frac{1}{z^{n+1}} \frac{1}{z - 1} \right)^{(p)} = \frac{1}{p!} \sum_{q=0}^{p} \binom{p}{q} (-1)^q (n+q)! \binom{1}{q} \binom{n+q}{q} \left( \frac{p-q}{(1-1)^{p-q+1}} \right)
\]
\[
= (-1)^{p} \sum_{q=0}^{p} \binom{n+q}{q} \frac{1}{z^{n+1+q}} \frac{1}{1 - z} \frac{1}{(1 - z/2)^c}.
\]
We set \( p = c - 1 \) and \( z = 1/2 \) and restore the factor in front to get for the residue
\[
\begin{align*}
&\frac{(-1)^{c+1}}{c^{2c}} (-1)^{c-1} \sum_{q=0}^{c-1} \binom{n+q}{q} \frac{1}{(1/2)^{n+1+q}} \frac{(-1)^{c-q}}{(1/2)^{c-q}} \\
&= \frac{(-1)^{2c^{n+1}}}{c} \sum_{q=0}^{c-1} \binom{n+q}{q} (-1)^{q}.
\end{align*}
\]
Collecting everything we thus obtain
\[
\sum_{k=0}^{n} \binom{n}{k} \frac{1}{k+c} = \binom{n+c}{c}^{-1} \frac{(-1)^{c}}{c} \left( 1 - 2^{n+1} \sum_{q=0}^{c-1} \binom{n+q}{q} (-1)^{q} \right).
\]
This is an improvement in the sense that if \( n \) is the variable and \( c \) is the constant then we have replaced the sum in \( n \) terms (variable) by a sum in \( c \) terms (fixed) of polynomials in \( n \). We can make this more explicit by writing
\[
\sum_{q=0}^{c-1} \binom{n+q}{q} (-1)^{q} = \sum_{q=0}^{c-1} \binom{-1}{q} \sum_{p=0}^{q} p^{p} \sum_{q=0}^{q} \binom{q+1}{p+1}
\]
\[216\]
\[
\sum_{p=0}^{c-1} n^p \sum_{q=p}^{c-1} \frac{(-1)^q}{q!} \left[ q + 1 \right].
\]

We find
\[
\sum_{k=0}^{n} \binom{n}{k} \frac{1}{k + c} = \binom{n + c}{c} \frac{(-1)^c}{c} \left( 1 - 2^{n+1} \sum_{p=0}^{c-1} n^p \sum_{q=p}^{c-1} \frac{(-1)^q}{q!} \left[ q + 1 \right] \frac{q^q}{p+1} \right).
\]

With this last result we obtain closed forms for fixed \( c \), e.g. for \( c = 5 \) it yields
\[
\frac{-24 + 2^{n+1}(n^4 + 6n^3 + 23n^2 + 18n + 24)}{(n + 5) \times \cdots \times (n + 1)}.
\]

**Addendum.** With the purpose of matching conjectures by OP we write
\[
\sum_{q=0}^{c-1} \binom{n + q}{q} (-1)^q = \sum_{q=0}^{c-1} \binom{n + q}{q} (-1)^q z^{c-1} \frac{z^q}{1 - z}
\]
\[
= [z^{c-1}] \left( \frac{1}{1 - z} \sum_{q \geq 0} \binom{n + q}{q} (-1)^q z^q \right) = \frac{1}{1 - z} \sum_{q = 0}^{n} \frac{1}{2^q}.
\]
\[
= (-1)^{c-1} [z^{c-1}] \frac{1}{1 + z} \frac{1}{(1 - z)^{n+1}} = (-1)^{c-1} [z^{c-1}] \frac{1}{1 - z^2} \frac{1}{(1 - z)^n}.
\]

With \( c = 2d + 1 \) where \( d \geq 0 \) this becomes
\[
[z^{2d}] \frac{1}{1 - z^2} \frac{1}{(1 - z)^n} = \sum_{q=0}^{d} \binom{2q + n - 1}{2q}.
\]

and when \( c = 2d \) where \( d \geq 1 \) it becomes
\[
-[z^{2d-1}] \frac{1}{1 - z^2} \frac{1}{(1 - z)^n} = -\sum_{q=0}^{d-1} \binom{2q + n}{2q + 1}.
\]

We thus obtain in the first case the closed form
\[
\binom{n + 2d + 1}{2d + 1} \frac{1}{2d + 1} \left( -1 + 2^{n+1} \sum_{q=0}^{d} \binom{2q + n - 1}{2q} \right)
\]

and in the second case
\[
\binom{n + 2d}{2d} \frac{1}{2d} \left( 1 + 2^{n+1} \sum_{q=0}^{d-1} \binom{2q + n}{2q + 1} \right).
\]

These two confirm the conjectures by OP.

This was [math.stackexchange.com problem 2719320](https://math.stackexchange.com/questions/2719320).
76.4 MSE 2830860

Starting from (here evidently \( n \geq k \) for it to be meaningful).

\[
\sum_{j=0}^{n-k} (-1)^j \binom{2k+2j}{j} \binom{n+k+j+1}{n-k-j} = (-1)^{n-k} \sum_{j=0}^{n-k} (-1)^j \binom{2n-2j}{n-k-j} \binom{2n-j+1}{j} = (-1)^{n-k} \sum_{j=0}^{n-k} (-1)^j \binom{2n-2j}{n-k-j} \binom{2n+1-j}{2n+1-2j}.
\]

We write

\[
(-1)^{n-k} \sum_{j=0}^{n-k} (-1)^j \binom{2n+1-j}{2n+1-2j} [z^{n-k-j}(1+z)^{2n-2j}]
\]

\[
= (-1)^{n-k} [z^{n-k}](1+z)^2 \sum_{j=0}^{n-k} (-1)^j \binom{2n+1-j}{2n+1-2j} z^j (1+z)^{-2j}
\]

We get no contribution to the coefficient extractor when \( j > n-k \) and hence may continue with

\[
(-1)^{n-k} [z^{n-k}](1+z)^2 \sum_{j=0}^{n-k} (-1)^j \binom{2n+1-j}{2n+1-2j} z^j (1+z)^{-2j}
\]

\[
= (-1)^{n-k} [z^{n-k}](1+z)^2 \sum_{j=0}^{n-k} (-1)^j z^j (1+z)^{-2j} w^{2n+1-2j}(1+w)^{2n+1-j}
\]

\[
= (-1)^{n-k} [z^{n-k}](1+z)^2 \sum_{j=0}^{n-k} (-1)^j z^j (1+z)^{-2j} w^{2j}(1+w)^{-j}
\]

\[
= (-1)^{n-k} [z^{n-k}](1+z)^2 \sum_{j=0}^{n-k} (-1)^j z^j (1+z)^{-2j} w^{2n+1} (1+w)^{2n+1} \frac{1}{1+zw^2/(1+z)^2/(1+w)}
\]

\[
= (-1)^{n-k} [z^{n-k}](1+z)^2 \sum_{j=0}^{n-k} (-1)^j z^j (1+z)^{-2j} w^{2n+1} (1+w)^{2n+2} \frac{1}{(w+1+z)(w+z+1+z)}
\]

Now the inner term is

\[
\text{Res}_{w=0} \frac{1}{w^{2n+2}} (1+w)^{2n+2} \frac{1}{(w+1+z)(w+(1+z)/z)}.
\]

218
Residues sum to zero and the residue at infinity is zero since \( \lim_{R \to \infty} 2\pi R \times R^{2n+2}/R^{2n+2}/R^2 = 0 \). Hence we may compute this from minus the sum of the residues at \(-(1 + z)\) and \(-(1 + z)/z\). The first one yields

\[
- \frac{1}{(1 + z)^{2n+2}} (1 + z)^{2n+2} \frac{1}{-(1 + z) + (1 + z)/z}.
\]

Replace this in the remaining coefficient extractor to get

\[
(-1)^{n+1-k} [z^{n+1-k}] z^{2n+3} \frac{1}{1 - z^2} = 0.
\]

The second one yields

\[
- \frac{z^{2n+2}}{(1 + z)^{2n+2}} \frac{1}{z^{2n+2} - (1 + z)/z + 1 + z}
\]

Once more replace this in the remaining coefficient extractor to get

\[
(-1)^{n+1-k} [z^{n+1-k}] \frac{1}{-(1 + z)/z + 1 + z} = (-1)^{n+1-k} [z^{n+1-k}] \frac{z}{z^2 - 1}
\]

This is

\[
\left[(n - k) \text{ is even}\right] = \frac{1 + (-1)^{n-k}}{2}
\]

as claimed.

This was math.stackexchange.com problem 2830860.

### 76.5 MSE 2904333

Starting from

\[
\sum_{k=0}^{b-1} \binom{a + k - 1}{a - 1} p^a (1 - p)^k = \sum_{k=0}^{b-1} \binom{a + b - 1}{k} p^k (1 - p)^{a+b-k-1}
\]

we simplify to

\[
\sum_{k=0}^{b-1} \binom{a + k - 1}{a - 1} p^a (1 - p)^k = \sum_{k=0}^{b-1} \binom{a + b - 1}{a + k} p^a (1 - p)^{b-k-1}
\]

or

\[
\sum_{k=0}^{b-1} \binom{a + k - 1}{a - 1} (1 - p)^k = \sum_{k=0}^{b-1} \binom{a + b - 1}{a + k} p^k (1 - p)^{b-k-1}.
\]
We get for the LHS
\[
\sum_{k \geq 0} \binom{a+k-1}{a-1} (1-p)^k [0 \leq k \leq b-1]
\]
\[
= \sum_{k \geq 0} \binom{a+k-1}{a-1} (1-p)^k [z^{b-1}] \frac{z^k}{1-z}
\]
\[
= [z^{b-1}] \frac{1}{1-z} \sum_{k \geq 0} \binom{a+k-1}{a-1} (1-p)^k z^k
\]
\[
= [z^{b-1}] \frac{1}{1-z} \frac{1}{(1-(1-p)z)^a}.
\]
The RHS is
\[
\sum_{k=0}^{b-1} p^k (1-p)^{b-k-1} [z^{b-1-k}] \frac{1}{(1-z)^{a+k+1}}
\]
\[
= [z^{b-1}] \frac{1}{(1-z)^{a+1}} \sum_{k=0}^{b-1} p^k (1-p)^{b-k-1} \frac{z^k}{(1-z)^k}.
\]
There is no contribution to the coefficient extractor in front when \(k > b - 1\)
and may extend \(k\) to infinity, getting
\[
(1-p)^{b-1} [z^{b-1}] \frac{1}{(1-z)^{a+1}} \sum_{k \geq 0} p^k (1-p)^{-k} \frac{z^k}{(1-z)^k}
\]
\[
= (1-p)^{b-1} [z^{b-1}] \frac{1}{(1-z)^{a+1}} \frac{1}{1-pz/(1-p)/(1-z)}
\]
\[
= (1-p)^{b-1} [z^{b-1}] \frac{1}{(1-z)^a} \frac{1}{1-z - pz/(1-p)}
\]
\[
= [z^{b-1}] \frac{1}{(1-(1-p)z)^a} \frac{1}{1 - (1-p)z - pz}
\]
\[
= [z^{b-1}] \frac{1}{1-z} \frac{1}{(1-(1-p)z)^a}.
\]
The LHS and the RHS are seen to be the same and we may conclude.

**Remark.** The first one is the easy one and follows by inspection. The
Iverson bracket may be of interest here as an example of the method.
This was math.stackexchange.com problem 2904333.
76.6  MSE 2950043

Starting from

\[
(-1)^{n+k} \binom{n}{k} = \sum_{j=0}^{n-k} (-1)^j \binom{n-1+j}{n-k+j} \binom{2n-k}{n-k-j} \binom{n-k+j}{j}
\]

we introduce the EGF for Stirling numbers of the second kind on the RHS, getting

\[
\sum_{j=0}^{n-k} (-1)^j \binom{n-1+j}{n-k+j} \binom{2n-k}{n-k-j} \binom{n-k+j}{j} \frac{(\exp(z) - 1)^j}{j!} = (n-k)! \sum_{j=0}^{n-k} (-1)^j \binom{n-1+j}{n-1} \binom{2n-k}{n-k-j} \frac{(\exp(z) - 1)^j}{z^j}
\]

Now

\[
\binom{n-1+j}{n-k+j} \binom{n-k+j}{j} = \frac{(n-1+j)!}{(k-1)! \times j! \times (n-k)!} = \binom{n-1}{k-1} \binom{n-1+j}{n-1}
\]

and we find

\[
\frac{(n-1)!}{(k-1)!} \sum_{j=0}^{n-k} (-1)^j \binom{n-1+j}{n-1} \binom{2n-k}{n-k-j} \frac{(\exp(z) - 1)^j}{z^j} = (n-1)! \sum_{j=0}^{n-k} (-1)^j \binom{n-1+j}{n-1} \frac{(\exp(z) - 1)^j}{z^j} [w^{n-k-j}](1 + w)^{2n-k}
\]

\[
= \frac{(n-1)!}{(k-1)!} [w^{n-k}](1 + w)^{2n-k} \sum_{j=0}^{n-k} (-1)^j \binom{n-1+j}{n-1} \frac{(\exp(z) - 1)^j}{z^j} w^j
\]

Note that there is no contribution to the coefficient extractor \([w^{n-k}]\) when \(j > n-k\), so we may write

\[
\frac{(n-1)!}{(k-1)!} [w^{n-k}](1 + w)^{2n-k} \sum_{j=0}^{n-k} (-1)^j \binom{n-1+j}{n-1} \frac{(\exp(z) - 1)^j}{z^j} w^j
\]

\[
= \frac{(n-1)!}{(k-1)!} [w^{n-k}](1 + w)^{2n-k} \frac{1}{(1 + w(\exp(z) - 1)/z)^n}
\]

\[
= \frac{(n-1)!}{(k-1)!} [w^{n-k}](1 + w)^{2n-k} \frac{z^n/(\exp(z) - 1)^n}{(w + z/(\exp(z) - 1))^n}
\]

221
Working with
\[ \text{Res}_{w=0} \frac{1}{w^{n-k+1}} (1+w)^{2n-k} \frac{1}{(w-C)^n} \]
we compute the residues at \( C \) and at infinity in order to apply the fact that they must sum to zero. Starting with the first we require (Leibniz rule)

\[
\frac{1}{(n-1)!} \left( \frac{1}{w^{n-k+1}} (1+w)^{2n-k} \right)^{(n-1)}
\]
\[ = \frac{1}{(n-1)!} \sum_{q=0}^{n-1} \binom{n-1}{q} \frac{(n-k+q)!}{(n-k)!} (-1)^q \frac{1}{w^n-k+q} \]
\[ \times \frac{(2n-k)!}{(2n-k-(n-1-q))!} (1+w)^{2n-k-(n-1-q)} \]
\[ = \sum_{q=0}^{n-1} \binom{n-k+q}{q} (-1)^q (2n-k) \frac{1}{w^n-k+q} \frac{2n-k}{n-1-q} (1+w)^{n-k+q} \]
\[ = \left( \frac{1+w}{w} \right)^{n-k+1} \sum_{q=0}^{n-1} \binom{n-k+q}{q} (-1)^q (2n-k) \frac{1+w}{w}^q. \]

We have two important observations, the first is that

\[ \frac{z^n}{(\exp(z) - 1)^n} = 1 + \cdots \]

i.e. no pole at zero and that

\[ \left. \frac{1+w}{w} \right|_{w=-z/(\exp(z)-1)} = \frac{1+z-\exp(z)}{z} = -\frac{1}{2} z + \cdots. \]

Hence on substituting into the coefficient extractor on \( [z^{n-k}] \) we get for all sum terms

\[ [z^{n-k}] (1+\cdots) \left( -\frac{1}{2} z + \cdots \right)^{n-k+1} \times \left( -\frac{1}{2} z + \cdots \right)^q = 0, \]

i.e. due to the middle term there is zero contribution from the residue at \( w = -z/(\exp(z)-1) \). Returning to the main computation we get for the residue at infinity

\[ \text{Res}_{w=\infty} \frac{1}{w^{n-k+1}} (1+w)^{2n-k} \frac{1}{(w-C)^n} \]
\[ = -\text{Res}_{w=0} \frac{1}{w^{n-k+1}} (1+1/w)^{2n-k} \frac{1}{(1/w-C)^n} \]
\[ = -\text{Res}_{w=0} \frac{1}{w^{2n-k+1}} (1+w)^{2n-k} \frac{1}{w^{2n-k}} \frac{1}{(1-Cw)^n} \]

222
On flipping the sign and substituting into the coefficient extractor on \( z \) we get

\[
\frac{(n - 1)!}{(k - 1)!} [z^{n-k}] \frac{z^n}{(\exp(z) - 1)^n} = \frac{(n - 1)!}{(k - 1)!} \text{Res}_{z=0} \frac{1}{z^{n-k+1}} \frac{z^n}{(\exp(z) - 1)^n}.
\]

Summing we get for the OGF

\[
\sum_{k=1}^{n} x^k \frac{(n - 1)!}{(k - 1)!} \text{Res}_{z=0} \frac{z^{k-1}}{(\exp(z) - 1)^n} = x(n - 1)! \times \text{Res}_{z=0} \frac{\exp(xz)}{(\exp(z) - 1)^n}.
\]

Now we evaluate the residue for \( 1 \leq x \leq n \) an integer. We have

\[
\text{Res}_{z=0} \frac{\exp(xz)}{(\exp(z) - 1)^n} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{\exp(xz)}{(\exp(z) - 1)^n} dz
\]

and putting \( \exp(z) = w \) so that \( \exp(z) \ dz = dw \) we obtain

\[
\frac{1}{2\pi i} \int_{|w-1|=\gamma} \frac{w^{x-1}}{(w-1)^n} dw
\]

This is zero when \( x - 1 < n - 1 \) or \( x < n \) and it is one when \( x = n \). By construction the residue is a polynomial in \( x \) of degree \( n - 1 \). We have the \( n - 1 \) roots, they are at \( x = 1, 2, \ldots, n - 1 \) so we know it is

\[
Q(x - 1)(x - 2) \times \cdots \times (x - (n - 1)).
\]

But we also know that at \( x = n \) it evaluates to one, so we must have

\[
Q(n - 1)(n - 2) \times \cdots \times 1 = 1
\]

or \( Q = 1/(n - 1)! \). Restoring the two terms in front we finally obtain
\[ x(n - 1)! \times \frac{1}{(n - 1)!} (x - 1)(x - 2) \times \cdots \times (x - (n - 1)) \]
\[ = x(x - 1)(x - 2) \times \cdots \times (x - (n - 1)) = \sum_{k=1}^{n} (-1)^{n+k} \binom{n}{k} x^k \]

which is precisely the Stirling number OGF, first kind, and we are done. This was [math.stackexchange.com problem 2950043](https://math.stackexchange.com/questions/2950043).

### 76.7 MSE 3049572

Starting from the claim
\[
\binom{m+n}{s+1} - \binom{n}{s+1} = \sum_{q=0}^{s} \frac{m}{q+1} \binom{m+1+2q}{q} \binom{n-2-2q}{s-q}
\]
we observe that
\[
\frac{m+1+q}{q+1} \binom{m+1+2q}{q} - \binom{m+1+2q}{q}
\]
\[= \frac{m}{q+1} \binom{m+1+2q}{q}.\]

Therefore we have two sums,
\[
\sum_{q=0}^{s} \frac{m+1+2q}{q+1} \binom{n-2-2q}{s-q} - \sum_{q=0}^{s} \binom{m+1+2q}{q} \binom{n-2-2q}{s-q}.
\]

For the first one we write
\[
\sum_{q=0}^{s} \omega^{q+1}(1 + w)^{m+1+2q}[z^{s-q}](1 + z)^{n-2-2q}
\]
\[= \text{res}_w (1 + w)^{m+1}[z^s](1 + z)^{n-2} \sum_{q=0}^{s} \frac{1}{w^{q+2}} z^q (1 + w)^{2q}(1 + z)^{-2q}.\]

We may extend \( q \) beyond \( s \) because of the coefficient extractor \([z^s]\) in front, getting
\[
\text{res}_w \frac{1}{w^2}(1 + w)^{m+1}[z^s](1 + z)^{n-2} \sum_{q \geq 0} z^q w^{-q} (1 + w)^{2q}(1 + z)^{-2q}
\]
\[= \text{res}_w (1 + w)^{m+1}[z^s](1 + z)^{n-2} \frac{1}{w^2} \frac{1}{1 - z(1 + w)^2/w/(1 + z)^2}.\]
Repeat the calculation for the second one to get
\[
\text{res}_w (1 + w)^{m+1}[z^n](1 + z)^n \frac{1}{w(1 + z)^2 - z(1 + w)^2}.
\]

Now we have
\[
\left( \frac{1}{w} - 1 \right) \frac{1}{w(1 + z)^2 - z(1 + w)^2} = \frac{1}{w - z} \frac{1}{w(1 + w)} - \frac{1}{1 - wz} \frac{1}{1 + w}.
\]

We thus obtain two components, the first is
\[
\text{res}_w (1 + w)^{m+1}[z^n](1 + z)^n \frac{1}{1 - z/w} \frac{1}{w^2(1 + w)}
\]
\[
= \text{res}_w \frac{1}{w^2} (1 + w)^m [z^n](1 + z)^n \frac{1}{1 - z/w}
\]
\[
= \text{res}_w \frac{1}{w^2} (1 + w)^m \sum_{q=0}^{s} \left( \begin{array}{c} n \\ q \end{array} \right) (z^s)^{q+1} (1 + w)^m = \sum_{q=0}^{s} \left( \begin{array}{c} n \\ q \end{array} \right) \text{res}_w \frac{1}{w^{s+q+2}} (1 + w)^m
\]
\[
= \sum_{q=0}^{s} \left( \begin{array}{c} n \\ q \end{array} \right) [w^{s-q+1}](1 + w)^m = [w^{s+1}](1 + w)^m \sum_{q=0}^{s} \left( \begin{array}{c} n \\ q \end{array} \right) w^q
\]
\[
= - \left( \begin{array}{c} n \\ s + 1 \end{array} \right) + [w^{s+1}](1 + w)^m \sum_{q=0}^{s+1} \left( \begin{array}{c} n \\ q \end{array} \right) w^q.
\]

We may extend \( q \) beyond \( s + 1 \) due to the coefficient extractor in front, to get
\[
- \left( \begin{array}{c} n \\ s + 1 \end{array} \right) + [w^{s+1}](1 + w)^m \sum_{q=0}^{s+1} \left( \begin{array}{c} n \\ q \end{array} \right) w^q = - \left( \begin{array}{c} n \\ s + 1 \end{array} \right) + [w^{s+1}](1 + w)^{m+n}
\]

This is
\[
\left( \begin{array}{c} m + n \\ s + 1 \end{array} \right) - \left( \begin{array}{c} n \\ s + 1 \end{array} \right).
\]

We have the claim, so we just need to prove that the second component will produce zero. We obtain
\[
\text{res}_w (1 + w)^{m+1}[z^n](1 + z)^n \frac{1}{1 - wz} \frac{1}{1 + w}
\]
\[
= \res_w (1 + w)^n [z^s] (1 + z)^n \frac{1}{1 - wz}
\]
\[
= \res_w (1 + w)^n \sum_{q=0}^{s} \binom{n}{q} w^{s-q} = \sum_{q=0}^{s} \binom{n}{q} \res_w w^{s-q} (1 + w)^n = 0.
\]

This concludes the argument.
This was [math.stackexchange.com problem 3049572](https://math.stackexchange.com/questions/3049572).

### 76.8 MSE 3051713

We seek to evaluate
\[
\sum_{k=q}^{2n} \binom{2n+k}{2k} \frac{(2k-1)!!}{(k-q)!} (-1)^k.
\]

or alternatively
\[
\sum_{k=q}^{2n} \binom{2n+k}{2k} \frac{(2k)!}{k! \times 2^k (k-q)!} (-1)^k
\]

This is
\[
q! \sum_{k=q}^{2n} \binom{2n+k}{2k} \binom{2k}{k} \frac{(2k)!}{2^k (k-q)!} (-1)^k
\]

Observe that
\[
\binom{2n+k}{2k} \binom{2k}{k} = \frac{(2n+k)!}{(2n-k)! \times k! \times k!} = \binom{2n+k}{2n} \binom{2n}{k}
\]

and furthermore
\[
\binom{2n}{k} \binom{k}{q} = \frac{(2n)!}{(2n-k)! \times q! \times (k-q)!} = \binom{2n}{q} \binom{2n-q}{k-q}.
\]

We get for the sum
\[
\binom{2n}{q} q! \sum_{k=q}^{2n} \binom{2n+k}{2n} \binom{2n-q}{k-q} \frac{(-1)^k}{2^k}
\]
\[
\left( \frac{2n}{q} \right) q^l \frac{(-1)^q}{2^q} 2^{2n-q} \sum_{k=0}^{2n-q} \binom{2n+q+k}{2n} \binom{2n-q}{k} \frac{(-1)^k}{2^k}.
\]

This becomes
\[
\left( \frac{2n}{q} \right) q^l \frac{(-1)^q}{2^q} 2^{2n-q} \sum_{k=0}^{2n-q} \binom{2n+q+k}{2n} [z^{2n-q-k}](1+z)^{2n-q} \frac{(-1)^k}{2^k} 2^{-k} z^k.
\]

Now we may extend \( k \) beyond \( 2n - q \) because of the coefficient extractor \([z^{2n-q}]\) (no contribution) and get
\[
\left( \frac{2n}{q} \right) q^l \frac{(-1)^q}{2^q} [z^{2n-q}](1+z)^{2n-q} \sum_{k=0}^{2n-q} \binom{2n+q+k}{2n} \frac{(-1)^k}{2^k} 2^{-k} z^k.
\]

Re-write this as
\[
\left( \frac{2n}{q} \right) q^l \frac{(-1)^q}{2^q} [u^{2n}](1+w)^{2n+q} \sum_{k=0}^{2n-q} \binom{2n+q+k}{2n} \frac{(-1)^k}{2^k} 2^{-k} z^k
\]

Now working with the residue we apply the substitution \( z/(1+z) = v \) or \( z = v/(1-v) \) to get
\[
\text{res} \quad \frac{1}{u^{2n-q}} \quad \frac{1}{v} \quad \frac{1}{1+(v/(1-v))(1+w)/2} \quad \frac{1}{(1-v)^2}
\]
\[
= \text{res} \quad \frac{1}{v^{2n-q+1}} \quad \frac{1}{1-v+v(1+w)/2}
\]
\[
= \text{res} \quad \frac{1}{v^{2n-q+1}} \quad \frac{1}{1-v(1-w)/2} = \frac{1}{2^{2n-q}(1-w)^{2n-q}}
\]

Substitute into the remaining coefficient extractor to get
\[
\left( \frac{2n}{q} \right) q^l \frac{(-1)^q}{2^q} [u^{2n}](1+w)^{2n+q} \frac{1}{2^{2n-q}}(1-w)^{2n-q}
\]
\[
= \left( \frac{2n}{q} \right) q^l \frac{(-1)^q}{2^{2n}} \sum_{p=0}^{2n-q} (-1)^p \binom{2n-q}{p} \left( \frac{2n+q}{p} \right) \left( \frac{2n-q}{2n-p} \right)
\]

Now
\[
\binom{2n}{q} \left( \frac{2n-q}{p} \right) = \frac{(2n)!}{q! \times p! \times (2n-q-p)!} = \binom{2n}{q} \binom{2n-p}{q}
\]

and
\[
\binom{2n-p}{q} \left( \frac{2n+q}{2n-p} \right) = \frac{(2n+q)!}{q! \times (2n-p-q)! \times (p+q)!} = \binom{2n+q}{q} \binom{2n}{p+q}.
\]

This yields
\[
\binom{2n+q}{q} q! \frac{(-1)^q}{2^{2n}} \sum_{p=0}^{2n-q} (-1)^p \binom{2n}{p} \left( \frac{2n}{p+q} \right) = \binom{2n+q}{q} q! \frac{(-1)^q}{2^{2n}} \left[ z^{2n-q} (1+z)^{2n} \right]
\]

\[
= \binom{2n+q}{q} q! \frac{(-1)^q}{2^{2n}} \left[ z^{2n-q} (1+z)^{2n} \right] \sum_{p=0}^{2n-q} (-1)^p \binom{2n}{p} z^p.
\]

Now we may extend \( p \) beyond \( 2n-q \) because of the coefficient extractor \([z^{2n-q}]\) in front. We find
\[
\binom{2n+q}{q} q! \frac{(-1)^q}{2^{2n}} \sum_{p=0}^{2n-q} (-1)^p \binom{2n}{p} \left( \frac{2n}{p+q} \right) z^p
\]

\[
= \binom{2n+q}{q} q! \frac{(-1)^q}{2^{2n}} \left[ z^{2n-q} (1+z)^{2n} \right] \sum_{p=0}^{2n-q} (-1)^p \binom{2n}{p} z^p.
\]

Concluding we immediately obtain zero when \( q \) is odd, and otherwise we find
\[
\binom{2n+q}{q} q! \frac{(-1)^q}{2^{2n}} \left[ z^{2n-q} (1+z)^{2n} \right] \sum_{p=0}^{2n-q} (-1)^p \binom{2n}{p} z^p
\]

\[
= \binom{2n+q}{q} q! \frac{(-1)^q}{2^{2n}} \left[ z^{2n-q} (1+z^2)^{2n} \right].
\]

This is
\[
\binom{2n+q}{q} q! \frac{(-1)^q}{2^{2n}} \left[ z^{2n-q} (1+z^2)^{2n} \right]
\]

or alternatively
\[
\frac{(-1)^{n+q/2}}{2^{2n}} \frac{(2n+q)!}{(n-q/2)! \times (n+q/2)!} = \frac{(2n+q)!}{(n-q/2)! \times (n+q/2)!}.
\]

This was math.stackexchange.com problem 3051713.
We seek to show that
\[ S_n = \sum_{j=n}^{2n} \sum_{k=j+1-n}^{j} (-1)^j 2^j - k \binom{2n}{j} \binom{j}{k} \left[ j + 1 - n \right] = 0. \]

With the usual EGFs we get
\[ \sum_{j=n}^{2n} \sum_{k=j+1-n}^{j} (-1)^j 2^j - k \binom{2n}{j} j! \left[ \exp(z) - 1 \right]^k \]
\[ \times k! [w^k] \frac{1}{(j + 1 - n)!} \left( \log \frac{1}{1 - w} \right)^{j + 1 - n}. \]

Now we have
\[ \binom{2n}{j} j! \frac{1}{(j + 1 - n)!} = \frac{(2n)!}{(2n - j)! \times (j + 1 - n)!} = \frac{(2n)!}{(n + 1)!} \left( \frac{n + 1}{j + 1 - n} \right). \]

This yields for the sum
\[ \frac{(2n)!}{(n + 1)!} \sum_{j=n}^{2n} \left( \frac{n + 1}{j + 1 - n} \right) (-1)^j 2^j \]
\[ \times [z^j] \sum_{k=j+1-n}^{j} 2^{-k} \left( \exp(z) - 1 \right)^k [w^k] \left( \log \frac{1}{1 - w} \right)^{j + 1 - n} \]
\[ = \frac{(2n)!}{(n + 1)!} (-1)^n 2^n \sum_{j=0}^{n} \left( \frac{n + 1}{j + 1} \right) (-1)^j 2^j \]
\[ \times [z^{n+j}] \sum_{k=j+1}^{j+n} 2^{-k} \left( \exp(z) - 1 \right)^k [w^k] \left( \log \frac{1}{1 - w} \right)^{j + 1}. \]

Observe that \( \left( \exp(z) - 1 \right)^k = z^k + \cdots \) and hence we may extend the inner sum beyond \( j + n \) due to the coefficient extractor \([z^{n+j}]\). We find
\[ \frac{(2n)!}{(n + 1)!} (-1)^n 2^n \sum_{j=0}^{n} \left( \frac{n + 1}{j + 1} \right) (-1)^j 2^j [z^{n+j}] \]
\[ \times \sum_{k=j+1}^{j+n} 2^{-k} \left( \exp(z) - 1 \right)^k [w^k] \left( \log \frac{1}{1 - w} \right)^{j + 1}. \]

Furthermore note that \( \left( \log \frac{1}{1 - w} \right)^{j + 1} = w^{j + 1} + \cdots \) so that the coefficient extractor \([w^k]\) covers the entire series, producing
\[
\frac{(2n)!}{(n+1)!} (-1)^n 2^n \sum_{j=0}^{n} \binom{n+1}{j+1} (-1)^j 2^j [z^{n+j}] \left( \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{j+1}.
\]

Working with formal power series we are justified in writing

\[
[z^{n+j}] \left( \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{j+1} = [z^{n-1}] \frac{1}{z^{j+1}} \left( \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{j+1}
\]

because the logarithmic term starts at \( z^{j+1}/2^{j+1} \). To see this write

\[
\exp(z) - 1 = \frac{1}{2} + \frac{1}{2} (\exp(z) - 1)^2 + \frac{1}{3} (\exp(z) - 1)^3 + \ldots
\]

We continue

\[
\frac{(2n)!}{(n+1)!} (-1)^{n-1} 2^{n-1} \times \sum_{j=0}^{n} \binom{n+1}{j+1} (-1)^j 2^{j+1} [z^{n+j}] \left( \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{j+1}
\]

\[
= \frac{(2n)!}{(n+1)!} (-1)^{n-1} 2^{n-1} \times \sum_{j=1}^{n+1} \binom{n+1}{j} (-1)^j 2^j \left( \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{j}.
\]

The term for \( j = 0 \) in the sum is one and hence only contributes to \( n = 1 \) so that we may write

\[
-\left[ \left[ n = 1 \right] \right] + \frac{(2n)!}{(n+1)!} (-1)^{n-1} 2^{n-1} \times \sum_{j=1}^{n+1} \binom{n+1}{j} (-1)^j 2^j \frac{1}{z^j} \left( \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{j}
\]

\[
= -\left[ \left[ n = 1 \right] \right] + \frac{(2n)!}{(n+1)!} (-1)^{n-1} 2^{n-1} \times \sum_{j=1}^{n+1} \binom{n+1}{j} (-1)^j 2^j \frac{1}{z^j} \left( \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{j}
\]

\[
= -\left[ \left[ n = 1 \right] \right] + \frac{(2n)!}{(n+1)!} (-1)^{n-1} 2^{n-1} \times \left( 1 - \frac{2}{z} \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{n+1}.
\]

Finally observe that

\[
\left( 1 - \frac{2}{z} \log \frac{1}{1 - (\exp(z) - 1)/2} \right)^{n+1}
\]
\[
\left(1 - \frac{2}{z} \left(\frac{\exp(z) - 1}{2} + \frac{1}{2} \frac{(\exp(z) - 1)^2}{2^2} + \frac{1}{3} \frac{(\exp(z) - 1)^3}{2^3} + \cdots\right)\right)^{n+1}
= \left(-\frac{3}{4} z - \cdots\right)^{n+1}
\]
and furthermore
\[
[z^{n-1}] \left(-1\right)^n \frac{n+1}{4^{n+1}} \left(\frac{n}{n+1} + \cdots\right) = 0
\]
which is the claim.
This was [math.stackexchange.com problem 3068381](https://math.stackexchange.com/questions/3068381).

### 76.10 MSE 3138710

We seek to prove that with \(n \geq m + 2\)
\[
\sum_{j=0}^{\lfloor n/2 \rfloor} \frac{m+j+k}{m-j+1} \frac{n}{n-j} \binom{n-j}{j} = \binom{n+k+m}{m+1}.
\]
This is
\[
\binom{m+k}{m+1} + \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{m+j+k}{m-j+1} \frac{n}{n-j} \binom{n-j}{j} = \binom{n+k+m}{m+1}
\]
or
\[
\binom{m+k}{m+1} + \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{m+j+k}{m-j+1} \frac{n}{j} \binom{n-j-1}{j-1} = \binom{n+k+m}{m+1}
\]
Now observe that
\[
\binom{n-j-1}{j} = \frac{n-2j}{j} \binom{n-j-1}{j-1} = \frac{n}{j} \binom{n-j-1}{j-1} - 2 \binom{n-j-1}{j-1}.
\]
We thus get two terms:
\[
\binom{m+k}{m+1} + \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{m+j+k}{m-j+1} \binom{n-j-1}{j} = \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{m+j+k}{m-j+1} \binom{n-j-1}{j}
\]
and
\[
2 \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{m+j+k}{m-j+1} \binom{n-j-1}{j-1}.
\]
For the first one we have

\[
\sum_{j=0}^{\lfloor n/2 \rfloor} \binom{m+j+k}{m-j+1} \binom{n-j-1}{n-2j-1}
\]

\[= [z^{n-1}] (1 + z)^{n-1} \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{m+j+k}{m-j+1} (1 + z)^{-j} z^{2j}.\]

We may extend \( j \) to infinity because of the coefficient extractor in front (note that the following representation in the variable \( w \) will produce a correct value of zero in the remaining binomial coefficient when \( j > m + 1 \)):

\[
[z^{n-1}](1 + z)^{n-1} [w^{m+1}](1 + w)^{m+k} \sum_{j \geq 0} (1 + z)^{-j} z^{2j} (1 + w)^{j} w^j
\]

\[= [z^{n-1}](1 + z)^{n-1} [w^{m+1}](1 + w)^{m+k} \frac{1}{1 - z^2 w (1 + w)/(1 + z)}
\]

\[= [z^{n-1}](1 + z)^{n} [w^{m+1}](1 + w)^{m+k} \frac{1}{1 + z - z^2 w (1 + w)}
\]

\[= - [z^{n-1}](1 + z)^{n} [w^{m+2}](1 + w)^{m+k-1} \frac{1}{(z - 1/w)(z + 1/(1 + w))}.
\]

Extracting \([z^{n-1}]\) first we get

\[
\text{Res}_{z=0} \frac{1}{z^n} (1 + z)^{n} \frac{1}{(z - 1/w)(z + 1/(1 + w))}.
\]

We see that the residue at infinity is zero. Residues sum to zero and we get for the residue at \( z = 1/w \)

\[
w^n \frac{(1 + w)^n}{w^n} \frac{1}{1/w + 1/(1 + w)} = w \frac{(1 + w)^{n+1}}{1 + 2w}.
\]

For the residue at \( z = -1/(1 + w) \) we find

\[
-(-1)^n (1 + w)^n \frac{w^n}{(1 + w)^n} \frac{1}{1/(1 + w) + 1/w} = -(-1)^n w^{n+1} (1 + w) \frac{1}{1 + 2w}.
\]

Now the coefficient extractor is \([w^{m+2}]\) but we have \( n \geq m + 2 \) so the contribution from this is zero.

It follows that the first sum is given by

\[
[w^{m+1}](1 + w)^{n+k+m} \frac{1}{1 + 2w}.
\]

Continuing with the second sum we find
\[
2 \sum_{j=1}^{\lfloor n/2 \rfloor} \binom{m+j+k}{m-j+1} \binom{n-j-1}{n-2j}
\]
\[
= 2[z^n](1 + z)^{n-1} \sum_{j=1}^{\lfloor n/2 \rfloor} \binom{m+j+k}{m-j+1} (1 + z)^{-j} z^{2j}.
\]

We may include \( j = 0 \) here because
\[
2[z^n](1 + z)^{n-1} \binom{m+k}{m+1} = 0,
\]
getting
\[
2[z^n](1 + z)^{n-1} \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{m+j+k}{m-j+1} (1 + z)^{-j} z^{2j}.
\]

We skip forward to the residue computation since the intermediate steps are the same as before. We get for the residue at \( z = 1/w \)
\[
2w^{n+1} \frac{1 + w}{w^n} \frac{1}{1/w + 1/(1+w)} = 2w^2 \frac{(1 + w)^{n+1}}{1 + 2w}.
\]

For the residue at \( z = -1/(1+w) \) we find
\[
-(-1)^{n+1} (1+w)^{n+1} \frac{w^n}{(1+w)^n} \frac{1}{1/(1+w) + 1/w} = (-1)^n w^{n+1} (1+w)^2 \frac{1}{1 + 2w}.
\]

We note once more that the coefficient extractor is \([w^{m+2}]\) but we have \( n \geq m+2 \) so the contribution from this is zero. It follows that the second sum is given by
\[
[w^{m+1}] 2w \frac{(1 + w)^{n+k+m}}{1 + 2w}.
\]

Adding the two sums we obtain at last
\[
[w^{m+1}] \frac{(1 + w)^{n+k+m}}{1 + 2w} + [w^{m+1}] 2w \frac{(1 + w)^{n+k+m}}{1 + 2w} = [w^{m+1}](1 + w)^{n+k+m}.
\]
or
\[
\binom{n+k+m}{m+1}.
\]

This was [math.stackexchange.com problem 3138710](http://math.stackexchange.com/problem/3138710).
As a preliminary, observe that the generating function of the Fibonacci numbers is
\[ \frac{z}{1 - z - z^2}. \]
so that we have \( F_0 = 0 \) and \( F_1 = F_2 = 1 \).
We seek to evaluate
\[ \sum_{p=0}^{n} \sum_{q=0}^{n} (n-p) \binom{n-q}{p} \]
\[ = \sum_{p=0}^{n} \sum_{q=0}^{n} (n-p) \binom{n-q}{n-p-q}. \]
Note that on the first line the binomial coefficient \( \binom{n}{k} \) starts producing non-zero values when \( p > n \) and \( q > n \). This is not desired here, hence the upper limits. On the second line we use the convention that \( \binom{n}{k} = 0 \) when \( k < 0 \), which is also the behavior when residues are used. Continuing we find
\[ \sum_{p=0}^{n} \sum_{q=0}^{n} \left[ z^{n-p-q} \right] (1 + z)^n (1 + w)^n \]
\[ = [z^n](1 + z)^n [w^n](1 + w)^n \sum_{p=0}^{n} \sum_{q=0}^{n} z^{p+q}(1 + z)^{-p} w^{p+q}(1 + w)^{-q} \]
\[ = [z^n](1 + z)^n [w^n](1 + w)^n \sum_{p=0}^{n} z^p w^p (1 + z)^{-p} \sum_{q=0}^{n} z^q w^q (1 + w)^{-q}. \]
Here the coefficient extractor controls the range and we may continue with
\[ [z^n](1 + z)^n [w^n](1 + w)^n \sum_{p=0}^{n} z^p w^p (1 + z)^{-p} \sum_{q=0}^{n} z^q w^q (1 + w)^{-q} \]
\[ = [z^n](1 + z)^n [w^n](1 + w)^n \frac{1}{1 - zw/(1 + z)} \frac{1}{1 - zw/(1 + w)} \]
\[ = [z^n](1 + z)^{n+1} [w^n](1 + w)^{n+1} \frac{1}{1 + z - zw} \frac{1}{1 + w - zw}. \]
Now we have
\[ \frac{1}{1 + z - zw} \frac{1}{1 + w - zw} \]
\[ = \frac{1 - w}{1 + z - zw} \frac{1}{1 + w - zw} + \frac{w}{1 + w - zw} \frac{1}{1 + w - w^2}. \]
We get from the first piece treating \( z \) first
\[
[z^n](1 + z)^{n+1} \frac{1 - w}{1 + z - wz} = [z^n](1 + z)^{n+1} \frac{1 - w}{1 - z(w - 1)}
\]
\[
= (1 - w) \sum_{p=0}^{n} \binom{n + 1}{n - p} (w - 1)^p = - \sum_{p=0}^{n} \binom{n + 1}{p + 1} (w - 1)^{p+1}
\]
\[
= 1 - \sum_{p=-1}^{n} \binom{n + 1}{p + 1} (w - 1)^{p+1} = 1 - w^{n+1}.
\]

The contribution is
\[
[w^n](1 + w)^{n+1} \frac{1 - w^{n+1}}{1 + w - w^2} = [w^n](1 + w)^{n+1} \frac{1}{1 + w - w^2}.
\]

The second piece yields
\[
[z^n](1 + z)^{n+1} \frac{w}{1 + w - wz} = \frac{1}{1 + w} [z^n](1 + z)^{n+1} \frac{w}{1 - wz/(1 + w)}
\]
\[
= \frac{w}{1 + w} \sum_{p=0}^{n} \binom{n + 1}{n - p} \frac{w^p}{(1 + w)^p} = \sum_{p=0}^{n} \binom{n + 1}{p + 1} \frac{w^{p+1}}{(1 + w)^{p+1}}
\]
\[
= -1 + \sum_{p=-1}^{n} \binom{n + 1}{p + 1} \frac{w^{p+1}}{(1 + w)^{p+1}} = -1 + \left(1 + \frac{w}{1 + w}\right)^{n+1}
\]
\[
= -1 + (1 + 2w)^{n+1}
\]

The contribution is
\[
[w^n](1 + w)^{n+1} \left(-1 + \frac{(1 + 2w)^{n+1}}{(1 + w)^{n+1}}\right) \frac{1}{1 + w - w^2}.
\]

Adding the first and the second contribution we find
\[
[w^n](1 + 2w)^{n+1} \frac{1}{1 + w - w^2}
\]
\[
= \text{res}_w w^{n+1} (1 + 2w)^{n+1} \frac{1}{1 + w - w^2}.
\]

Setting \(w/(1 + 2w) = v\) or \(w = v/(1 - 2v)\) so that \(dw = 1/(1 - 2v)^2 \, dv\) we obtain
\[
\text{res}_v v^{n+1} \frac{1}{1 + v/(1 - 2v) - v^2/(1 - 2v)^2 (1 - 2v)^2}
\]
\[
= \text{res}_v v^{n+1} (1 - 2v)^2 + v(1 - 2v) - v^2.
\]

235
\[
\text{We have our answer:} \quad [v^n] \frac{1}{1 - 3v + v^2} = F_{2n+2}.
\]

It remains to prove that the coefficient extractor returns the Fibonacci number as claimed. The OGF of even-index Fibonacci numbers is

\[
\sum_{n \geq 0} F_{2n} z^{2n} = \frac{1}{2} \left( \frac{z}{1 - z - z^2} + \frac{(-z)}{1 + z - z^2} \right) = \frac{z^2}{1 - 3z^2 + z^4}.
\]

This implies that

\[
\sum_{n \geq 0} F_{2n} z^n = \frac{z}{1 - 3z + z^2}.
\]

Therefore

\[
F_{2n+2} = [z^{n+1}] \frac{z}{1 - 3z + z^2} = [z^n] \frac{1}{1 - 3z + z^2}
\]

as required.

This was math.stackexchange.com problem 3196998.

76.12 MSE 3245099

Starting from the claim that \( S = 1 \) where

\[
S = \sum_{q=0}^{K-1} \binom{K-1+q}{K-1} a^q b^K + a^K b^q (a+b)^q K
\]

we get two pieces

\[
\frac{b^K}{(a+b)^K} \sum_{q=0}^{K-1} \binom{K-1+q}{K-1} \frac{a^q}{(a+b)^q} + \frac{a^K}{(a+b)^K} \sum_{q=0}^{K-1} \binom{K-1+q}{K-1} \frac{b^q}{(a+b)^q}.
\]

This is

\[
\frac{b^K}{(a+b)^K} [z^{K-1}] \frac{1}{1 - z (1 - az/(a+b))^K} + \frac{a^K}{(a+b)^K} [z^{K-1}] \frac{1}{1 - z (1 - bz/(a+b))^K}.
\]

Call these \( S_1 \) and \( S_2 \). The first sum is
Now residues sum to zero so we compute this from the residues at the poles at \( z = 1 \) and \( z = (a + b)/a \). The residue at infinity is zero by inspection. The residue at \( z = 1 \) is

\[
( -1)^{K+1} b^K a^K (1 - (a + b)/a)^K \quad \frac{1}{(K-1)!} \left( \frac{1}{z^{K-1}} \right) \]

For the residue at \( z = (a + b)/a \) we require

\[
\frac{1}{(K-1)!} \sum_{q=0}^{K-1} \left( \frac{K-1}{q} \right) (-1)^q \frac{(K-1+q)!}{(K-1)!} \frac{1}{z^{K+q}} \frac{(-1)^{K-1-q}}{(z-1)^{K-q}}
\]

Evaluating the residue we find

\[
(-1)^{K+1} b^K a^K (1)^{K+1} \sum_{q=0}^{K-1} \left( \frac{K-1+q}{K-1} \right) \frac{1}{z^{K+q}} \frac{1}{(z-1)^{K-q}} \bigg|_{z = (a+b)/a}
\]

\[
= \frac{b^K}{a^K} \sum_{q=0}^{K-1} \left( \frac{K-1+q}{K-1} \right) \frac{a^{K+q}}{(a+b)^{K+q}} \frac{1}{((a+b)/a-1)^{K-q}}
\]

\[
= \sum_{q=0}^{K-1} \left( \frac{K-1+q}{K-1} \right) \frac{a^{K+q}}{(a+b)^{K+q}} \frac{b^{K-q}}{a^{K-q}} \frac{1}{((a+b)/a-1)^{K-q}}
\]

\[
= \sum_{q=0}^{K-1} \left( \frac{K-1+q}{K-1} \right) \frac{a^{K+q}}{(a+b)^{K+q}} \frac{b^{q}}{a^{q}}
\]
\[a^K \sum_{q=0}^{K-1} \binom{K-1 + q}{K-1} \frac{b^q}{(a+b)^q} = S_2.\]

We recognise \(S_2\) and hence we have shown that

\[S_1 - 1 + S_2 = 0\]

or

\[\sum_{q=0}^{K-1} \binom{K-1 + q}{K-1} \frac{a^q b^K + a^K b^q}{(a+b)^{q+K}} = 1\]

as claimed.

This was [math.stackexchange.com problem 3245099](https://math.stackexchange.com). 

**Remark.** This is the formal power series version of the identity by Gosper in section 37.

### 76.13 MSE 3260307

Starting from the claim (we treat the case \(r\) a positive integer)

\[
\binom{r + 2n - 1}{n - 1} - \binom{2n - 1}{n - 1} = S = \sum_{k=1}^{n-1} \binom{2k - 1}{k} \binom{r + 2(n - k) - 1}{r + n - k} \frac{r}{n-k}
\]

\[= \sum_{k=1}^{n-1} \binom{2n - 2k - 1}{n - k} \binom{r + 2k - 1}{r + k} \frac{r}{k}
\]

\[= \sum_{k=1}^{n-1} \binom{2n - 2k - 1}{n - k} \binom{r + 2k - 1}{k - 1} \frac{r}{k}
\]

we use the fact that

\[
\binom{r + 2k - 1}{k - 1} \frac{r}{k} = \binom{r + 2k - 1}{k} - \binom{r + 2k - 1}{k - 1}
\]

to get two pieces, call them \(S_1\) and \(S_2\) where \(S = S_1 - S_2\) and

\[S_1 = \sum_{k=1}^{n-1} \binom{2n - 2k - 1}{n - k} \binom{r + 2k - 1}{k}
\]

and

\[S_2 = \sum_{k=1}^{n-1} \binom{2n - 2k - 1}{n - k} \binom{r + 2k - 1}{k - 1}
\]

We find for \(S_1\)
\[
\text{res}_w \left(1 + w\right)^{r-1} \sum_{k=1}^{n-1} \binom{2n - 2k - 1}{n - k} \frac{(1 + w)^{2k}}{w^{k+1}} - \binom{2n - 1}{n - 1} - \binom{r + 2n - 1}{n} + \text{res}_w \frac{(1 + w)^{r-1}}{w} [z^n](1 + z)^{2n-1} \sum_{k=0}^{n-1} z^k (1 + z)^{-2k} \frac{(1 + w)^{2k}}{w^k}.
\]

Including the term at \(k = 0\) and compensating

\[-\binom{2n - 1}{n - 1} - \binom{r + 2n - 1}{n} + \text{res}_w \frac{(1 + w)^{r-1}}{w} [z^n](1 + z)^{2n-1} \sum_{k=0}^{n-1} z^k (1 + z)^{-2k} \frac{(1 + w)^{2k}}{w^k}.
\]

Including the term at \(k = n\) and again compensating

\[-\binom{2n - 1}{n - 1} - \binom{r + 2n - 1}{n} + \text{res}_w \frac{(1 + w)^{r-1}}{w} [z^n](1 + z)^{2n-1} \sum_{k=0}^{n-1} z^k (1 + z)^{-2k} \frac{(1 + w)^{2k}}{w^k}.
\]

Now we may extend \(k\) beyond \(n\) owing to the coefficient extractor \([z^n]\) to get

\[-\binom{2n - 1}{n - 1} - \binom{r + 2n - 1}{n} + \text{res}_w \frac{(1 + w)^{r-1}}{w} [z^n](1 + z)^{2n-1} \sum_{k=0}^{n-1} z^k (1 + z)^{-2k} \frac{(1 + w)^{2k}}{w^k}.
\]

We get for \(S_2\)

\[
\text{res}_w \left(1 + w\right)^{r-1} [z^n](1 + z)^{2n-1} \sum_{k=1}^{n-1} z^k (1 + z)^{-2k} \frac{(1 + w)^{2k}}{w^k}.
\]

The term \(k = 0\) contributes zero. Compensating for \(k = n\) we find

\[-\binom{r + 2n - 1}{n - 1} + \text{res}_w \frac{(1 + w)^{r-1}}{w} [z^n](1 + z)^{2n-1} \sum_{k=0}^{n-1} z^k (1 + z)^{-2k} \frac{(1 + w)^{2k}}{w^k}.
\]

\[
= -\binom{r + 2n - 1}{n - 1} + \text{res}_w \frac{(1 + w)^{r-1}}{w} [z^n](1 + z)^{2n+1} \frac{1}{w(1 + z)^2 - z(1 + w)^2}.
\]
We therefore have

\[ S = S_1 - S_2 = -\binom{2n-1}{n-1} - \binom{r + 2n - 1}{n} + \binom{r + 2n - 1}{n-1} \]

\[ + \text{res}_w (1 + w)^{r-1}[z^n](1 + z)^{2n} \frac{(1-w)(1+z)}{w(1+z)^2 - z(1+w)^2}. \]

Working with the remaining residue we note that

\[ \frac{(1-w)(1+z)}{w(1+z)^2 - z(1+w)^2} = \frac{1}{w} \frac{1}{1-z/w} - \frac{1}{1-zw}. \]

We see on substituting into the residue that we get no contribution from the second term. This leaves

\[ \text{res}_w \frac{1}{w} (1 + w)^{r-1}[z^n](1 + z)^{2n} \frac{1}{1-z/w} \]

\[ = \text{res}_w \frac{1}{w} (1 + w)^{r-1} \sum_{q=0}^{n} \left( \binom{2n}{n-q} w^{-q} \right) \]

\[ = \sum_{q=0}^{n} \left( \binom{2n}{n-q} \binom{r-1}{q} \right) = [z^n](1 + z)^{2n} \sum_{q=0}^{n} \left( \binom{r-1}{q} z^q \right). \]

The coefficient extractor once more enforces the range and we find

\[ [z^n](1 + z)^{2n} \sum_{q=0}^{n} \left( \binom{r-1}{q} z^q \right) \]

\[ = [z^n](1 + z)^{2n}(1 + z)^{r-1} = [z^n](1 + z)^{r+2n-1} = \binom{r + 2n - 1}{n}. \]

Collecting all four pieces yields

\[ S = S_1 - S_2 = -\binom{2n-1}{n-1} - \binom{r + 2n - 1}{n} + \binom{r + 2n - 1}{n-1} + \binom{r + 2n - 1}{n} \]

\[ = \binom{r + 2n - 1}{n-1} - \binom{2n-1}{n-1} \]

which is the claim.

Remark. The next-to-last step may also be done as follows:

\[ \text{res}_w \frac{1}{w} (1 + w)^{r-1}[z^n](1 + z)^{2n} \frac{1}{1-z/w} \]

\[ = \text{res}_w \frac{1}{w} \sum_{q=0}^{r-1} \binom{r-1}{q} w^q [z^n](1 + z)^{2n} \frac{1}{1-z/w} \]

240
= [z^n](1+z)^{2n} \sum_{q=0}^{r-1} \binom{r-1}{q} z^q = [z^n](1+z)^{2n}(1+z)^{r-1} = \binom{r+2n-1}{n}.

This was math.stackexchange.com problem 3260307.

76.14 MSE 3285142

Starting from (the contribution from \( k = 0 \) is zero owing to the third binomial coefficient)

\[
\sum_{k=1}^{n} \left( \frac{-1}{4} \right)^k \binom{2k}{k}^2 \frac{1}{1-2k} \binom{n+k-2}{2k-2}
\]

we seek to show that this is zero when \( n > 1 \) is odd and

\[
\left[ \left( \frac{1}{4} \right)^m \binom{2m}{m} \frac{1}{1-2m} \right]^2
\]

when \( n = 2m \) is even.

We observe that with \( k \geq 1 \)

\[
\binom{2k}{k} \cdot \frac{1}{1-2k} \binom{n+k-2}{2k-2} = 2 \binom{2k-1}{k-1} \cdot \frac{1}{1-2k} \binom{n+k-2}{2k-2} = \frac{2}{k} \frac{(n+k-2)!}{(k-1)^2 \times (n-k)!}
\]

\[
= -2 \frac{n+k-2}{k-1} \frac{1}{k} \frac{n+k-2}{2k-2} \frac{1}{k} \frac{n+k-2}{k-1} = -2 \frac{n+k-2}{n} \frac{n+k-2}{k-1}
\]

We get for our sum

\[
-2 \sum_{k=1}^{n} \binom{n}{k} \left( \frac{-1}{4} \right)^k \binom{2k}{k} \binom{n+k-2}{k-1}
\]

\[
= -2 \sum_{k=1}^{n} \binom{n}{k} \left( -\frac{1}{2} \right)^k \binom{n+k-2}{n-1}
\]

\[
= \frac{-2}{n} [z^{n-1}](1+z)^{n-2} \sum_{k=1}^{n} \binom{n}{k} \left( -\frac{1}{2} \right)^k (1+z)^k.
\]

The value \( k = 0 \) contributes zero:

\[
-2 \sum_{k=0}^{n} \binom{n}{k} \frac{1}{w^k} (1+z)^k = -2 \sum_{k=0}^{n} \binom{n}{k} \frac{1}{w^k} (1+z)^k
\]
\[
\begin{align*}
&= -\frac{2}{n} \times \text{res}_z \left( \frac{1}{w^{n+1}} (1 + w)^{-1/2} \left[ z^{n-1} \right] (1 + z)^{n-2} (1 + w + z)^n \right) \\
&= -\frac{2}{n} \times \text{res}_z \left( \frac{1}{w^{n+1}} (1 + w)^{-1/2} \sum_{q=0}^{n} \binom{n}{q} (1 + w)^q z^{n-q} \right) \\
&= -\frac{2}{n} \times \sum_{q=1}^{n} \binom{n}{q} \left( q - 1/2 \right) \left( n - 2 \right) \left( n - q \right).}
\end{align*}
\]

Now observe that with \( q < n \) (third binomial coefficient is zero when \( q = n \))

\[
\binom{q - 1/2}{n} = \frac{1}{n!} \left( q - 1/2 \right)^n = \frac{1}{n!} \prod_{p=0}^{q-1} (q - 1/2 - p) \prod_{p=q}^{n-1} (2q - 1 - 2p)
\]

\[
= \frac{1}{n! \times 2^n} \prod_{p=0}^{q-1} (2q - 1 - 2p) \prod_{p=q}^{n-1} (2q - 1 - 2p)
\]

\[
= \frac{1}{n! \times 2^n} \frac{(2q - 1)!}{(q - 1)! \times 2^{n-1}} \prod_{p=0}^{n-1-q} (-1 - 2p)
\]

\[
= \frac{(-1)^{n-q} (2q - 1)!}{n! \times 2^n} \frac{(2n - 1 - 2q)!}{(n - 1 - q)! \times 2^{n-1-q}} \prod_{p=0}^{n-1-q} (-1 - 2p)
\]

\[
= \frac{(-1)^{n-q}}{2^{2n-2}} \binom{n}{q}^{-1} \left( 2q - 1 \right) \left( 2n - 1 - 2q \right) \left( n - q \right).}
\end{align*}
\]

We get for our sum

\[
\begin{align*}
&= \frac{1}{n \times 2^{2n-3}} \times \sum_{q=1}^{n-1} (-1)^{n-q} \binom{2q - 1}{q - 1} \binom{2n - 1 - 2q}{n - q} \binom{n - 2}{q - 1} \\
&= \frac{1}{n \times 2^{2n-3}} \times \sum_{q=0}^{n-2} \binom{n - 2}{q} (-1)^{n-2-q} \binom{2q + 1}{q} \binom{2n - 3 - 2q}{n - q - 1}.
\end{align*}
\]

This becomes

\[
\begin{align*}
&\frac{1}{n \times 2^{2n-3}} \times \sum_{q=0}^{n-2} \binom{n - 2}{q} (-1)^{n-2-q} \binom{2q + 1}{q} z^q (1 + z)^{-2q} \\
&= \frac{1}{n \times 2^{2n-3}} \times \text{res}_z \left( \frac{1 + w}{w} \left[ z^{n-1} \right] (1 + z)^{2n-3} \right)
\times \left( \sum_{q=0}^{n-2} \binom{n - 2}{q} (-1)^{n-2-q} \frac{1}{w^q} (1 + w)^q z^q (1 + z)^{-2q} \right)
\end{align*}
\]

242
\[
\begin{align*}
\frac{1}{n \times 2^{2n-3}} \res_z \frac{1+w}{w} [z^{n-1}] (1+z)^{2n-3} \left( \frac{z(1+w)^2}{w(1+z)^2} - 1 \right)^{n-2} \\
\frac{1}{n \times 2^{2n-3}} \res_z \frac{1+w}{w^{n-1}} [z^{n-1}] (1+z) (z(1+w)^2 - w(1+z)^2)^{n-2} \\
\frac{1}{n \times 2^{2n-3}} \res_z \frac{1+w}{w^{n-1}} [z^{n-1}] (1+z)(z-w)^{n-2}(1-wz)^{n-2}.
\end{align*}
\]

The first piece in \( z \) is
\[
[z^{n-1}] (z-w)^{n-2}(1-wz)^{n-2}
\]
\[
= \sum_{q=1}^{n-2} \binom{n-2}{q} (-1)^{n-2-q} w^{n-2-q} \binom{n-2}{n-1-q} (-1)^{n-1-q} w^{n-1-q}
\]
\[
= - \sum_{q=1}^{n-2} \binom{n-2}{q} \binom{n-2}{q-1} w^{2n-3-2q}.
\]

Here we require
\[
([w^{n-2}] + [w^{n-3}]) w^{2n-3-2q}
\]

We get \( q = (n-1)/2 \) in the first case and \( q = n/2 \) in the second. As this is a pair of an integer and a fraction clearly only one of these extractors can return a non-zero value.

The second piece in \( z \) is
\[
[z^{n-2}] (z-w)^{n-2}(1-wz)^{n-2}
\]
\[
= \sum_{q=0}^{n-2} \binom{n-2}{q} (-1)^{n-2-q} w^{n-2-q} \binom{n-2}{n-2-q} (-1)^{n-2-q} w^{n-2-q}
\]
\[
= \sum_{q=0}^{n-2} \binom{n-2}{q} \binom{n-2}{q} w^{2n-4-2q}.
\]

Solving for \( q \) again we require
\[
([w^{n-2}] + [w^{n-3}]) w^{2n-4-2q}
\]

getting \( q = n/2 - 1 \) and \( q = (n-1)/2 \).

Supposing that \( n \) is odd i.e. \( n = 2m + 1 \) we thus have
\[
- \binom{2m-1}{m} \binom{2m-1}{m-1} + \binom{2m-1}{m-1} \binom{2m-1}{m} = 0,
\]

and we have proved the second part of the claim. On the other hand with \( n = 2m \) even we collect
\[
- \binom{2m-2}{m} \binom{2m-2}{m-1} + \binom{2m-2}{m-1} \binom{2m-2}{m}.
\]
\[
\left(\frac{2m-2}{m-1}\right)^2 \left(1 - \frac{m-1}{m}\right) = \frac{m^2}{(2m-1)^2} \left(\frac{2m-1}{m}\right)^2 \frac{1}{m} = \frac{(2m)^2}{4(2m-1)^2} \left(\frac{2m}{m}\right)^2.
\]

Restoring the factor in front we obtain
\[
\frac{1}{n \times 2^{2n-3}} \frac{m}{4(2m-1)^2} \left(\frac{2m}{m}\right)^2 = \frac{1}{2^{4m}} \left(\frac{2m}{m}\right)^2
\]

This is
\[
\left[\left(\frac{1}{4}\right)^m \left(\frac{2m}{m}\right) \frac{1}{1-2m}\right]^2
\]
as was to be shown.

This was math.stackexchange.com problem 3285142.

76.15 MSE 3333597

We seek to verify that
\[
\sum_{n=0}^{N} \sum_{k=0}^{N} \frac{(-1)^{n+k}}{n+k+1} \binom{N}{n} \binom{N+n}{k} = \frac{1}{2^{N+1}}.
\]

Now we have
\[
\binom{N+n}{k} = \frac{(N+n)!}{(N-k)! \times k! \times n!} = \binom{N+n}{n+k} \binom{n+k}{k}.
\]

We get for the LHS
\[
\sum_{n=0}^{N} \sum_{k=0}^{N} (-1)^{n+k} \binom{N+n}{n+k+1} \left(\binom{N}{n} \binom{N+n+1}{k} \binom{n+k}{k}\right)
\]
\[
= \sum_{n=0}^{N} \frac{1}{N+n+1} \sum_{k=0}^{N} (-1)^{n+k} \binom{N+n+1}{n+k+1} \binom{N}{n} \binom{N+k}{k} \binom{n+k}{k}
\]
\[
= \sum_{n=0}^{N} \frac{1}{N+n+1} \binom{N}{n} \sum_{k=0}^{N} (-1)^{n+k} \binom{N+n+1}{N-k} \binom{N+k}{k} \binom{n+k}{k}
\]
\[
= \sum_{n=0}^{N} \frac{1}{N+n+1} \left[z^N(1+z)^{N+n+1}\right]_n \sum_{k=0}^{N} (-1)^{n+k} z^k \binom{N+k}{N} \binom{n+k}{n}.
\]

Now the coefficient extractor controls the range and we continue with
Now for the coefficient extractor to be non-zero we must have $k \geq N$ which happens just once, namely when $n = N$ and $k = N$. We get
\[
\frac{(-1)^N}{2N+1} \binom{N}{N} (-1)^N \binom{N}{N} \binom{N-N+N}{N}.
\]

This expression does indeed simplify to
\[
\frac{1}{2N+1}
\]
as claimed.

This was math.stackexchange.com problem 3333597.

**76.16 MSE 3342361**

We seek to verify that
\[
\sum_{k=3}^{n} (-1)^k \binom{n}{k} \sum_{j=1}^{k-2} \frac{j(n+1) + k - 3}{n-2} = (-1)^{n-1} \left( \binom{n}{2} - \binom{2n+1}{n-2} \right),
\]
where \( n \geq 3 \). Now for
\[
\sum_{k=3}^{n} (-1)^k \binom{n}{k} \binom{k-3}{n-2}
\]
to be non-zero we would need \( k - 3 \geq n - 2 \) or \( k \geq n + 1 \), which is not in the range, so it is zero and we may work with
\[
\sum_{k=3}^{n} (-1)^k \binom{n}{k} \sum_{j=0}^{k-2} \frac{j(n+1) + k - 3}{n-2}
\]
\[
= \sum_{k=3}^{n} (-1)^k \binom{n}{k} \sum_{j=0}^{k-2} \frac{j(n+1) + k - 3}{n-2} \text{ res } \frac{1}{z^{k-1}} 1 - \frac{z}{1-z}
\]
\[
= \text{ res } \frac{z}{1-z} \sum_{k=3}^{n} (-1)^k \binom{n}{k} \frac{1}{z^k} \sum_{j=0}^{k-2} \frac{j(n+1) + k - 3}{n-2} z^j
\]
\[
= \text{ res } \frac{z}{1-z} \sum_{k=3}^{n} (-1)^k \binom{n}{k} \frac{1}{z^k} \sum_{j=0}^{k-2} \text{ res } \frac{1}{w^{n-1}} (1+w)^{j(n+1)+k-3} z^j
\]
\[
= \text{ res } \frac{z}{1-z} \text{ res } \frac{1}{w^{n-1}} \sum_{k=3}^{n} (-1)^k \binom{n}{k} \frac{1}{z^k} (1+w)^{k-3} \sum_{j=0}^{k-2} (1+w)^{j(n+1)} z^j
\]
for $k = 0$ we find

\[
\text{We compute this by lowering the index to } k = 0 \text{ and subtracting the values for } k = 0, 1, \text{ and } k = 2 \text{ from this completed sum. First (piece A), extending to } k = 0 \text{ we find}
\]

\[
\frac{z}{1 - z} \frac{1}{w^{n-1}} \frac{1}{1 - z(1 + w)^{n+1}} \sum_{k=3}^{n} (-1)^k \binom{n}{k} \frac{1}{z^k (1 + w)^{k-3}}
\]

\[
= \frac{z}{1 - z} \frac{1}{w^{n-1}} \frac{1}{(1 + w)^3} \frac{1}{1 - z(1 + w)^{n+1}} \sum_{k=3}^{n} (-1)^k \binom{n}{k} \frac{1}{z^k (1 + w)^k}.
\]

We introduce $z/(1 + w - z) = v$ so that $z = v(1 + w)/(1 + v)$ and $dz = (1 + w)/(1 + v)^2 \, dv$ as well as $z/(1 - z) = v(1 + w)/(1 - vw)$ to get

\[
\frac{v}{w^{n-1}} \frac{1}{1 + v} \frac{1}{w^{n-1}} \frac{1}{1 + w} \frac{1}{1 - vw} \frac{1}{1 - v(1 + w)^{n+2} / (1 + v)(1 + v)^2} \frac{1 + w}{1 + w - vw}.
\]

We thus have piece $A_1$:

\[
\frac{v}{w^{n-1}} \frac{1}{1 + v} \frac{1}{w^{n-1}} \frac{1}{1 + w} \frac{1}{1 - vw} \frac{1}{1 - v((1 + w)^{n+2} - 1)}
\]

\[
= \frac{1}{w^{n-1}} \frac{1}{(1 + w)^2} \sum_{q=0}^{n-2} (-1)^{n-2-q} ((1 + w)^{n+2} - 1)^q
\]

\[
= \frac{1}{w^{n-1}} \frac{1}{(1 + w)^2} \sum_{q=0}^{n-2} (1 - (1 + w)^{n+2})^q
\]

\[
= \frac{1}{w^{n-1}} \frac{1}{(1 + w)^2} \frac{1 - (1 - (1 + w)^{n+2})^{n-1}}{(1 + w)^{n+2}}
\]

\[
= \left[w^{n-2}\right] \frac{1 - (n + 2)w - \cdots - w^{n+2}}{(1 + w)^{n+4}} = (-1)^{n-2} \binom{n - 2 + n + 3}{n - 2}
\]

\[
= 247
\]
\[ (-1)^n \binom{2n + 1}{n - 2}. \]

We have one correct piece. Continuing with \( A_2 \) (which we conjecture to be zero) we find
\[
\text{res}_w \left( \frac{\frac{(-1)^n}{w^{n-1}} \frac{1}{1 + w} \frac{1}{1 - v w} \frac{1}{1 - v (1 + w)^{n+2} - 1}}{w^{n-2} (1 + w)^2} \right)
\]
\[
= \text{res}_w \left( \frac{\frac{(-1)^n}{w^{n-2}} \frac{1}{(1 + w)^2} \sum_{q=0}^{n-2} w^{n-2-q} ((1 + w)^{n+2} - 1)^q}{w^{n-2} (1 + w)^2} \right)
\]
\[
= \text{res}_w \left( \frac{\frac{(-1)^n}{(1 + w)^2} \sum_{q=0}^{n-2} ((n + 2)^q w^{n-2} + \ldots + w^{(n+1)q+n-2})}{w^{n-2} (1 + w)^2} \right)
\]
\[
= \text{res}_w \left( \frac{(-1)^n}{1 + w} \sum_{q=0}^{n-2} ((n + 2)^q + \ldots + w^{(n+1)q}) = 0. \right)
\]

Continuing with the second piece \( B \) which corresponds to \( k = 0 \)
\[
\text{res}_z \left( \frac{z}{1 - z} \frac{1}{w^{n-1} (1 + w)^2} \frac{1}{1 - z (1 + w)^{n+1}} \right).
\]
This is zero by inspection because there is no pole at \( z = 0 \). More formally,
\[
\text{res}_w \left( \frac{1}{w^{n-1} (1 + w)^2} \right)
\]
\[
\times \text{res}_z (1 + z + z^2 + \cdots) (1 + z (1 + w)^{n+1} + z^2 (1 + w)^{2n+2} + \cdots) = 0.
\]

For the third piece \( C \) which corresponds to \( k = 1 \) we get a factor of \( -n(1 + w)/z \) for
\[
\frac{-n \text{res}_w}{1 + w} \frac{1}{w^{n-1} (1 + w)^2}
\]
\[
\times \text{res}_z (1 + z + z^2 + \cdots) (1 + z (1 + w)^{n+1} + z^2 (1 + w)^{2n+2} + \cdots) = 0.
\]

The factor for the fourth piece \( D \) is \( \binom{n}{2} (1 + w)^2/z^2 \):
\[
\binom{n}{2} \text{res}_w \frac{1}{w^{n-1}} \frac{1}{1 + w}
\]
\[
\times \text{res}_z \frac{1}{z} (1 + z + z^2 + \cdots) (1 + z (1 + w)^{n+1} + z^2 (1 + w)^{2n+2} + \cdots)
\]
\[
= \binom{n}{2} \text{res}_w \frac{1}{w^{n-1}} \frac{1}{1 + w} = (-1)^n \binom{n}{2}.
\]
Subtracting $B, C$ and $D$ from $A$ we finally obtain

$$(-1)^n \left[ \binom{2n+1}{n-2} - \binom{n}{2} \right].$$

This was math.stackexchange.com problem 3342361.

76.17 MSE 3383557

We seek to show that

$$n \sum_{k=0}^{n} \frac{(-1)^k}{2n-k} \binom{2n-k}{k} x^k y^{2n-2k} = \frac{1}{2^{2n}} \sum_{k=0}^{n} \binom{2n}{2k} y^{2k} (y^2 - 4x)^{n-k}.$$  

We compare the coefficient on $[x^q]$ of the LHS and the RHS where $0 \leq q \leq n$ and show that they are equal. We must therefore show that

$$n \frac{(-1)^q}{2n-q} \binom{2n-q}{q} y^{2n-2q} = [x^q] \frac{1}{2^{2n}} \sum_{k=0}^{n} \binom{2n}{2k} y^{2k} (y^2 - 4x)^{n-k}.$$  

The RHS is

$$[x^q] \frac{1}{2^{2n}} \sum_{k=0}^{n} \binom{2n}{2k} y^{2n-2k} (y^2 - 4x)^k$$

$$= \frac{1}{2^{2n}} \sum_{k=q}^{n} \binom{2n}{2k} y^{2n-2k} [x^q] (y^2 - 4x)^k$$

$$= \frac{1}{2^{2n}} \sum_{k=q}^{n} \binom{2n}{2k} y^{2n-2k} \binom{k}{q} (-4)^q y^{2k-2q}$$

$$= y^{2n-2q} \frac{1}{2^{2n}} \sum_{k=q}^{n} \binom{2n}{2k} \binom{k}{q} (-4)^q.$$  

We have reduced the claim to

$$n \frac{(-1)^q}{2n-q} \binom{2n-q}{q} y^{2n-2q} = \frac{1}{2^{2n}} \sum_{k=q}^{n} \binom{2n}{2k} \binom{k}{q} (-4)^q.$$  

The RHS is

$$\frac{1}{2^{2n}} \sum_{k=q}^{n} \binom{k}{q} (-4)^q [z^{2n-2k}] (1 + z)^{2n}$$

$$= \frac{(-1)^q}{2^{2n-2q}} [z^{2n}] (1 + z)^{2n} \sum_{k=q}^{n} \binom{k}{q} z^{2k}.$$  

249
Now when $k$ exceeds $n$ we get zero from the coefficient extractor, which enforces the range:

$$\frac{(-1)^q}{2^{2n-2q}}[z^{2n}](1+z)^{2n} \sum_{k \geq q} \binom{k}{q} z^{2k} = \frac{(-1)^q}{2^{2n-2q}}[z^{2n}](1+z)^{2n} \sum_{k \geq 0} \binom{k+q}{q} \frac{1}{(1-z)^{q+1}} = \frac{(-1)^q}{2^{2n-2q}}[z^{2n-2q}](1+z)^{2n-q-1} \frac{1}{(1-z)^{q+1}}$$

$$= \frac{(-1)^q}{2^{2n-2q}} \sum_{p=0}^{2n-q-1} \binom{2n-q-1}{p} \binom{2n-2q-p+q}{q} = \frac{(-1)^q}{2^{2n-2q}} \sum_{p=0}^{2n-q-1} \binom{2n-q-1}{p} \binom{2n-q-p}{q}.$$

Then we have

$$\binom{2n-q-1}{2n-q-1-p} \binom{2n-q-p}{q} = \frac{(2n-q-1)!(2n-q-p)}{p! \times q! \times (2n-2q-p)!} = \frac{1}{2n-q-p! \times q! \times (2n-2q-p)!} = \frac{1}{2n-q} \binom{2n-q}{q} \binom{2n-2q}{p} (2n-q-p).$$

Substituting we find (here we have included the value for $p = 2n - q$, which is zero):

$$\frac{(-1)^q}{2^{2n-2q}} \frac{1}{2n-q} \binom{2n-q}{q} \sum_{p=0}^{2n-q} \binom{2n-2q}{p} (2n-q-p).$$

Working with the remaining sum we note that $(2n-2q)^2 = 0$ when $p > 2n - 2q$ and $2n - q \geq 2n - 2q$ so we may continue with

$$\sum_{p=0}^{2n-2q} \binom{2n-2q}{p} (2n-q-p) = (2n-q)2^{2n-2q} - \sum_{p=1}^{2n-2q} \binom{2n-2q}{p} p$$

$$= (2n-q)2^{2n-2q} - (2n-2q) \sum_{p=1}^{2n-2q} \binom{2n-2q-1}{p-1}.$$
\[(2n - q)2^{n-2q} - (2n - 2q)2^{n-2q-1} = (2n - q)2^{n-2q} - (n - q)2^{n-2q}\]
\[= n2^{n-2q}.
\]
Substituting we at last obtain
\[\frac{(-1)^q}{2n - q} \binom{2n}{q} \]
which was to be shown.
This was math.stackexchange.com problem 3383557.

76.18 MSE 3441855

We seek to evaluate the LHS of the first equation below and start as follows:
\[\sum_{k=0}^{n} (-1)^k 4^{n-k} \binom{2n - k}{k} = \sum_{k=0}^{n} (-1)^k 4^{n-k} \binom{2n}{2n - 2k} \]
\[= \sum_{k=0}^{n} (-1)^k 4^{n-k} [z^{2n-2k}] (1 + z)^{2n-k} \]
\[= [z^{2n}] (1 + z)^{2n} \sum_{k=0}^{n} (-1)^k 4^{n-k} z^{2k} (1 + z)^{-k}.
\]
Now when \(k > n\) we get zero contribution due to the coefficient extractor \([z^{2n}]\) and the factor \(z^{2k}\), so this enforces the range of the sum and we may continue with
\[\sum_{k=0}^{n} (-1)^k 4^{n-k} z^{2k} (1 + z)^{-k} \]
\[= \frac{[z^{2n}] (1 + z)^{2n}}{1 + z^2 / (1 + z)/4} \]
\[= \frac{4^{n+1} [z^{2n}] (1 + z)^{2n+1}}{4 + 4z + z^2} = \frac{4^{n+1} [z^{2n}] (1 + z)^{2n+1}}{(z + 2)^2}.
\]
This is
\[4^{n+1} \text{res}_{z} \frac{1}{w^{2n+1}} \frac{1}{(1 + z)^{2n+1}} \frac{1}{(z + 2)^2}.
\]
We introduce \(z/(1 + z) = w\) so that \(z = w/(1 - w)\) and \(dz = 1/(1 - w)^2\) \(dw\), to obtain
\[4^{n+1} \text{res}_{w} \frac{1}{w^{2n+1}} \frac{1}{(w/(1 - w) + 2)^2} \frac{1}{(1 - w)^2} \]
\[= 4^{n+1} \text{res}_{w} \frac{1}{w^{2n+1}} \frac{1}{(2 - w)^2}.
\]
\[
= 4^{n+1} [w^{2n}] \frac{1}{(2 - w)^2} = 4^n [w^{2n}] \frac{1}{(1 - w/2)^2} = 4^n(2n + 1) \frac{1}{2^{2n}} = 2n + 1.
\]

**Remark.** This can also be done using the fact that residues sum to zero, which starting from the residue in \( z \) we see that the residue at infinity is zero, so our sum is

\[
-4^{n+1} \text{Res}_{z=-2} \frac{1}{z^{2n+1}(1 + z)^{2n+1}} \frac{1}{(z + 2)^2}
\]

\[
= -4^{n+1} \left. \left( \frac{1}{z^{2n+1}(1 + z)^{2n+1}} \right) \right|_{z=-2}
\]

\[
= -4^{n+1} \left( \frac{-2n + 1}{z^{2n+2}} (1 + z)^{2n+1} + \frac{(2n + 1)}{z^{2n+1}} (1 + z)^{2n} \right) \bigg|_{z=-2}
\]

\[
= (2n + 1) \times 4^{n+1} \left( \frac{(-1)^{2n+1}}{(-2)^{2n+2}} - \frac{(-1)^{2n}}{(-2)^{2n+1}} \right)
\]

\[
= (2n + 1) \times 2^{2n+2} \left( -\frac{1}{2^{2n+2}} + \frac{1}{2^{2n+1}} \right) = 2n + 1.
\]

This was [math.stackexchange.com](http://math.stackexchange.com) problem 3441855.

**76.19 MSE 3577193**

We seek to show that

\[
\sum_{k=0}^{l} \binom{k}{m} \binom{k}{n} = \sum_{k=0}^{n} (-1)^k \binom{l + 1}{m + k + 1} \binom{l - k}{n - k}.
\]

The RHS is

\[
[z^n] \sum_{k=0}^{n} (-1)^k \binom{l + 1}{m + k + 1} z^k (1 + z)^{l-k}.
\]

The coefficient extractor enforces the range:

\[
[z^n] \sum_{k \geq 0} (-1)^k \binom{l + 1}{l - m - k} z^k (1 + z)^{l-k}
\]

\[
= [z^n](1 + z)^l [w^{l-m}](1 + w)^{l+1} \sum_{k \geq 0} (-1)^k w^k z^k (1 + z)^{-k}
\]

\[
= [z^n](1 + z)^l [w^{l-m}](1 + w)^{l+1} \frac{1}{1 + wz/(1 + z)}
\]

\[
= [z^n](1 + z)^{l+1} [w^{l-m}](1 + w)^{l+1} \frac{1}{1 + z + wz}
\]

252
\[= [z^n](1 + z)^{l+1}[w^{l-m}](1 + w)^{l+1} \frac{1}{1 + z(1 + w)}\]

\[= [z^n](1 + z)^{l+1}[w^{l-m}] \sum_{k\geq 0} (-1)^k z^k (1 + w)^{k+l+1}\]

\[= [z^n](1 + z)^{l+1} \sum_{k\geq 0} (-1)^k z^k \binom{k + l + 1}{l - m}.\]

This is

\[\sum_{k=0}^{n} (-1)^k \binom{l + 1}{n - k} \binom{k + l + 1}{l - m}.\]

The LHS is

\[\sum_{k\geq 0} [(0 \leq k \leq \ell)] [z^m](1 + z)^k [w^n](1 + w)^k\]

\[= [z^m][w^n] \sum_{k\geq 0} (1 + z)^k (1 + w)^k \frac{v^k}{1 - v}\]

\[= [z^m][w^n][v^l] \frac{1}{1 - v} \sum_{k\geq 0} (1 + z)^k (1 + w)^k v^k\]

\[= [z^m][w^n][v^l] \frac{1}{1 - v} \frac{1/(1 + z)/(1 + w)}{1 - (1 + z)(1 + w)v}\]

\[= [z^m][w^n][v^l] \frac{1}{v - 1} \frac{1/(1 + z)/(1 + w)}{1 - (1 + z)/(1 + w)}.\]

The inner term is

\[\text{Res}_{v=0} \frac{1}{v^{l+1}} \frac{1/(1 + z)/(1 + w)}{v - 1/(1 + z)/(1 + w)}.\]

Residues sum to zero and the residue at infinity in \(v\) is zero. The contribution from minus the residue at \(v = 1/(1 + z)/(1 + w)\) is

\[-[z^m](1 + z)^{l+1}[w^n](1 + w)^{l+1} \frac{1/(1 + z)/(1 + w)}{1/(1 + z)/(1 + w) - 1}\]

\[= -[z^m](1 + z)^{l+1}[w^n](1 + w)^{l+1} \frac{1/(1 + z)}{1/(1 + z) - (1 + w)}\]

\[= [z^m](1 + z)^{l+1}[w^n](1 + w)^{l+1} \frac{1/(1 + z)}{w + z/(1 + z)}\]

\[= [z^m](1 + z)^{l+1}[w^n](1 + w)^{l+1} \frac{1/z}{w(1 + z)/z + 1}.\]
Now with \( l, m, n \) positive integers we must have \( l \geq n, m \) or else there is no contribution to \( k^m k^n \). This means we continue with

\[
[z^m](1 + z)^{l+1} + \sum_{k=0}^{n} \binom{l+1}{k} \frac{1}{z} (-1)^{n-k} \frac{(1 + z)^{n-k}}{z^{n-k}}
\]

\[
= \sum_{k=0}^{n} (-1)^{n-k} \binom{l+1}{k} \left( \frac{l+1+n-k}{m+1+n-k} \right).
\]

This is

\[
\sum_{k=0}^{n} (-1)^{n-k} \binom{l+1}{k} \left( \frac{l+1+n-k}{l-m} \right).
\]

We have the same closed form for LHS and RHS, thus proving the claim.

For a full proof we also need to show that the contribution from \( v = 1 \) is zero. We get

\[
[z^m][w^n] \frac{1}{1 + z} \frac{1}{1 + w} = [z^m][w^n] \frac{1}{(1 + z)(1 + w) - 1}
\]

\[
= [z^m][w^n] \frac{1}{z + w + zw} = [z^{m+1}][w^n] \frac{1}{1 + w(1 + z)/z}
\]

\[
= [z^{m+1}][w^n] (-1)^n \frac{1}{z^n} = (-1)^n \binom{n}{n+m+1} = 0.
\]

This was math.stackexchange.com problem 3577193.

**76.20 MSE 3583191**

Goal here is

\[
\sum_{j=0}^{k} \binom{2n}{2j} \binom{n-j}{k-j} = \frac{4^kn}{n+k} \binom{n+k}{n-k}.
\]

Start as follows:

\[
\sum_{j=0}^{k} \binom{2n}{2j} \binom{n-j}{k-j} = \sum_{j=0}^{k} \binom{2n}{2k-2j} \binom{n-k+j}{j}
\]

\[
= [z^{2k}](1 + z)^{2n} \sum_{j=0}^{k} z^{2j} \binom{n-k+j}{j}.
\]

Here the coefficient extractor enforces the range:

\[
[z^{2k}](1 + z)^{2n} \sum_{j \geq 0} z^{2j} \binom{n-k+j}{j}
\]

254
\[ [z^{2k}](1 + z)^{2n} \frac{1}{(1 - z^2)^{n-k+1}} = [z^{2k}](1 + z)^{n+k-1} \frac{1}{(1 - z)^{n-k+1}}. \]

This is

\[
\text{Res}_{z=0} \frac{1}{z^{2k+1}} (1 + z)^{n+k-1} \frac{1}{(1 - z)^{n-k+1}} = (-1)^{n-k+1} \text{Res}_{z=0} \frac{1}{z^{2k+1}} (1 + z)^{n+k-1} \frac{1}{(z - 1)^{n-k+1}}.
\]

Now the residue at infinity is zero so this is minus the residue at one:

\[
(-1)^{n-k} \text{Res}_{z=1} \frac{1}{(1 + (z - 1))^{2k+1}} (2 + (z - 1))^{n+k-1} \frac{1}{(z - 1)^{n-k+1}}
\]

= \((-1)^{n-k} \sum_{j=0}^{n-k} \binom{n+k-1}{j} 2^{n+k-1-j} (-1)^{n-k-j} \left( \frac{n-k-j+2k}{2k} \right) \)

= \(2^{n+k-1} \sum_{j=0}^{n-k} \binom{n+k-1}{j} 2^{-j} (-1)^{j} \left( \frac{n+k-j}{n-k-j} \right) \).

Coefficient extractor enforces range:

\[ 2^{n+k-1} [z^{n-k}](1 + z)^{n+k} \sum_{j \geq 0} \binom{n+k-1}{j} 2^{-j} (-1)^{j} \frac{z^j}{(1 + z)^j} \]

= \(2^{n+k-1} [z^{n-k}](1 + z)^{n+k} \left( 1 - \frac{z}{2(1 + z)} \right)^{n+k-1} \)

= \([z^{n-k}](1 + z)^{n+k-1} + [z^{n-k-1}](2 + z)^{n+k-1} \)

= \(\binom{n+k-1}{n-k} 2^{n+k-1-(n-k)} + \binom{n+k-1}{n-k-1} 2^{n+k-1-(n-k-1)} \)

= \(\frac{1}{2^k} \frac{2k}{n+k} \binom{n+k}{n-k} + \frac{n-k}{n+k} \binom{n+k}{n-k} \)

= \(\frac{4^k}{n+k} \binom{n}{n-k} \).

This was [math.stackexchange.com problem 3583191](https://math.stackexchange.com/p/3583191).
76.21  MSE 3592240

We seek to verify that

\[
\sum_{q=m}^{n-k} (-1)^{q-m} \binom{k-1+q}{k-1} \binom{n}{q+k} = \binom{n-1}{m} \binom{n-m}{k}.
\]

Using the standard EGFs the LHS becomes

\[
\sum_{q=m}^{n-k} (-1)^{q-m} \binom{k-1+q}{k-1} q! [z^q] \frac{(\exp(z) - 1)^m}{m!} \frac{1}{(q+k)!} \left( \log \frac{1}{1-w} \right)^{q+k}
\]

\[
= \frac{n!}{(k-1)! \times m! [w^n]} \sum_{q=m}^{n-k} (-1)^{q-m} [z^q] (\exp(z) - 1)^m \frac{1}{q+k} \left( \log \frac{1}{1-w} \right)^{q+k}
\]

\[
= \frac{(n-1)!}{(k-1)! \times m! [w^{n-1}]} \sum_{q=m}^{n-k} (-1)^{q-m} [z^q] (\exp(z) - 1)^m \left( \log \frac{1}{1-w} \right)^{q+k-1} \frac{1}{1-w}
\]

\[
= \frac{(n-1)!}{(k-1)! \times m! [w^{n-1}]} \sum_{q=m}^{n-k} (-1)^{q-(k-1)} [z^q] z^{k-1} (\exp(z) - 1)^m \left( \log \frac{1}{1-w} \right)^q.
\]

Now as \( \log \frac{1}{1-w} = w + \cdots \) when \( q > n - 1 \) there is no contribution from the logarithmic power term due to the coefficient extractor \([w^{n-1}]\) so we find

\[
(-1)^{m+(k-1)} \frac{(n-1)!}{(k-1)! \times m! [w^{n-1}]} \frac{1}{1-w}
\]

\[
\times \sum_{q=m+k-1}^{n-1} (-1)^q \frac{1}{1-w} [z^q] z^{k-1} (\exp(z) - 1)^m.
\]

Note that \( z^{k-1} (\exp(z) - 1)^m = z^{m+k-1} + \cdots \) which means that the remaining sum / coefficient extractor pair covers the entire series and we get

\[
(-1)^{m+(k-1)} \frac{(n-1)!}{(k-1)! \times m! [w^{n-1}]} \frac{1}{1-w}
\]

\[
\times (-1)^{k-1} \left( \log \frac{1}{1-w} \right)^{k-1} \left( \exp \left( - \log \frac{1}{1-w} - 1 \right) \right)^m
\]

256
\[
\frac{(n-1)!}{(k-1)! \times m!} [w^{n-1}] \frac{1}{1-w} \frac{1}{m!} [w]_{m+1} \frac{1}{1-w} \times (-1)^{k-1} \left( \log \frac{1}{1-w} \right)^{k-1} (-w)^m
\]

\[
= \frac{(n-1)!}{(k-1)! \times m!} [w^{n-1-m}] \frac{1}{1-w} \left( \log \frac{1}{1-w} \right)^{k-1}
\]

\[
= \frac{(n-1)!}{m!} [w^{n-1-m}] \frac{1}{1-w} \frac{1}{(k-1)!} \left( \log \frac{1}{1-w} \right)^k
\]

\[
= \frac{(n-1)!}{m!} (n-m)[w^{n-m}] \frac{1}{k!} \left( \log \frac{1}{1-w} \right)^k
\]

\[
= \frac{(n-1)!}{m! \times (n-1-m)!} (n-m)[w^{n-m}] \frac{1}{k!} \left( \log \frac{1}{1-w} \right)^k
\]

\[
= \binom{n-1}{m} \binom{n-m}{k}.
\]

This is the claim.
This was math.stackexchange.com problem 3592240.

76.22 MSE 3604802

We seek to evaluate

\[
S(N) = \sum_{q=0}^{N} (-1)^q \binom{2q}{q} \binom{N+q}{N-q} \frac{q^2}{(q+1)^2}
\]

or alternatively

\[
S(N) = \sum_{q=0}^{N} (-1)^q \frac{(N+q)!}{(N-q)!(q+1)!} \frac{1}{(q+1)^2}.
\]

This is

\[
S(N) = \sum_{q=0}^{N} q^2 (-1)^q \frac{(N+q)!}{(N-q)!(q+1)!} \frac{1}{(q+1)^2}
\]

\[
= \sum_{q=0}^{N} q^2 (-1)^q \binom{N+1}{q+1} \frac{(N+q)!}{(N+1)!(q+1)!}
\]

\[
= \frac{1}{N(N+1)} \sum_{q=0}^{N} q^2 (-1)^q \binom{N+1}{q+1} \frac{(N+q)!}{(N-1)!(q+1)!}
\]

257
\[= \frac{1}{N(N+1)} \sum_{q=0}^{N} q^2(-1)^q \binom{N+1}{q+1} \binom{N+q}{q+1}.\]

We continue with

\[= \frac{1}{N(N+1)} \sum_{q=0}^{N} q^2(-1)^q \binom{N+1}{N-q} \binom{N+q}{q+1}\]

\[= \frac{1}{N(N+1)} \left(z^N\right)(1+z)^{N+1} \sum_{q=0}^{N} q^2(-1)^q z^q \binom{N+q}{q+1}.\]

Here the coefficient extractor enforces the upper limit of the sum:

\[= \frac{1}{N(N+1)} \left[z^N\right](1+z)^{N+1} \sum_{q=0}^{N} q^2(-1)^q z^q(1+w)^q \]

\[= \frac{1}{N(N+1)} \left[z^N\right](1+z)^{N+1} \sum_{q=0}^{N} q^2(-1)^q z^q(1+w)^q \]

\[= \frac{1}{N(N+1)} \left[z^{N-1}\right](1+z)^N(1+w)^{N+1} \frac{1 - z(1+w)}{(1+z(1+w))^3}.\]

We have two pieces here, the first one is

\[- \frac{1}{N(N+1)} \left[z^{N-1}\right](1+z)^{N-1}[w^{N-1}](1+w)^{N+1} \frac{1}{(1+z(1+w))^3}\]

The inner term is

\[= \sum_{q=0}^{N-1} \binom{N+1}{N-1-q} \frac{(-1)^q \binom{q+2}{2} z^q}{(1+z)^q}.\]

Now

\[\binom{N+1}{N-1-q} \binom{q+2}{2} = \frac{(N+1)!}{(N-1-q)! \times q! \times 2!} = \binom{N+1}{2} \binom{N-1}{q}\]

and we find for the inner term

\[= \binom{N+1}{2} \sum_{q=0}^{N-1} \binom{N-1}{q} \frac{(-1)^q z^q}{(1+z)^q} \]
For this piece we obtain

\[ q \]

The remaining coefficient extractor cancels the term for \( N \)

\[ \frac{1}{N(N + 1)}[z^{N-1}](1 + z)^{N-2} \left( \frac{N + 1}{2} \right) \frac{1}{(1 + z)^{N-1}} \]

\[ = -\frac{1}{2}[z^{N-1}] \frac{1}{1 + z} = \frac{1}{2}(-1)^N. \]

The second piece is

\[ \frac{1}{N(N + 1)}[z^{N-2}](1 + z)^{N-2} \left[ w^{N-1}(1 + w)^{N+2} \right] \frac{1}{(1 + zw/(1 + z))^3}. \]

For this piece we obtain

\[ \frac{1}{N(N + 1)}[z^{N-2}](1 + z)^{N-2} \sum_{q=0}^{N-1} \left( \frac{N + 2}{N - 1 - q} \right)(-1)^q \left( \frac{q + 2}{2} \right) \frac{z^q}{(1 + z)^q}. \]

The remaining coefficient extractor cancels the term for \( q = N - 1 \):

\[ \frac{1}{N(N + 1)}[z^{N-2}](1 + z)^{N-2} \sum_{q=0}^{N-2} \left( \frac{N + 2}{N - 1 - q} \right)(-1)^q \left( \frac{q + 2}{2} \right) \frac{z^q}{(1 + z)^q} \]

\[ = -\frac{1}{N(N + 1)}(-1)^{N-1} \left( \frac{N + 1}{2} \right) + \frac{1}{N(N + 1)} \sum_{q=0}^{N-1} \left( \frac{N + 2}{N - 1 - q} \right)(-1)^q \left( \frac{q + 2}{2} \right) \]

\[ = \frac{1}{2}(-1)^N + \frac{1}{N(N + 1)} \sum_{q=0}^{N-1} \left( \frac{N + 2}{N - 1 - q} \right)(-1)^q \left( \frac{q + 2}{2} \right). \]

Continuing, with the coefficient extractor enforcing the range,

\[ \frac{1}{2}(-1)^N + \frac{1}{N(N + 1)}[z^{N-1}](1 + z)^{N+2} \sum_{q=0}^{\infty} z^q(-1)^q \left( \frac{q + 2}{2} \right) \]

\[ = \frac{1}{2}(-1)^N + \frac{1}{N(N + 1)}[z^{N-1}](1 + z)^{N+2} \frac{1}{(1 + z)^3} \]

\[ = \frac{1}{2}(-1)^N + \frac{1}{N(N + 1)}[z^{N-1}](1 + z)^{N-1}. \]
= \frac{1}{2}(-1)^N + \frac{1}{N(N+1)}.

Collecting the contributions from the two pieces we obtain last

\[ (-1)^N + \frac{1}{N(N+1)}. \]

This was math.stackexchange.com problem 3604802.

76.23 MSE 3619182

We seek to verify that

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \sum_{l=0}^{k} \binom{k}{l} \binom{n}{l} \binom{2n-l}{n} = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2.
\]

Starting with the inner term on the LHS we have

\[
\sum_{l=0}^{k} \binom{k}{l} \binom{n}{l} \binom{2n-l}{n} = [z^k](1+z)^k \sum_{l=0}^{k} z^l \binom{n}{l} (2n-l) = [z^k](1+z)^k [z^n] (1+w)^{2n} \sum_{l=0}^{k} z^l \binom{n}{l} (1+w)^{-l}.
\]

The coefficient extractor \([z^k]\) enforces the upper limit of the sum and we find

\[
[z^k](1+z)^k [z^n] (1+w)^{2n} \sum_{l=0}^{k} z^l \binom{n}{l} (1+w)^{-l} = [z^k](1+z)^k [w^n] (1+w)^{2n} \left(1 + \frac{z}{1+w}\right)^n = [z^k](1+z)^k [w^n] (1+w)^{n}(1+w+z)^n.
\]

We get from the outer sum

\[
\sum_{k=0}^{n} \binom{n}{k}^2 [z^k](1+z)^k [w^n] (1+w)^{n}(1+w+z)^n
\]

\[= \sum_{k=0}^{n} \binom{n}{k}^2 [z^n] z^k (1+z)^{n-k} [w^n] (1+w)^{n}(1+w+z)^n
\]

\[= [z^n](1+z)^n [w^n] (1+w)^n (1+w+z)^n \sum_{k=0}^{n} \binom{n}{k}^2 z^k (1+z)^{-k}
\]

260
$$= [z^n](1 + z)^n[w^n](1 + w)^n(1 + w + z)^n[v^n](1 + v)^n \sum_{k=0}^{n} \binom{n}{k} v^k z^k (1 + z)^{-k}$$

$$= [z^n](1 + z)^n[w^n](1 + w)^n(1 + w + z)^n[v^n](1 + v)^n \left(1 + \frac{vz}{1 + z}\right)^n$$

$$= [z^n][w^n](1 + w)^n(1 + w + z)^n[v^n](1 + v)^n(1 + z + vz)^n.$$

Extracting the coefficient on $[z^n]$ we obtain

$$\sum_{k=0}^{n} ([z^{n-k}] [w^n](1 + w)^n(1 + w + z)^n) ([z^k] [v^n](1 + v)^n(1 + z(1 + v))^n)$$

$$= \sum_{k=0}^{n} \left( \binom{n}{n-k} [w^n](1 + w)^{n+k} \right) \left( \binom{n}{k} [v^n](1 + v)^{n+k} \right)$$

$$= \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{n}^2.$$

This is the claim.

This was [math.stackexchange.com problem 3619182](https://math.stackexchange.com/questions/3619182).

### 76.24 MSE 3638162

Suppose we seek to verify that

$$\sum_{k=1}^{a} (-1)^{a-k} \binom{a}{k} \binom{b+k}{b+1} = \binom{b}{a-1}.$$

We get

$$\sum_{k=1}^{a} [z^{a-k}] (-1)^{a-k} \frac{1}{(1-z)^{k+1}} \binom{b+k}{b+1}$$

$$= [z^a] \frac{1}{1-z} \sum_{k=1}^{a} z^k (-1)^{a-k} \frac{1}{(1-z)^{k+1}} \binom{b+k}{b+1}.$$

Here the coefficient extractor enforces the upper limit of the sum and we find

$$[z^a] \frac{1}{1-z} \sum_{k\geq 1} z^k (-1)^{a-k} \frac{1}{(1-z)^k} \binom{b+k}{b+1}$$

$$= [z^a] \frac{1}{1-z} (-1)^{a-1} \frac{z}{1-z} \sum_{k\geq 0} z^k (-1)^k \frac{1}{(1-z)^{k+1}} \binom{b+1+k}{b+1}$$

$$= [z^a-1] (-1)^{a-1} \frac{1}{(1-z)^2 (1 + z/(1 - z))^{b+2}} = [z^{a-1} (-1)^{a-1} (1 - z)^{b+2}}$$

261
$$= [z^{a-1}](1-z)^b = \binom{b}{a-1}. $$

This is the claim.
This was [math.stackexchange.com problem 3638162](https://math.stackexchange.com/problem/3638162).

76.25 MSE 3661349

We seek to show that
\[
\sum_{q=0}^{k} (-1)^{q-j} \binom{n+q}{q} \binom{n+k-q}{k-q} \left( \frac{2n}{n+j-q} \right) = \binom{2n}{n}
\]
where $0 \leq j \leq k$.

The LHS is
\[
(-1)^j [w^{n+j}](1+w)^{2n} \sum_{q=0}^{k} (-1)^q \binom{n+q}{q} w^q \binom{n+k-q}{k-q}.
\]

The inner term is
\[
\operatorname{Res}_{z=0} \frac{1}{z^{k+1}} \frac{1}{(1+wz)^{n+1}} \frac{1}{(1-z)^{n+1}}.
\]

Residues sum to zero and the residue at infinity is zero by inspection. We
get for the residue at $z = 1$
\[
(-1)^{n+1} \operatorname{Res}_{z=1} \frac{1}{z^{k+1}} \frac{1}{(1+wz)^{n+1}} \frac{1}{(z-1)^{n+1}}
\]
\[
= (-1)^{n+1} \operatorname{Res}_{z=1} \frac{1}{(1+(z-1)w^{k+1}) (1+w+w(z-1))^{n+1} (z-1)^{n+1}}
\]
\[
= (-1)^{n+1} \operatorname{Res}_{z=1} \frac{1}{(1+(z-1)w)^{n+1}} \frac{1}{(1+w(z-1))^{n+1}} \frac{1}{(z-1)^{n+1}}
\]
\[
= \frac{(-1)^{n+1}}{(1+w)^{n+1}} \sum_{q=0}^{n} \binom{n+q}{q} (-1)^{q-w} \binom{k+n-q}{k}.
\]

Substitute into the coefficient extractor in $w$ to get
\[
-(-1)^j \sum_{q=0}^{n} \binom{n+q}{q} \binom{k+n-q}{k} [w^{n+j-q}] (1+w)^{n-1-q}.
\]
Now with $0 \leq q \leq n-1$ and $j \geq 0$ we have $[w^{n+j-q}](1+w)^{n-1-q} = 0$. This leaves $q = n$ which yields

$$-(-1)^j \binom{2n}{n} \binom{k}{k} [w^q] \frac{1}{1+w} = -\binom{2n}{n}. $$

This is the claim. We have the result if we can show that the residue at $z = -1/w$ makes for a zero contribution. We get

$$\frac{1}{w^{n+1}} \text{Res}_{z = -1/w} \left( \frac{1}{z^{k+1}} \frac{1}{(z+1/w)^{n+1}} \frac{1}{(1-z)^{n+1}} \right).$$

This requires

$$\frac{1}{n!} \left( \frac{1}{z^{k+1}} \frac{1}{(1-z)^{n+1}} \right)^{(n)} = \frac{1}{n!} \sum_{q=0}^{n} \binom{n}{q} (-1)^q (k+q)! \frac{(n+n-q)!}{z^{k+1+q} \times (1-z)^{n+1+n-q} \times n!}$$

$$= \sum_{q=0}^{n} \binom{k+q}{k} (-1)^q \frac{1}{z^{k+1+q}} \binom{2n-q}{n} \frac{1}{(1-z)^{2n+1-q}}.$$

Evaluate at $z = -1/w$ and restore the factor in front:

$$\frac{1}{w^{n+1}} \sum_{q=0}^{n} \binom{k+q}{k} (-1)^{k+1} w^{k+1+q} \binom{2n-q}{n} \frac{1}{(1+1/w)^{2n+1-q}}.$$

Applying the coefficient extractor in $w$ we get

$$(-1)^j [w^{n+j}](1+w)^{2n} \frac{1}{w^{n+1}} w^{k+1+q} \frac{w^{2n+1-q}}{(1+w)^{2n+1-q}}$$

$$= (-1)^j [w^{n+j}](1+w)^{q-1} w^{n+k+1} = (-1)^j [w^j](1+w)^{q-1} w^{k+1} = 0$$

because $j \leq k$. This concludes the argument.

This was math.stackexchange.com problem 3661349.

### 76.26 MSE 3706767

We seek to verify that

$$S_{n,m} = \sum_{k=m}^{n} \binom{k+m}{2m} \binom{2n+1}{n+k+1} = \binom{n}{m} 4^{n-m}.$$ 

The LHS is

$$\sum_{k=0}^{n-m} \binom{k+2m}{2m} \binom{2n+1}{n+m+k+1}$$
\[
= \sum_{k=0}^{n-m} \binom{k + 2m}{2m} [z^{n-m-k}] \frac{1}{(1-z)^{n+m+k+2}}
\]

\[
= [z^{n-m}] \frac{1}{(1-z)^{n+m+2}} \sum_{k=0}^{n-m} \binom{k + 2m}{2m} \frac{z^k}{(1-z)^k}.
\]

Now when \(k > n - m\) there is no contribution to the coefficient extractor and we may continue with

\[
= \frac{1}{(1-z)^{n+m+2}} [z^{-m}] \frac{1}{(1-z)^m} \sum_{k=0}^{n-m} \binom{k + 2m}{2m} \frac{z^k}{(1-z)^k} = \frac{1}{(1-z)^{n-m+1}} (1-2z)^{2m+1}.
\]

This yields

\[
S_{n,m} = \text{Res}_{z=0} \frac{1}{z^{n-m+1}} \frac{1}{(1-z)^{n-m+1}} \frac{1}{(1-2z)^{2m+1}}.
\]

Residues sum to zero and the residue at infinity is zero by inspection. We get for the residue at \(z = 1\)

\[
\text{Res}_{z=1} \frac{1}{z^{n-m+1}} \frac{1}{(1-z)^{n-m+1}} \frac{1}{(1-2z)^{2m+1}}.
\]

Setting \(z = 1 - u\) we get

\[
- \text{Res}_{u=0} \frac{1}{(1-u)^{n-m+1}} \frac{1}{u^{n-m+1}} \frac{1}{(1-2(1-u))^{2m+1}} = \text{Res}_{u=0} \frac{1}{(1-u)^{n-m+1}} \frac{1}{u^{n-m+1}} \frac{1}{(2u-1)^{2m+1}} = S_{n,m}.
\]

Here the contour in \(z\) is given by the circle \(|z-1| = \varepsilon\) where \(\varepsilon < 1/2\) so the image contour is \(|-u| = \varepsilon\), now multiplication by \(-1\) is a rotation by \(\pi\) radians so this is \(|u| = \varepsilon\), at the end use \(dz = -du\).

Continuing with the residue at \(z = 1/2\) we find

\[
- \frac{1}{2^{2m+1}} \text{Res}_{z=1/2} \frac{1}{z^{n-m+1}} \frac{1}{(1-z)^{n-m+1}} \frac{1}{(z-1/2)^{2m+1}} = \frac{1}{2^{2m+1}} \text{Res}_{z=1/2} \frac{1}{(1/2 + (z - 1/2))^{n-m+1}} \frac{1}{(1/2 - (z - 1/2))^{n-m+1}} \times \frac{1}{(z-1/2)^{2m+1}}
\]

264
\[
\begin{align*}
&= -\frac{1}{2^{2m+1}} \text{Res}_{z=1/2} \left(1/4 - (z - 1/2)^2\right)^{n-m+1} \left(z - 1/2\right)^{2m+1} \\
&= -\frac{1}{2^{2m+1}} \text{Res}_{z=1/2} \left(1 - 4(z - 1/2)^2\right)^{n-m+1} \left(z - 1/2\right)^{2m+1} \\
&= -\frac{2^{2n-2m+2}}{2^{2m+1}} \left[(z - 1/2)^{2n}\right] \frac{1}{(1 - 4(z - 1/2)^2)^{n-m+1}} \\
&= -\frac{2^{2n-2m+2}}{2^{2m+1}} \left[(z - 1/2)^{n}\right] \frac{1}{(1 - 4(z - 1/2))^{n-m+1}} \\
&= -\frac{2^{2n-2m+2}}{2^{2m+1}} \binom{m + n - m}{n - m} 2^m.
\end{align*}
\]

We have shown that
\[
S_{n,m} + S_{n,m} - 2^{2n-2m+1} \binom{n}{m} = 0
\]
which is at last
\[
\boxed{S_{n,m} = \binom{n}{m} 4^{n-m}.}
\]

This was math.stackexchange.com problem 3706767.

**76.27 MSE 3737197**

We seek to show that
\[
\sum_{j=0}^{k} \binom{k}{j} \binom{j/2}{n} (-1)^{n-j} = \frac{k}{n} 2^{2n-k-2} \binom{2n-k-1}{n-1}
\]
where \(n \geq k \geq 0\). We get for the even component
\[
\sum_{p=0}^{\lfloor k/2 \rfloor} \binom{k}{2p} \binom{p}{n} (-1)^{n} = 0
\]
because \(n > p\) and \(p \geq 0\). This leaves the odd component
\[
-(-1)^{n} \sum_{p=0}^{\lfloor(k-1)/2 \rfloor} \binom{k}{2p+1} \binom{p+1/2}{n}.
\]

Now we have
\[
\binom{p+1/2}{n} = \frac{1}{n!} \prod_{q=0}^{n-1} (p + 1/2 - q) = \frac{1}{2^n n!} \prod_{q=0}^{n-1} (2p + 1 - 2q)
\]

265
\[
\frac{1}{2^n n!} \prod_{q=0}^{p} (2p + 1 - 2q) \prod_{q=p+1}^{n-1} (2p + 1 - 2q)
\]
\[
= \frac{1}{2^n n!} \frac{(2p + 2)!}{2^{p+1} (p + 1)!} (-1)^{n-p-1} \prod_{q=p+1}^{n-1} (2q - 2p - 1)
\]
\[
= \frac{1}{2^n n!} \frac{(2p + 2)!}{2^{p+1} (p + 1)!} (-1)^{n-p-1} \frac{(2n - 2p - 2)!}{2^{n-p-1} (n - p - 1)!}
\]
\[
= \frac{(-1)^{n-p-1} (2n)!}{2^{2n} n!^2} \left( \frac{2n}{2p + 2} \right)^{-1} \left( \frac{p + 1}{n} \right)
\]
\[
= \frac{(-1)^{n-p-1} (2n)!}{2^{2n} n!^2} \left( \frac{2n}{2p + 2} \right)^{-1} \left( \frac{n}{p + 1} \right).
\]

where \( p < n \). It will be helpful to re-write this as

\[
\frac{p + 1}{n} \frac{(-1)^{n-p-1} (2n)!}{2^{2n} n!^2} \left( \frac{2n}{2p + 2} \right)^{-1} \left( \frac{n}{p + 1} \right)
\]
\[
= \frac{(-1)^{n-p-1} (2n)!}{2^{2n} n!^2} \left( \frac{2n}{2p + 2} \right)^{-1} \left( \frac{n-1}{p} \right).
\]

We thus get for our sum

\[
\frac{1}{2^{2n}} \left( \frac{2n}{n} \right)^{\lfloor (k-1)/2 \rfloor} \sum_{p=0}^{\lfloor (k-1)/2 \rfloor} (-1)^p \left( \frac{k}{2p + 1} \right)^{-1} \left( \frac{2n - 1}{2p + 1} \right)^{-1} \left( \frac{n - 1}{p} \right).
\]

Now observe that

\[
\left( \frac{k}{2p + 1} \right)^{-1} \left( \frac{2n - 1}{2p + 1} \right)^{-1} = \frac{k! (2n - 2p - 2)!}{(k - 2p - 1)! (2n - 1)!}
\]
\[
= \frac{(2n - 1)!}{k!} \left( \frac{2n - 2p - 2}{k - 2p - 1} \right).
\]

This yields for the sum

\[
\frac{1}{2^{2n}} \left( \frac{2n}{n} \right)^{\lfloor (k-1)/2 \rfloor} \sum_{p=0}^{\lfloor (k-1)/2 \rfloor} (-1)^p \left( \frac{2n - 2p - 2}{k - 2p - 1} \right)^{-1} \left( \frac{n - 1}{p} \right).
\]

Now to treat the remaining sum we have

\[
[z^k] (1 + z)^{2n-2} \sum_{p=0}^{\lfloor (k-1)/2 \rfloor} (-1)^p z^{2p+1} (1 + z)^{-2p} \left( \frac{n - 1}{p} \right).
\]

The coefficient extractor enforces the upper limit \( \lfloor (k-1)/2 \rfloor \geq p \) so we may continue with
\[
[z^k](1 + z)^{2n - 2} \sum_{p \geq 0} (-1)^p z^{2p+1} (1 + z)^{-2p} \binom{n - 1}{p} \\
= [z^k](1 + z)^{2n - 2}z \left(1 - \frac{z^2}{(1 + z)^2}\right)^{n-1} \\
= [z^k]z(1 + 2z)^{n-1}.
\]

This means for \(k = 0\) the sum is zero. For \(k \geq 1\) we get including the factor in front

\[
\frac{1}{2^{2n}} \binom{2n}{n} \binom{2n - 1}{k}^{-1} \binom{n - 1}{k - 1} 2^{k-1}.
\]

To simplify this we expand the binomial coefficients

\[
\frac{1}{2^{2n-k+1}} \frac{(2n)! \times k \times (2n - 1 - k)! \times (n - 1)!}{n! \times n! \times (2n - 1)! \times (k - 1)! \times (n - k)!} \\
= \frac{1}{2^{2n-k+1}} \frac{(2n) \times k \times (2n - 1 - k)!}{n! \times (n - k)!} \\
= \frac{1}{2^{2n-k}} \frac{k \times (2n - 1 - k)!}{n! \times (n - k)!}.
\]

This yields at last

\[
\frac{1}{2^{2n-k}} \frac{k}{n} \binom{2n - 1 - k}{n - 1}.
\]

This was math.stackexchange.com problem 3737197.

**76.28  MSE 3825092**

We seek to show that

\[
S(n) = \sum_{k=1}^{n} (-1)^{n-k} k^n \binom{n+1}{n-k} = 1.
\]

This is

\[
\sum_{k=0}^{n-1} (-1)^k (n-k)^n \binom{n+1}{k} = 1 + \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k (n-k)^n
\]

\[
= 1 + n! [z^n] \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k \exp((n-k)z)
\]

267
\[
= 1 + n! [z^n] \exp(nz) \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k \exp(-kz)
\]
\[
= 1 + n! [z^n] \exp(nz)(1 - \exp(-z))^{n+1}
\]
\[
= 1 + n! [z^n] \exp(-z)(\exp(z) - 1)^{n+1} = 1
\]
because \(\exp(z) - 1 = z + \cdots\) and hence \((\exp(z) - 1)^{n+1} = z^{n+1} + \cdots\) which
is the claim.
This was math.stackexchange.com problem 3825092.

### 76.29 MSE 3845061

We seek to show that
\[
\sum_{q=a+1}^{n} \frac{(q-1)}{a} \binom{n-q}{k-a} = \binom{n}{k+1}
\]
or alternatively
\[
\sum_{q=0}^{n} \frac{(q)}{a} \binom{n-q}{b} = \binom{n+1}{a+b+1}.
\]
where \(k \geq a\) for the binomial coefficient to be defined, and \(n \geq a+1\) or
alternatively
\[
\sum_{q=0}^{n-a-1} \frac{(q+a)}{a} \binom{n-a-1-q}{k-a} = \binom{n}{k+1}.
\]
The LHS is
\[
[z^{k-a}](1+z)^{n-a-1} \sum_{q \geq 0} \frac{(q+a)}{a} (1+z)^{-q} [q \leq n-a-1]
\]
\[
= [z^{k-a}](1+z)^{n-a-1} \sum_{q \geq 0} \frac{(q+a)}{a} (1+z)^{-q} [w^{n-a-1}] \frac{w^q}{1-w}
\]
\[
= [z^{k-a}](1+z)^{n-a-1} [w^{n-a-1}] \frac{1}{1-w} \sum_{q \geq 0} \frac{(q+a)}{a} (1+z)^{-q} w^q
\]
\[
= [z^{k-a}](1+z)^{n-a-1} [w^{n-a-1}] \frac{1}{1-w} \frac{1}{(1-w/(1+z))^{a+1}}
\]
\[
= [z^{k-a}](1+z)^{n-a-1} [w^{n-a-1}] \frac{1}{1-w} \frac{1}{(1+z-w)^{a+1}}.
\]
This is
\[
[z^{k-a}](1+z)^n (-1)^a \text{Res}_{w=0} \frac{1}{w^{n-a}} \frac{1}{w-1} \frac{1}{(w-(1+z))^{a+1}}.
\]
Now the residue at infinity for \( w \) is zero by inspection, residues sum to zero and the residue at \( w = 1 \) yields

\[
[z^{k-a}](1 + z)^n (-1)^a \frac{1}{(-1)^{a+1} z^{a+1}} = - \binom{n}{k+1}.
\]

This is the claim if we can show that the contribution from the pole at \( w = 1 + z \) is zero. We get (Leibniz rule)

\[
\frac{1}{a!} \left( \frac{1}{w^{n-a} w - 1} \right)^{(a)} = \frac{1}{a!} \sum_{q=0}^{a} \binom{a}{q} \frac{(-1)^q (n - 1 - a + q)! (-1)^{a-q} (a - q)!}{(n - 1 - a)! \times w^{n-a+q} (w - 1)^{a+1-q}}
\]

\[
= (-1)^a \sum_{q=0}^{a} \binom{n - 1 - a + q}{q} \frac{1}{w^{n-a+q} (w - 1)^{a+1-q}}.
\]

We thus obtain for the contribution

\[
[z^{k-a}](1 + z)^n \sum_{q=0}^{a} \binom{n - 1 - a + q}{q} \frac{1}{(1 + z)^{n-a+q} z^{a+1-q}}
\]

\[
= \sum_{q=0}^{a} \binom{n - 1 - a + q}{q} [z^{k+1-q}](1 + z)^{a-q} = 0
\]

because \( a \geq q \) and \( k + 1 > a \). This concludes the argument.

This was [math.stackexchange.com problem 3845061](https://math.stackexchange.com/questions/3845061).

### 76.30 MSE 3885278

**Introduction**

The identity

\[
\sum_{k \geq 0} \frac{(2k+1)^2}{(p+k+1)(q+k+1)} \binom{2p}{p-k} \binom{2q}{q-k} = \frac{1}{p+q+1} \binom{2p+2q}{p+q}
\]

is identical to

\[
\sum_{k=0}^{\min(p,q)} (2k+1)^2 \binom{2p+1}{p+k+1} \binom{2q+1}{q+k+1} = \frac{(2p+1)(2q+1)}{p+q+1} \binom{2p+2q}{p+q}
\]

or

\[
\sum_{k=0}^{\min(p,q)} (2k+1)^2 \binom{2p+1}{p-k} \binom{2q+1}{q-k} = \frac{(2p+1)(2q+1)}{p+q+1} \binom{2p+2q}{p+q}.
\]

269
The LHS is

\[ S = [z^p](1 + z)^{2p+1}[w^q](1 + w)^{2q+1} \sum_{k=0}^{\min(p,q)} (2k + 1)^2 z^k w^k. \]

The two coefficient extractors enforce the upper limit of the sum:

\[ [z^p](1 + z)^{2p+1}[w^q](1 + w)^{2q+1} \sum_{k=0}^{z^p} z^2 w^2 + 6zw + 1 \]
\[ = -[z^p] \frac{1}{z^3}(1 + z)^{2p+1}[w^q](1 + w)^{2q+1} \frac{z^2 w^2 + 6zw + 1}{(w - 1/z)^3} \]
\[ = -[z^{p+3}](1 + z)^{2p+1}[w^q](1 + w)^{2q+1} z^2 w^2 + 6zw + 1 \]
\[ (w - 1/z)^3. \]

The coefficient extractor in \( w \) is

\[ \text{Res}_{w=0} \frac{1}{w^{q+1}} (1 + w)^{2q+1} \frac{z^2 w^2 + 6zw + 1}{(w - 1/z)^3}. \]

Residue at infinity

Now residues sum to zero and the residue at infinity is given by

\[ -\text{Res}_{w=0} \frac{1}{w^{q+1}} \frac{(1 + w)^{2q+1} z^2 w^2 + 6zw + 1}{(w - 1/z)^3} \]
\[ = -\text{Res}_{w=0} \frac{(1 + w)^{2q+1} z^2 w + 6zw^2 + w^3}{(1 - w/z)^3} \]
\[ = -\text{Res}_{w=0} \frac{(1 + w)^{2q+1} z^2 + 6zw + w^2}{(1 - w/z)^3}. \]

Next applying the coefficient extractor in \( z \) we find

\[ \text{Res}_{z=0} \frac{(1 + z)^{2p+1}}{z^{p+4}} - \text{Res}_{w=0} \frac{(1 + w)^{2q+1} z^2 + 6zw + w^2}{(1 - w/z)^3}; \]
\[ = \text{Res}_{z=0} \frac{(1 + z)^{2p+1}}{z^{p+2}} - \text{Res}_{w=0} \frac{(1 + w)^{2q+1} 1 + 6w/z + wz^2/z^2}{(1 - w/z)^3} \]
\[ = \text{Res}_{z=0} \frac{(1 + z)^{2p+1}}{z^{p+2}} - \text{Res}_{w=0} \frac{(1 + w)^{2q+1}}{w^{q+1}} \sum_{k=0}^{\infty} (2k + 1)^2 w^k \]
\[ = \sum_{k=0}^{\infty} (2k + 1)^2 \frac{2p + 1}{p + k + 1} \frac{2q + 1}{q - k} = S. \]

This means that \( S \) is minus half the residue at \( w = 1/z \), substituted into the coefficient extractor in \( z \).
Residue at $w = 1/z$

The residue at $w = 1/z$ is

$$\text{Res}_{w=1/z} \frac{1}{w^{q+1}} \frac{(1 + w)^{2q+1} z^{2} w^{2} + 6 z w + 1}{(w - 1/z)^{3}} = \text{Res}_{w=1/z} \frac{1}{w^{q+1}} (1 + w)^{2q+1} \left( \frac{8}{(w - 1/z)^{3}} + \frac{8z}{(w - 1/z)^{2}} + \frac{z^{2}}{w - 1/z} \right).$$

Evaluating the three pieces in turn we start with

$$8 \frac{1}{2} \left( \frac{(1 + w)^{2q+1}}{w^{q+1}} \right)^{''} = 4(q + 1)(q + 2) \frac{(1 + w)^{2q+1}}{w^{q+3}}$$

$$-8(q + 1)(2q + 1) \frac{(1 + w)^{2q}}{w^{q+2}} + 4(2q + 1) \frac{(1 + w)^{2q-1}}{w^{q+1}}.$$ 

Evaluate at $w = 1/z$ to get

$$4(q + 1)(q + 2) \frac{(1 + z)^{2q+1}}{z^{q-2}}$$

$$-8(q + 1)(2q + 1) \frac{(1 + z)^{2q}}{z^{q-2}} + 4(2q + 1)(2q) \frac{(1 + z)^{2q-1}}{z^{q-2}}.$$ 

Substituting into the coefficient extractor in $z$ we find

$$-4(q + 1)(q + 2) \left( \frac{2p + 2q + 2}{p + q + 1} \right)$$

$$+8(q + 1)(2q + 1) \left( \frac{2p + 2q + 1}{p + q + 1} \right) - 4(2q + 1)(2q) \left( \frac{p + 2q}{p + q + 1} \right).$$

Continuing with the middle piece we have

$$8z \left( \frac{(1 + w)^{2q+1}}{w^{q+1}} \right)^{'} = -8z(q + 1) \frac{(1 + w)^{2q+1}}{w^{q+2}} + 8z(2q + 1) \frac{(1 + w)^{2q}}{w^{q+1}}.$$ 

Evaluate at $w = 1/z$ to get

$$-8(q + 1) \frac{(1 + z)^{2q+1}}{z^{q-2}} + 8(2q + 1) \frac{(1 + z)^{2q}}{z^{q-2}}.$$ 

The coefficient extractor now yields

$$8(q + 1) \left( \frac{2p + 2q + 2}{p + q + 1} \right) - 8(2q + 1) \left( \frac{2p + 2q + 1}{p + q + 1} \right).$$ 

The third and last piece produces

$$\frac{(1 + z)^{2q+1}}{z^{q-2}}.$$
which when substituted into the coefficient extractor yields

\[-\binom{2p + 2q + 2}{p + q + 1}.\]

Collecting the three pieces

We get

\[-(2q + 1)^2 \binom{2p + 2q + 2}{p + q + 1} + 8q(2q + 1) \binom{2p + 2q + 1}{p + q + 1} - 8q(2q + 1) \binom{2p + 2q}{p + q + 1}\]

\[= -(2q + 1)^2 \binom{2p + 2q + 2}{p + q + 1} + 8q(2q + 1) \binom{2p + 2q}{p + q}\]

\[= -2(2q + 1)^2 \binom{2p + 2q + 1}{p + q} + 8q(2q + 1) \binom{2p + 2q}{p + q}\]

\[= -2(2q + 1)^2 \frac{2p + 2q + 1}{p + q + 1} \binom{2p + 2q}{p + q} + 8q(2q + 1) \binom{2p + 2q}{p + q}\]

\[= -\frac{2(2p + 1)(2q + 1)}{p + q + 1} \binom{2p + 2q}{p + q}.\]

Halve this value and flip the sign to obtain the coveted

\[\frac{(2p + 1)(2q + 1)}{p + q + 1} \binom{2p + 2q}{p + q}.\]

This was math.stackexchange.com problem 3885278.

76.31 MSE 3559223

We seek to evaluate

\[G_{n,j} = \sum_{k=1}^{n} k^j \binom{n-k}{n} \left(\frac{1}{2n(n+1) - k}\right).\]

With this in mind we introduce the function

\[F_n(z) = n! \frac{z^{j-1}}{2n(n+1) - z} \prod_{q=1}^{n} \frac{1}{z - q}.\]

This has the property that the residue at \(z = k\) where \(1 \leq k \leq n\) is the desired sum term. We find

\[\text{Res}_{z=k} F_n(z) = n! \frac{k^{j-1}}{2n(n+1) - k} \prod_{q=1}^{k-1} \frac{1}{k-q} \prod_{q=k+1}^{n} \frac{1}{k-q}.\]
\[
\begin{align*}
= n! \frac{k^j}{\frac{1}{2}n(n+1) - k} \frac{1}{k} \frac{1}{(k-1)!} \frac{(-1)^{n-k}}{(n-k)!} \\
= \frac{1}{\frac{1}{2}n(n+1) - k} \frac{k^j}{(-1)^{n-k}} \binom{n}{k}.
\end{align*}
\]

We will evaluate this using the fact that residues sum to zero and if \((n+1) - (j-1) \geq 2\) or \(n \geq j\) the residue at infinity is zero, so we have in this case

\[
G_{n,j} = -\text{Res}_{z=\frac{1}{2}n(n+1)} F_n(z) = n! \frac{\left(\frac{1}{2}n(n+1)\right)^{j-1}}{\prod_{q=1}^{j} \left(\frac{1}{2}n(n+1) - q\right)}.\]

We thus have

\[
G_{n,1} = \frac{n!}{\prod_{q=1}^{n} \left(\frac{1}{2}n(n+1) - q\right)}
\]

and

\[
G_{n,n} = \frac{\left(\frac{1}{2}n(n+1)\right)^{n-1}n!}{\prod_{q=1}^{n} \left(\frac{1}{2}n(n+1) - q\right)}.\]

When \(j > n\) we must use the formula

\[
G_{n,j} = -\text{Res}_{z=\frac{1}{2}n(n+1)} F_n(z) - \text{Res}_{z=\infty} F_n(z).
\]

We have

\[
-\text{Res}_{z=\infty} F_n(z) = \text{Res}_{z=0} \frac{1}{z^2} F_n(1/z)
\]

\[
= n! \times \text{Res}_{z=0} \frac{1}{z^2} \frac{1}{2j-1} \frac{1}{\frac{1}{2}n(n+1) - 1/z} \prod_{q=1}^{n} \frac{1}{1/z - q}
\]

\[
= n! \times \text{Res}_{z=0} \frac{1}{2j+1} \frac{z}{\frac{1}{2}n(n+1)z - 1} \prod_{q=1}^{n} \frac{z}{1 - qz}
\]

\[
= n! \times \text{Res}_{z=0} \frac{1}{z^{j-n}} \frac{1}{\frac{1}{2}n(n+1)z - 1} \prod_{q=1}^{n} \frac{1}{1 - qz}.
\]

In particular when \(j = n+1\) we just need the constant term and find

\[
n! - \frac{1}{\frac{1}{2}n(n+1)} \times 0 - \prod_{q=1}^{n} \frac{1}{1 - q} \times 0 = -n!
\]

we thus have

\[
G_{n,n+1} = \frac{\left(\frac{1}{2}n(n+1)\right)^{n}n!}{\prod_{q=1}^{n} \left(\frac{1}{2}n(n+1) - q\right)} - n!.
\]

273
The general case for \( j > n \) is
\[
n! \times \text{Res}_{z=0} \left[ \frac{1}{z} \frac{1}{n(n+1)z - 1} \prod_{q=1}^{n} \frac{z}{1 - qz} \right]
\]
which yields
\[
-n! \sum_{q=0}^{j-1} \left( \frac{1}{2} n(n+1) \right)^q \left\{ \frac{j-1-q}{n} \right\}
\]
so that the closed form is (here we must have \( j - 1 - q \geq n \))
\[
G_{n,j} = \left( \frac{1}{2} n(n+1) \right)^{j-1} n! \prod_{q=1}^{n} \left( \frac{1}{2} n(n+1) - q \right)^q \left\{ \frac{j-1-q}{n} \right\}.
\]
This was math.stackexchange.com problem 3559223.

### 76.32 MSE 3926409

Suppose we seek an alternate representation of
\[
\sum_{p=q}^{k} (-1)^p \binom{k}{p}(q-p)^k.
\]
This is
\[
\sum_{p=0}^{k} (-1)^p \binom{k}{p}(q-p)^k - \sum_{p=0}^{q-1} (-1)^p \binom{k}{p}(q-p)^k.
\]
We get for the first piece
\[
k! [z^k] \sum_{p=0}^{k} (-1)^p \binom{k}{p} \exp((q-p)z)
\]
\[
= k! [z^k] \exp(qz) \sum_{p=0}^{k} (-1)^p \binom{k}{p} \exp(-pz)
\]
\[
= k! [z^k] \exp(qz)(1 - \exp(-z))^k.
\]
Now \( (1 - \exp(-z))^k = z^k + \cdots \) so this evaluates to \( k! \). We thus have
\[
k! - \sum_{p=0}^{q-1} (-1)^p \binom{k}{p}(q-p)^k.
\]
Using an Iverson bracket we get for the sum component
\[ [w^{q-1}] \frac{1}{1 - w} \sum_{p \geq 0} (-1)^p \binom{k}{p} (q - p)^k w^p \]
\[ = k! [z^k] [w^{q-1}] \frac{1}{1 - w} \exp(qz)(1 - w \exp(-z))^k \]
\[ = k! \text{res} \frac{1}{z^{k+1}} \text{res} \frac{1}{w^{q}} \frac{1}{1 - w} \exp(qz)(1 - w \exp(-z))^k. \]

We now apply Jacobi’s Residue Formula. We put \( w = v \exp((1 - v)u) \) and \( z = (1 - v)u \). The scalar to obtain a non-zero constant term in \( u \) and \( v \) for \( z \) and \( w \) is \( u \) for \( z \) and \( v \) for \( w \). Using the determinant of the Jacobian we obtain
\[
\begin{vmatrix}
1 & 0 \\
0 & 1
\end{vmatrix}
\begin{vmatrix}
1 - v \\
v(1 - v) \exp((1 - v)u) & \exp((1 - v)u) - uv \exp((1 - v)u)
\end{vmatrix}
= \exp((1 - v)u) \begin{vmatrix}
1 - v \\
v(1 - v) & 1 - uv
\end{vmatrix}
= \exp((1 - v)u) \left( 1 - uv - v + uv - uv^2 \right)
= \exp((1 - v)u)(1 - v).
\]

Doing the substitution we find
\[
\begin{align*}
& k! \text{res} \frac{1}{u^{k+1}} \frac{1}{(1 - v)^{k+1}} \text{res} \frac{1}{v^q} \frac{1}{1 - v} \exp(q(1 - v)u) \\
\times & \frac{1}{1 - v \exp((1 - v)u)} \exp(q(1 - v)u)(1 - v \exp((1 - v)u) \exp(-(1 - v)u))^k \\
\times & \exp((1 - v)u)(1 - v) \\
= k! \text{res} \frac{1}{u^{k+1}} \frac{1}{(1 - v)^{k+1}} \text{res} \frac{1}{v^q} \frac{1}{1 - v} \exp((1 - v)u)(1 - v)^k \\
\times & \exp((1 - v)u)(1 - v) \\
= k! \text{res} \frac{1}{u^{k+1}} \text{res} \frac{1}{v^q} \frac{1}{1 - v} \exp((1 - v)u) \\
& \times \exp((v - 1)u) - v.
\end{align*}
\]

Consider on the other hand the quantity
\[
\sum_{p=0}^{q-1} \binom{k}{p}.
\]

This is

275
This is the same as the sum term and we conclude the argument having shown that

\[ \sum_{p=q}^{k} (-1)^p \binom{k}{p} (q - p)^k = k! \sum_{p=0}^{q-1} \binom{k}{p} \]

which is

\[ \sum_{p=q}^{k} (-1)^p \binom{k}{p} (q - p)^k = \sum_{p=q}^{k} \binom{k}{p} \]

The reference for Jacobi’s Residue Formula is Theorem 3 in [Ges87].

This was math.stackexchange.com problem 3926409.

76.33 MSE 3942039

We seek to verify that

\[ \sum_{k=0}^{n} \frac{(-1)^k 2^n}{(m + k + 1)} \binom{n}{k} \left( \frac{m + k + 1}{n} \right) = \sum_{k=0}^{n} \frac{\binom{n}{k}}{m + k + 1} \cdot \]

We can re-write this as

\[ \frac{m! n!}{(n + m + 1)!} 2^n \sum_{k=0}^{n} (-1)^k 2^{-k} \binom{n + m + 1}{n - k} = \sum_{k=0}^{n} \frac{\binom{n}{k}}{m + k + 1} \cdot \]

or

\[ 2^n \sum_{k=0}^{n} (-1)^k 2^{-k} \binom{n + m + 1}{n - k} = (m + 1) \binom{n + m + 1}{n} \sum_{k=0}^{n} \frac{\binom{n}{k}}{m + k + 1} \cdot \]

We get for the LHS
\[2^n \sum_{k=0}^{n} (-1)^k 2^{-k} \binom{n + m + 1}{m + k + 1} = 2^n \sum_{k=0}^{n} (-1)^k 2^{-k} [z^{n-k}] \frac{1}{(1-z)^{m+k+2}} \]

\[= 2^n [z^n] \frac{1}{(1-z)^{m+2}} \sum_{k=0}^{n} (-1)^k 2^{-k} z^k \frac{1}{(1-z)^k}.\]

Here the coefficient extractor enforces the range and we find

\[2^n [z^n] \frac{1}{(1-z)^{m+2}} \sum_{k \geq 0} (-1)^k 2^{-k} z^k \frac{1}{(1-z)^k} = 2^n [z^n] \frac{1}{(1-z)^{m+2}} \frac{1}{1 + z/(1-z)/2} \]

\[= [z^n] \frac{1}{(1-2z)^{m+2}} \frac{1}{1 + z/(1-2z)} = [z^n] \frac{1}{(1-2z)^{m+1}} \frac{1}{1 - \frac{z}{1-2z}}.\]

On the other hand we have

\[\binom{n + m + 1}{n} (n) \binom{n}{k} = \frac{(n + m + 1)!}{(m+1)! \times k! \times (n-k)!} = \binom{n + m + 1}{n-k} \binom{m+k+1}{m+1}\]

which gives for the RHS

\[\sum_{k=0}^{n} \binom{m+k+1}{m+k+1} \binom{m+k}{m+1} = \sum_{k=0}^{n} \binom{m+k+1}{m+k+1} \binom{m+k}{m} \]

\[= \sum_{k=0}^{n} \binom{m+k}{m} [z^{n-k}] \frac{1}{(1-z)^{m+k+2}} = [z^n] \sum_{k=0}^{n} \binom{m+k}{m} \frac{1}{(1-z)^{m+k+2}} z^k.\]

We once more have the coefficient extractor enforcing the range and we get

\[ [z^n] \frac{1}{(1-z)^{m+2}} \sum_{k \geq 0} \binom{m+k}{m} \frac{1}{(1-z)^k} z^k \]

\[= [z^n] \frac{1}{(1-z)^{m+2}} \frac{1}{(1-2z/(1-z))^{m+1}} = [z^n] \frac{1}{1 - \frac{z}{1-2z}} \frac{1}{(1-2z)^{m+1}}.\]

The LHS is the same as the RHS which concludes the argument. The coefficient extractor evaluates to

\[\sum_{k=0}^{n} \binom{k+m}{m} z^k.\]

This was math.stackexchange.com problem 3942039.
The sum in the problem statement here is

\[
\sum_{k \geq 1} \left( \left\lfloor \frac{k}{2} \right\rfloor + \left\lceil \frac{k}{2} \right\rceil \right) \binom{n-1}{k-1}
\]

\[
= 2 \sum_{k \geq 0} \binom{k}{m} \binom{n-1}{2k-1} + \sum_{k \geq 0} \binom{k}{m} \binom{n-1}{2k} + \sum_{k \geq 0} \binom{k+1}{m} \binom{n-1}{2k}
\]

which we seek to prove is equal to

\[
2^{n-2m} \frac{n-m}{m-1} \frac{n+1}{m}
\]

where we will take \( m \geq 1 \). We get for the first term

\[
2 \sum_{k \geq 0} \binom{k}{m} \binom{n-1}{n-2k} = 2[z^n](1+z)^{n-1} \sum_{k \geq 0} \binom{k}{m} z^{2k}
\]

\[
= 2[z^n](1+z)^{n-1} \sum_{k \geq m} \binom{k}{m} z^{2k} = 2[z^{n-2m}](1+z)^{n-1} \sum_{k \geq 0} \binom{k+m}{m} z^{2k}
\]

\[
= 2[z^{n-2m}](1+z)^{n-1} \frac{1}{(1-z^2)^{m+1}}.
\]

The second term is

\[
\sum_{k \geq 0} \binom{k}{m} \binom{n-1}{n-1-2k} = [z^{n-1}](1+z)^{n-1} \sum_{k \geq 0} \binom{k}{m} z^{2k}
\]

\[
= [z^{n-2m-1}](1+z)^{n-1} \frac{1}{(1-z^2)^{m+1}}.
\]

The third term is

\[
\sum_{k \geq 0} \binom{k+1}{m} \binom{n-1}{n-2k} = [z^{n-1}](1+z)^{n-1} \sum_{k \geq 0} \binom{k+1}{m} z^{2k}
\]

\[
= [z^{n-2m+1}](1+z)^{n-1} \sum_{k \geq m-1} \binom{k+1}{m} z^{2k}
\]

\[
= [z^{n-2m+1}](1+z)^{n-1} \frac{1}{(1-z^2)^{m+1}}.
\]

Adding these together we get

\[
[z^{n-2m+1}](1+z^2+2z)(1+z)^{n-1} \frac{1}{(1-z^2)^{m+1}} = [z^{n-2m+1}](1+z)^{n+1} \frac{1}{(1-z^2)^{m+1}}
\]
\[ = (z^{n-2m+1})(1+z)^{n-m} \frac{1}{(1-z)^{m+1}}. \]

The coefficient extractor now yields

\[
\sum_{q=0}^{n+1-2m} \binom{n-m}{q} \binom{n+1-2m-q+m}{m} = \sum_{q=0}^{n+1-2m} \binom{n-m}{q} \binom{n+1-m-q}{m}. \]

Now

\[
\binom{n-m}{q} \binom{n-m-q}{m-1} = \frac{(n-m)!}{q! \cdot (m-1)! \cdot (n+1-2m-q)!} = \binom{n-m}{m-1} \binom{n+1-2m}{q}. \]

We get for the sum

\[
\frac{1}{m} \binom{n-m}{m-1} \sum_{q=0}^{n+1-2m} (n+1-m-q) \binom{n+1-2m}{q} = \frac{1}{m} \binom{n-m}{m-1} \sum_{q=0}^{n+1-2m} (n+1-2m-q) \binom{n+1-2m}{q} \]

\[
+ \binom{n-m}{m-1} \sum_{q=0}^{n+1-2m} \binom{n+1-2m}{q} = \frac{1}{m} \binom{n-m}{m-1} \sum_{q=0}^{n+1-2m} q \binom{n+1-2m}{q} + \binom{n-m}{m-1} 2^{n+1-2m} \]

\[
= \frac{n+1-2m}{m} \binom{n-m}{m-1} \sum_{q=1}^{n+1-2m} \binom{n-2m}{q-1} + \binom{n-m}{m-1} 2^{n+1-2m} \]

\[
= \frac{n+1-2m}{m} \binom{n-m}{m-1} 2^{n-2m} + \binom{n-m}{m-1} 2^{n+1-2m}. \]

This simplifies to

\[
\frac{n+1}{m} \frac{n-m}{m-1} 2^{n-2m}. \]

**Addendum.** Following the hint by OP in view of the intermediate closed form we see that we can simplify the three terms first. We get
\[ 2 \sum_{k \geq m} \binom{k}{m} \left( \frac{n-1}{2k-1} \right) + \sum_{k \geq m} \binom{k}{m} \left( \frac{n-1}{2k} \right) + \sum_{k \geq m} \binom{k+1}{m} \left( \frac{n-1}{2k} \right) \]
\[ = 2 \sum_{k \geq m} \binom{k}{m} \left( \frac{n-1}{2k-1} \right) + \sum_{k \geq m} \binom{k}{m} \left( \frac{n-1}{2k} \right) + \sum_{k \geq m} \binom{k}{m} \frac{n-1}{2k-2} \]
\[ = \sum_{k \geq m} \binom{k}{m} \left( \frac{n}{2k} \right) + \sum_{k \geq m} \binom{k}{m} \left( \frac{n}{2k-1} \right) = \sum_{k \geq m} \binom{k}{m} \frac{n+1}{2k} \cdot \]

We then find
\[ \sum_{k \geq m} \binom{k}{m} \left( \frac{n+1}{n+1-2k} \right) = [z^{n+1}](1+z)^{n+1} \sum_{k \geq m} \binom{k}{m} z^{2k} \]
\[ = [z^{n+1-2m}](1+z)^{n+1} \sum_{k \geq 0} \binom{k+m}{m} z^{2k} = [z^{n+1-2m}](1+z)^{n+1} \frac{1}{(1-z^2)^{m+1}} . \]

From this point on the computation continues as before. This was math.stackexchange.com problem 3956698.

### 76.35 MSE 3993530

We seek to verify that (with \( n \geq 1, n = 0 \) holds by inspection)
\[ \sum_{k=0}^{n} \binom{n}{k} x^{n-k} = (1-x)^n \sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{1-x} . \]

We get using standard EGFs for the RHS
\[ n![z^n](1-x)^n \sum_{k=0}^{n} \frac{(\exp(z) - 1)^k}{k!} \left( \frac{x}{1-x} \right)^k \]
\[ = n![z^n](1-x)^n \sum_{k=0}^{n} (\exp(z) - 1)^k \left( \frac{x}{1-x} \right)^k . \]

Now because \( \exp(z) - 1 = z + \cdots \) we have \( (\exp(z) - 1)^k = z^k + \cdots \) so when \( k > n \) there is no contribution to the coefficient extractor and we get
\[ n![z^n](1-x)^n \sum_{k \geq 0} (\exp(z) - 1)^k \left( \frac{x}{1-x} \right)^k \]
\[ = n![z^n](1-x)^n \frac{1}{1 - (\exp(z) - 1)x/(1-x)} \]
\[ = n![z^n](1-x)^n \frac{1-x}{1-x - (\exp(z) - 1)x} \]

280
\[ n!_n(z^n)(1-x)^n \frac{1-x}{1-x \exp(z)} = n!_n(z^n) \frac{1-x}{1-x \exp(z(1-x))}. \]

On the other hand we have for the LHS by the mixed GF of the Eulerian numbers
\[
n!_n(z^n) \sum_{k=0}^n x^{n-k} [w^k] \frac{w-1}{w-\exp((w-1)z)} \]

Now we have \( \langle n \rangle = 0 \) when \( k \geq n \) so this is
\[
n!_n(z^n)x^n \sum_{k>0} x^{-k} [w^k] \frac{w-1}{w-\exp((w-1)z)} = n!_n(z^n)x^n \frac{1/x-1}{1/x-\exp((1/x-1)z)} = n!_n(z^n)x^n \frac{1-x}{1-x \exp((1/x-1)z)} = n!_n(z^n) \frac{1-x}{1-x \exp((1-x)z)}.\]

The LHS is the same as the RHS and we have the claim.

**Addendum.** We have
\[
n!_n(z^n)[w^k] \frac{w-1}{w-\exp((w-1)z)} = n!_n(z^n)[w^{k+1}] \frac{w-1}{1-\exp((w-1)z)/w} = n!_n(z^n)[w^{k+1}](w-1) \sum_{q \geq 0} \frac{1}{w^q} \exp(q(w-1)z) = [w^{k+1}] \sum_{q \geq 0} \frac{1}{w^q} q^n (w-1)^{n+1} = \sum_{q \geq 0} [w^{k+1+q}] q^n (w-1)^{n+1} = (w-1)^{n-k} \sum_{q=1}^{n-k} (-1)^q q^n \binom{n+1}{k+1+q}.
\]

This justifies that \( \langle n \rangle = 0 \) when \( k \geq n \) and hence the two coefficient extractors combined return zero in that case as claimed.

This was [math.stackexchange.com problem 3993530](https://math.stackexchange.com/questions/3993530).
We seek to show that
\[ \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \sum_{j=0}^{p} m^j \binom{m+n-j}{m+n-r} \binom{p}{j}. \]

The LHS is
\[ p! [w^p] \sum_{k=0}^{r} \exp(kw) \binom{m}{k} \binom{n}{r-k} \]
\[ = p! [w^p] [z^r] (1+z)^n \sum_{k=0}^{r} \exp(kw) \binom{m}{k} z^k. \]

Now the coefficient extractor enforces the upper limit of the range and we may continue with
\[ p! [w^p] [z^r] (1+z)^n \sum_{j=0}^{m} \binom{m}{j}(1+z)^{m-j} z^j (\exp(w) - 1)^j \]
\[ = [z^r] \sum_{j=0}^{m} \binom{m}{j}(1+z)^{m-j} z^j \binom{p}{j} \]
\[ = \sum_{j=0}^{m} \binom{m}{j} \binom{m+n-j}{r-j} \binom{p}{j}. \]

Note that if \( m > p \) the values with \( m \geq j > p \) produce a zero Stirling number so we may lower \( m \) to \( p \). If \( m < p \) the values with \( p \geq j > m \) produce a zero binomial coefficient and we may raise \( m \) to \( p \). We thus obtain
\[ \sum_{j=0}^{p} \binom{m}{j} \binom{m+n-j}{m+n-r} z^j \binom{p}{j}. \]

a sum with \( p \) non-zero terms except for \( p = 0 \), when it has one term. (We could also use \( \min(m, p) \) as the upper limit but we want to emphasize the dependence on \( p \).) Note that in the initial sum for it to be non-zero with non-negative \( k \) we must have \( m \geq k \) and \( n \geq r-k \) or \( k \geq r-n \) so that \( m \geq k \geq r-n \) and for the range not to be empty we must have \( m \geq r-n \) or \( m+n-r \geq 0 \) which ensures that the middle binomial coefficient in the boxed form is well defined. Observe
that with $p = 0$ we obtain $\binom{m+n}{m+n-r} = \binom{m+n}{r}$ which is Vandermonde. A slight variation is

$$
\sum_{j=0}^{p} m! \binom{m + n - j}{m + n - r} \frac{p!}{j!}.
$$

**Remark.** We may keep the $\binom{m+n-j}{r-j}$ if we remember that it originates with $[z^r](1 + z)^{m+n-j} z^j$ and hence is zero when $j > r$.

This was math.stackexchange.com problem 4008277.

76.37 MSE 4031272

We seek

$$
\binom{m + k}{k}^2 = \sum_{q=0}^{m} \binom{k}{m-q}^2 \binom{2k+q}{q}
$$

Starting with the RHS we find

$$
\sum_{q=0}^{m} \binom{k}{q}^2 \binom{2k+m-q}{m-q}
= \sum_{q=0}^{m} \binom{k}{q} \binom{z^q(1 + z)^k}{w^m} w^q (1 + w)^{2k+m-q}.
$$

Now we may extend $q$ to infinity because the coefficient extractor $[w^m]$ enforces the upper limit. We get

$$
[z^k](1 + z)^k \binom{z^m}{w^m} (1 + w)^{2k+m} \sum_{q=0}^{k} \binom{k}{q} w^q (1 + w)^{-q}
= [z^k](1 + z)^k \binom{w^m}{w^m} (1 + w)^{2k+m} (1 + zw/(1 + w))^k
= [z^k](1 + z)^k \binom{w^m}{w^m} (1 + w)^{k+m} (1 + w)^{k+m}(1 + w + zw)^k
$$

Re-expanding we find

$$
[z^k](1 + z)^k \binom{w^m}{w^m} (1 + w)^{k+m} \sum_{q=0}^{k} \binom{k}{q} w^q (1 + z)^q.
$$

We may set the upper limit of the sum to $m$. (If $k < m$ the values $k < q \leq m$ produce zero from the binomial coefficient and we may raise $q$ to $m$. If $k > m$ the values $m < q \leq k$ produce zero by the coefficient extractor $[w^m]$ and we may lower $q$ to $m$.) We get

$$
[z^k](1 + z)^k \binom{w^m}{w^m} (1 + w)^{k+m} \sum_{q=0}^{m} \binom{k}{q} w^q (1 + z)^q
$$

283
\[
\sum_{q=0}^{m} \binom{k}{q} \binom{k+q}{k} \binom{k+m}{m-q}.
\]

Now observe that
\[
\binom{k+q}{k} \binom{k+m}{m-q} = \frac{(k+m)!}{k! \times q! \times (m-q)!} = \binom{m+k}{m-q}.
\]

This yields for our sum
\[
\binom{m+k}{k} \sum_{q=0}^{m} \binom{k}{q} \binom{m}{m-q}.
\]

Using Vandermonde we obtain at last
\[
\left( \frac{m+k}{k} \right)^2.
\]

This was math.stackexchange.com problem 4031272 and this identity is the Li Shanlan identity.

76.38 MSE 4034224

We seek to show that with \(0 \leq k \leq n\) the following identity holds: (two alternate representations of second order Eulerian numbers)

\[
\sum_{j=0}^{k} (-1)^{k-j} \binom{2n+1}{k-j} \binom{n+j}{j} = \sum_{j=0}^{n-k} (-1)^{j} \binom{2n+1}{j} \binom{2n-k-j+1}{n-k-j+1}.
\]

We will start with the LHS. The chapter 6.2 on Eulerian Numbers of Concrete Mathematics by Knuth et al. [GKP89] proposes the formula

\[
\left\{ \frac{n}{m} \right\} = (-1)^{n-m+1} \frac{n!}{(m-1)!} \sigma_{n-m}(-m)
\]

where \(\sigma_n(x)\) is a Stirling polynomial and we have the identity

\[
\left( \frac{1}{z} \log \frac{1}{1-z} \right)^x = x \sum_{n \geq 0} \sigma_n(x+n) z^n.
\]

We get

\[
\left[ z^{n-m} \right] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^x = x \sigma_{n-m}(x+n-m)
\]

and hence

284
\[ [z^{n-m}] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n} = -n\sigma_{n-m}(-m) \]

which implies that for \( n \geq m \geq 1 \)

\[ \binom{n}{m} = (-1)^{n-m} \frac{(n-1)!}{(m-1)!} [z^{n-m}] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n}. \]

This gives for the LHS

\[ \sum_{j=1}^{k} (-1)^{k-j} \binom{k+1}{j} (-1)^n \frac{(n+j-1)!}{(j-1)!} [z^n] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n-j} \]

\[ = (-1)^{n-k+1} n! [z^n] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n-1} [w^{k-1}] (1+w)^{2n+1} \]

\[ \times \sum_{j=1}^{n} \binom{n+j-1}{n} (-1)^j w^j \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-j+1}. \]

Now the coefficient extractor in \( w \) enforces the upper limit of the sum and we may extend \( j \) to infinity, getting

\[ (-1)^{n-k+1} n! [z^n] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n-1} [w^{k-1}] (1+w)^{2n+1} \]

\[ \frac{1}{(1+w/(\frac{1}{z} \log \frac{1}{1-z}))^{n+1}} \]

\[ = (-1)^{n-k+1} n! [z^n] [w^{n+k}] (1+w)^{2n+1} \frac{1}{(1+w/(\frac{1}{z} \log \frac{1}{1-z}))^{n+1}} \]

Continuing,

\[ (-1)^{n-k+1} n! [z^n] [w^{n+k}] (1+w)^{2n+1} \frac{1}{(1+w/(\frac{1}{z} \log \frac{1}{1-z}))^{n+1}} \]

\[ = (-1)^{n-k+1} n! [z^n] [w^{n+k}] (1+w)^{2n+1} \sum_{q \geq 0} \binom{n+k}{n+q} (-1)^q \frac{1}{w^q} \left( \frac{1}{z} \log \frac{1}{1-z} \right)^q \]

\[ = (-1)^{n-k+1} n! [z^n] \sum_{j=n+k}^{2n+1} \binom{2n+1}{j} \binom{n+j-(n+k)}{n} (-1)^{(n+k)} \]

\[ \times \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-j} \]

\[ = (-1)^{n-k+1} n! [z^n] \sum_{j=0}^{n+k} \binom{2n+1}{j+n+k} (-1)^j \left( \frac{1}{z} \log \frac{1}{1-z} \right)^j \]

285
\[ (-1)^{n-k+1} n! \sum_{j=0}^{n-k+1} \left( \begin{array}{c} 2n+1 \\ j+n+k \end{array} \right) \left( \begin{array}{c} n+j \\ n \end{array} \right) (-1)^j [z^{n+j}] \left( \log \frac{1}{1-z} \right)^j \]

\[ = (-1)^{n-k+1} n! \sum_{j=0}^{n-k+1} \left( \begin{array}{c} 2n+1 \\ j+n+k \end{array} \right) \left( \begin{array}{c} n+j \\ n \end{array} \right) (-1)^j \]

\[ \times \frac{j!}{(n+j)!} \times (n+j)! [z^{n+j}] \frac{1}{j!} \left( \log \frac{1}{1-z} \right)^j \]

\[ = (-1)^{n-k+1} n! \sum_{j=0}^{n-k+1} \left( \begin{array}{c} 2n+1 \\ j+n+k \end{array} \right) (-1)^j \left[ \begin{array}{c} n+j \\ j \end{array} \right] \]

\[ = (-1)^{n-k+1} \sum_{j=0}^{n-k+1} \left( \begin{array}{c} 2n+1 \\ 2n-j+1 \end{array} \right) (-1)^{n-k-j+1} \left[ \begin{array}{c} 2n-k-j+1 \\ n-k-j+1 \end{array} \right] \]

The Stirling number is zero for \( j = n-k+1 \) and we get at last

\[ \sum_{j=0}^{n-k} \left( \begin{array}{c} 2n+1 \\ j \end{array} \right) (-1)^j \left[ \begin{array}{c} 2n-k-j+1 \\ n-k-j+1 \end{array} \right]. \]

This is the RHS and we have the claim.

**Remark.** The Stirling number identity from [GKP89] may be derived from first principles. Start using the combinatorial EGF of set partitions

\[ \left\{ \begin{array}{c} n \\ m \end{array} \right\} = \frac{n!}{m!} [z^n] (\exp(z) - 1)^m \]

which is for \( n \geq 1, m \geq 1 \)

\[ \frac{(n-1)!}{(m-1)!} [z^{n-1}] \exp(z)(\exp(z) - 1)^{m-1}. \]

The corresponding integral is by the Cauchy Coefficient Formula with \( \varepsilon \ll 1 \)

\[ \frac{(n-1)!}{(m-1)!} \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^n} \exp(z)(\exp(z) - 1)^{m-1} \, dz. \]

Now put \( \exp(z) - 1 = w \) so that in a neighborhood of zero \( z = \log(1+w) \) (branch cut is \([-1, \infty)\)) and \( \exp(z) \, dz = dw \). With \( w = z + z^2/2 + z^3/6 + \cdots \) the image of \( |z| = \varepsilon \) makes one turn around zero. We obtain

\[ \frac{(n-1)!}{(m-1)!} \frac{1}{2\pi i} \int_{|w|=\gamma} (\log(1+w))^{-n} w^{m-1} \, dw. \]
As for the choice of $\gamma$ the image of $|z| = \varepsilon$ is contained in the annulus defined by two circles centered at the origin of radius $1 - \exp(-\varepsilon)$ and $\exp(\varepsilon) - 1$. Hence we may take $\gamma = \varepsilon - \varepsilon^2/2$ (the branch point is at $w = -1$). Continuing we find

$$\frac{(n-1)!}{(m-1)!} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^n} \left( \frac{1}{w} \log(1 + w) \right)^{-n} w^{m-1} \, dw$$

$$= \frac{(n-1)!}{(m-1)!} \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^n-m+1} \left( \frac{1}{w} \log(1 + w) \right)^{-n} \, dw.$$ 

We may recover a formal power series result from this which is

$$\frac{(n-1)!}{(m-1)!} \left[ w^{n-m} \right] \left( \frac{1}{w} \log(1 + w) \right)^{-n}$$

$$= \frac{(n-1)!}{(m-1)!} \left[ w^{n-m} \right] (-1)^n \left( \frac{1}{w} \log \frac{1}{1-w} \right)^{-n}$$

$$= \frac{(n-1)!}{(m-1)!} \left[ -1 \right]^{n-m} \left[ w^{n-m} \right] (-1)^n \left( \frac{1}{w} \log \frac{1}{1-w} \right)^{-n}$$

This is the cited result. The powered term is in fact a formal power series as the logarithmic term being zero cancels the $1/w$ factor.

This was [math.stackexchange.com problem 4034224](https://math.stackexchange.com/questions/4034224).

76.39 MSE 4037172

We seek to show that with $0 \leq k \leq n$ the following identity holds: (two alternate representations of second order Eulerian numbers)

$$\sum_{j=0}^{k} (-1)^{k-j} \binom{n-j}{k-j} \left\{ \binom{n+j}{j} \right\} = \langle \binom{n}{k} \rangle = \sum_{j=0}^{n-k+1} (-1)^{n-k-j+1} \binom{n-j}{k-1} \left[ \binom{n+j}{j} \right]$$

where we have associated Stirling numbers of the first and second kind.

Now from the combinatorial meaning of these numbers (cancel fixed points resp. singleton sets) we have that

$$\left[ \binom{n}{k} \right] = \sum_{q=0}^{k} (-1)^q \binom{n}{q} \left[ \binom{n-q}{k-q} \right]$$

and

$$\left\{ \binom{n}{k} \right\} = \sum_{q=0}^{k} (-1)^q \binom{n}{q} \left\{ \binom{n-q}{k-q} \right\}.$$
Consult [OEIS A008306](https://oeis.org/A008306) and [OEIS A008299](https://oeis.org/A008299) for more information. We will only use the second of these but we show the pair to illustrate the similarity in their construction (PIE). The combinatorial classes for these are $\text{SET}(\mathcal{U} \times \text{CYC}_{\geq 2}(\mathcal{Z}))$ and $\text{SET}(\mathcal{U} \times \text{SET}_{\geq 2}(\mathcal{Z}))$. We start with the LHS and obtain

$$
\sum_{j=0}^{k} (-1)^{k-j} \binom{n-j}{k-j} \sum_{q=0}^{j} (-1)^{q} \binom{n+j}{q} \binom{n+j-q}{j-q}.
$$

With $n \geq 1$ this is

$$
(-1)^{k} \sum_{j=1}^{k} \binom{n-j}{k-j} \sum_{q=1}^{j} (-1)^{q} \binom{n+j}{j-q} \binom{n+q}{q}.
$$

Recall e.g. from [Concrete Mathematics](https://www.amazon.com/Concrete-Mathematics-Donald-Edward-Knuth/dp/0201558025) chapter 6.2. ([GKP89](https://www.amazon.com/Concrete-Mathematics-Donald-Edward-Knuth/dp/0201558025)) that

$$
\left\{ \binom{n}{m} \right\} = (-1)^{n-m} \binom{n-1}{m-1} \left[ z^{n-m} \right] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n}.
$$

We find for the LHS

$$
(-1)^{k} \sum_{j=1}^{k} \binom{n-j}{k-j} \sum_{q=1}^{j} (-1)^{q} \binom{n+j}{j-q} \binom{n+q}{q} (-1)^{q-1} \binom{n+q-1}{q-1} \left[ z^{n} \right] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n-q}
$$

$$
= (-1)^{n-k+1} n! \left[ z^{n} \right] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n-1} \sum_{j=1}^{k} \binom{n-j}{k-j} \times \sum_{q=1}^{j} (-1)^{q-1} \binom{n+j}{j-q} \binom{n+q-1}{q-1} \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-q+1}
$$

$$
= (-1)^{n-k+1} n! \left[ z^{n} \right] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n-1} \sum_{j=1}^{k} \binom{n-j}{k-j} \times \left[ w^{j-1} \right] (1+w)^{n+j} \sum_{q=1}^{j} (-1)^{q-1} w^{q-1} \binom{n+q-1}{q-1} \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-q+1}.
$$

Now the coefficient extractor enforces the upper limit of the inner sum and we may extend $q$ to infinity, getting

$$
(-1)^{n-k+1} n! \left[ z^{n} \right] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n-1} \sum_{j=1}^{k} \binom{n-j}{k-j} \times \left[ w^{j-1} \right] (1+w)^{n+j} \frac{1}{(1+w/(1/z))^{n+1}}.
$$

288
\[= (-1)^{n-k+1} n! \sum_{j=1}^{k} \binom{n-j}{k-j} [w^{j-1}] (1+w)^{n+j} \frac{1}{(\frac{1}{z} \log \frac{1}{1-z} + w)^{n+1}}.\]

The inner term is
\[= [w^{j-1}] (1+w)^{j-1} \frac{1}{(1+\frac{1}{1+w} z (\log \frac{1}{1-z}))^{n+1}}.\]

Re-expanding the series,
\[= (-1)^{n-k+1} n! \sum_{j=1}^{k} \binom{n-j}{k-j} [w^{j-1}] (1+w)^{j-1}\]
\[\times \sum_{q=j}^{n} \left( \binom{n+q}{n} (-1)^q \frac{1}{(1+w)^{n-q-1}} \left( \frac{1}{z} (\log \frac{1}{1-z}) \right)^q \right).\]

The upper limit on the inner sum results from \([z^n]\) because \(\frac{1}{z} (\log \frac{1}{1-z}) = \frac{1}{z} + \cdots\) and the lower one from the fact that \([w^{j-1}] (1+w)^{j-1-q} = 0\) when \(1 \leq q \leq j-1\); \(q = 0\) produces a constant. Continuing,
\[\times \sum_{q=j}^{n} \left( \binom{n+q}{n} (-1)^q \frac{1}{(1+w)^{n-q-1}} \left( \frac{1}{z} (\log \frac{1}{1-z}) \right)^q \right)\]
\[= (-1)^{n-k} n! \sum_{j=1}^{k} \binom{n-j}{k-j} \sum_{q=j}^{n} \left( \binom{n+q}{n} (-1)^{q-j} \frac{q-1}{q-j} \left( \frac{1}{z} (\log \frac{1}{1-z}) \right)^q \right)\]
\[= (-1)^{n-k} n! \sum_{j=1}^{k} \binom{n-j}{k-j} \sum_{q=j}^{n} \left( \binom{n+q}{n} (-1)^{q-j} \frac{q-1}{q-j} \left( \log \frac{1}{1-z} \right)^q \right)\]
\[= (-1)^{n-k} n! \sum_{j=1}^{k} \binom{n-j}{k-j} \sum_{q=j}^{n} \left( \binom{n+q}{n} (-1)^{q-j} \frac{q-1}{q-j} \right)\]
\[\times \frac{q!}{(n+q)!} \times (n+q)! \left( \left[ \frac{1}{z} \log \frac{1}{1-z} - z \right]^q \right)\]
\[= (-1)^{n-k} \sum_{j=1}^{k} \binom{n-j}{k-j} \sum_{q=j}^{n} (-1)^{q-j} \left[ \frac{1}{z} \log \frac{1}{1-z} - z \right]^q \left[ \frac{n+q}{q} \right].\]

It remains to simplify the binomial coefficients:
\[-1\right]
\begin{align*}
\frac{1}{u_k} \left( \frac{1}{u_k} \right)^{j} & \sum_{j=0}^{n} \left( \begin{array}{c}
q - 1 \\
j
\end{array} \right) \left( \begin{array}{c}
n + q \\
q
\end{array} \right) \\
& = \left( -1 \right)^{n-k} \sum_{j=0}^{n} \left( \begin{array}{c}
n + q \\
q
\end{array} \right) \left( \begin{array}{c}
q - 1 \\
j
\end{array} \right) \left( \begin{array}{c}
n + q \\
q
\end{array} \right) \\
& = \left( -1 \right)^{n-k} \sum_{q=1}^{n} \left( \begin{array}{c}
n + q \\
q
\end{array} \right) \left( \begin{array}{c}
q - 1 \\
j
\end{array} \right) \left( \begin{array}{c}
n + q \\
q
\end{array} \right).
\end{align*}
\]

This inner term is
\[
[u_k](1 + u)^n \frac{u^q}{(1 + u)^q} \sum_{j=0}^{q-1} \left( \frac{q - 1}{j} \right) \left( -1 \right)^{j} \frac{(1 + u)^j}{u^j} \\
= [u_k](1 + u)^{n-q} u^q \left( 1 - \frac{1 + u}{u} \right)^{q-1} \\
= [u_k](1 + u)^{n-q} u(-1)^{q-1} = (-1)^{q-1} [u_k](1 + u)^{n-q}.
\]

This yields
\[
\sum_{q=0}^{n-k-1} (-1)^{n-k-q+1} \left( \begin{array}{c}
n - q \\
k - 1
\end{array} \right) \left( \begin{array}{c}
n + q \\
q
\end{array} \right)
\]

which is the claim. (Here we must have \( n - q \geq k - 1 \) or \( n - k + 1 \geq q \) else the binomial coefficient vanishes and we may lower the upper limit from \( n \) to \( n - k + 1 \).)

This was [math.stackexchange.com problem 4037172](http://math.stackexchange.com).
\[
\frac{k}{2k} \sum_{j=1}^{n+j-1} \binom{k+j-1}{p} (-1)^{k-j-p} \binom{k-p}{j-1} \binom{k+p}{p} \]
\[
= \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] (-1)^{k-p+1} \sum_{j=1}^{k+1-p} (-1)^j \binom{n+j-1}{2k} \binom{k-p}{j-1} \]
\[
= \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] (-1)^{k-p}[z^{2k}] (1+z)^n \sum_{j=1}^{k+1-p} (-1)^j (1+z)^{j-1} \binom{k-p}{j-1} \]
\[
= \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] [z^{k+p}](1+z)^n = \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] \binom{n}{k+p}.
\]

Now this last piece evaluates combinatorially to \([n \atop n-k]_{n-k-p}\) when written as \([k+p] \binom{n}{n-k-p}\) namely we choose \(n-k-p\) fixed points and split the remaining \(k+p\) elements into \(p\) cycles of size at least two for a total of \(n-k\) cycles. Here we must have \(k+p \geq 2p\) or \(p \leq k\). (We have classified by the number of fixed points).

We get for the second piece
\[
\frac{k}{2k} \sum_{j=1}^{n+k-j} \binom{n+k-j}{2k} \sum_{p=0}^{j} (-1)^{j-p} \binom{k-p}{j-p} \binom{k+p}{p} \]
\[
= \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] (-1)^p \sum_{j=p}^{k} (-1)^j \binom{n+k-j}{2k} \binom{k-p}{j-p} \]
\[
= \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] \binom{n+k-j}{2k} \binom{k-p}{j} \]
\[
= \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] [z^{2k}](1+z)^{n+k-p} \sum_{j=0}^{k-p} (-1)^j (1+z)^{-j} \binom{k-p}{j} \]
\[
= \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] [z^{2k}](1+z)^{n+k-p} (1 - \frac{1}{1+z})^{k-p} \]
\[
= \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] [z^{2k}](1+z)^{n+k-p} = \sum_{p=0}^{k} \left[ \binom{k+p}{p} \right] \binom{n}{k+p}.
\]

With this piece we get exactly the same reasoning as with the first one, namely it evaluates to \(\binom{n}{n-k-p}\). We write it as \(\left[ \binom{k+p}{p} \right] \binom{n}{n-k-p}\) in choosing the
number of singletons, of which there are $n - k - p$. The remaining $k + p$ elements are distributed into $p$ disjoint sets of at least two elements for a total of $n - k$ sets. We once more have the condition that $k + p \geq 2p$ or $p \leq k$. (We have classified by the number of singleton sets.)

This was math.stackexchange.com problem 4037946.

76.41 MSE 4055292

In trying to verify the identity

$$\sum_{k=0}^{2n} (-1)^k \binom{n+k}{k}^{-1} \binom{2n}{k} \binom{2k}{k} = 1$$

we see that

$$\binom{n+k}{k}^{-1} \binom{2n}{k} \frac{(2n)!/(2n-k)!}{(n+k)!/n!} = \binom{3n}{k}^{-1} \binom{3n}{2n-k}$$

so that we seek to prove

$$\sum_{k=0}^{2n} (-1)^k \binom{3n}{2n-k} \binom{2k}{k} = \binom{3n}{n}.$$

The LHS is

$$\sum_{k=0}^{2n} (-1)^k \binom{3n}{k} \binom{4n-2k}{2n-k} = [z^{2n}](1+z)^{4n} \sum_{k=0}^{2n} (-1)^k \binom{3n}{k} z^k (1+z)^{2k}$$

Here the coefficient extractor enforces the range of the sum and we find

$$[z^{2n}](1+z)^{4n} \sum_{k=0}^{2n} (-1)^k \binom{3n}{k} \frac{z^k}{(1+z)^{2k}} = [z^{2n}](1+z)^{4n} \left(1 - \frac{z}{(1+z)^2}\right)^{3n}$$

$$= [z^{2n}] \frac{1}{(1+z)^{2n}} \left(1 + z + z^2\right)^{3n}.$$

Expanding the second powered term

$$[z^{2n}] \frac{1}{(1+z)^{2n}} \sum_{q=0}^{3n} \binom{3n}{q} (1+z)^{3n-q} z^{2q}$$

The coefficient extractor sets the upper limit of the sum to $n$ and we get (note that the powers of $1 + z$ do not have a pole at zero hence the expansion about zero starts with $z^{2q}$ and there is no contribution to $[z^{2n}]$ when $q > n$):

292
\[ [z^{2n}] \sum_{q=0}^{n} \binom{3n}{q}(1+z)^{n-q}z^{2q} = \sum_{q=0}^{n} \binom{3n}{q}\binom{n-q}{2n-2q} = \binom{3n}{n}. \]

Observe that the power \( n-q \) to which \( 1+z \) is raised is a non-negative integer and hence we are justified in writing \([z^{2n}]z^{2q}(1+z)^{n-q} = [z^{2n-2q}](1+z)^{n-q} = \binom{n-q}{2n-2q}\). The only \( q \) in the range \( 0 \leq q \leq n \) where this binomial coefficient is not zero is \( q = n \), producing a contribution of \( \binom{3n}{n} \) and we have the claim.

This was math.stackexchange.com problem 4055292.

76.42 MSE 4054024

We seek to verify the identity

\[ \sum_{k=1}^{n} \binom{2n-2k}{n-k} \frac{H_{2k} - 2H_k}{2n - 2k - 1} \binom{2k}{k} = \frac{1}{n} \left[ 4^n - 3 \binom{2n-1}{n} \right]. \]

**Preliminary.** We get for the first piece in \( H_{2k} \) call it \( A \) that

\[ \sum_{k=1}^{n} \binom{2n-2k}{n-k} \frac{1}{2n - 2k - 1} \binom{2k}{k} [z^{2k}] \frac{1}{1-z} \log \frac{1}{1-z} \]

\[ = \sum_{k=0}^{n-1} \binom{2k}{k} \frac{1}{2k - 1} \binom{2n-2k}{n-k} [z^{2n-2k}] \frac{1}{1-z} \log \frac{1}{1-z} \]

We may raise \( k \) to \( n \) because the function in \( z \) has no constant term:

\[ [z^{2n}] \frac{1}{1-z} \log \frac{1}{1-z} \sum_{k=0}^{n} \binom{2k}{k} \frac{1}{2k - 1} \binom{2n-2k}{n-k} z^{2k} \]

Now the coefficient extractor enforces the upper limit of the sum and we get (in fact expansions start at \( z^{2k+1} \) which cancels \( k = n \) already)

\[ [z^{2n}] \frac{1}{1-z} \log \frac{1}{1-z} \sum_{k=0}^{n} \binom{2k}{k} \frac{1}{2k - 1} \binom{2n-2k}{n-k} z^{2k} \]

\[ = -[z^{2n}] \frac{1}{1-z} \log \frac{1}{1-z} [w^n] \sqrt{1-4wz^2} \frac{1}{\sqrt{1-4w}}. \]

The same method yields for the second piece in \( H_k \) call it \( B \)

\[ -[z^n] \frac{1}{1-z} \log \frac{1}{1-z} [w^n] \sqrt{1-4wz^2} \frac{1}{\sqrt{1-4w}}. \]

**First part.** Continuing with piece \( B \)
\[ [w^n] \sqrt{1 + \frac{4w(1 - z)}{1 - 4w}} = -[w^n] \sum_{k \geq 0} \binom{2k}{k} \frac{1}{2k - 1} (-1)^k \frac{w^k(1 - z)^k}{(1 - 4w)^k} \]
\[ = -\sum_{k=0}^n \binom{2k}{k} \frac{1}{2k - 1} (-1)^k [w^{n-k}] \frac{(1 - z)^k}{(1 - 4w)^k} \]
\[ = -4^n \sum_{k=0}^n \binom{2k}{k} \frac{1}{2k - 1} (-1)^k (1 - z)^k 4^{-k} \binom{n - 1}{k - 1} \]
and extracting the coefficient in \([z^n]\]
\[ 4^n \sum_{k=1}^n \binom{2k}{k} \frac{1}{2k - 1} (-1)^k 4^{-k} \binom{n - 1}{k - 1} [z^n](1 - z)^{k-1} \log \frac{1}{1 - z} \]
\[ = 4^n \sum_{k=1}^n \binom{2k}{k} \frac{1}{2k - 1} (-1)^k 4^{-k} \binom{n - 1}{k - 1} \sum_{q=0}^{k-1} (-1)^q \binom{k - 1}{q} \frac{1}{n - q}. \]
Now
\[ \binom{n - 1}{k - 1} \binom{k - 1}{q} = \frac{(n - 1)!}{(n - k)! \times q! \times (k - 1 - q)!} = \binom{n - 1 - q}{k - 1 - q}\]
Switching the order of the summation,
\[ 4^n \sum_{q=0}^{n-1} \binom{n - 1}{q} \frac{(-1)^q}{n - q} \sum_{k=q+1}^n \binom{n - 1 - q}{k - 1 - q} \binom{2k}{k} \frac{1}{2k - 1} (-1)^k 4^{-k} \]
\[ = 4^n \sum_{q=0}^{n-1} \binom{n}{q} (-1)^q \sum_{k=q+1}^n \binom{n - 1 - q}{k - 1 - q} \binom{2k}{k} \frac{1}{2k - 1} (-1)^k 4^{-k} \]
\[ = -4^n \sum_{q=0}^{n-1} \binom{n}{q} (-1)^q \sum_{k=q+1}^n \binom{n - 1 - q}{k - 1 - q} [z^k] \sqrt{1 + z}. \]
The inner sum is
\[ \sum_{k=0}^{n-1-q} \binom{n - 1 - q}{k} [z^{k+q+1}] \sqrt{1 + z} = \sum_{k=0}^{n-1-q} \binom{n - 1 - q}{k} [z^{n-k}] \sqrt{1 + z} \]
\[ = [z^n] \sqrt{1 + z} \sum_{k=0}^{n-1-q} \binom{n - 1 - q}{k} z^k = [z^n] \sqrt{1 + z} (1 + z)^{n-1-q}. \]
Substitute into the outer sum to get
\[ 294 \]
\[-\frac{4^n}{n} [z^n] \sqrt{1 + z} \sum_{q=0}^{n-1} \binom{n}{q} (-1)^q (1 + z)^{n-1-q} = -\frac{4^n}{n} [z^n] \frac{1}{\sqrt{1 + z}} (-(-1)^n + z^n) = -\frac{4^n}{n} \left(-4^n \left(\frac{2n}{n}\right) + 1\right) = -\frac{4^n}{n} \left(\frac{2n}{n}\right) \frac{1}{n}.\]

**Second part.** Here we may recycle the first segment from the easy piece and obtain for piece A

\[4^n \sum_{k=1}^{n} \binom{2k}{k} \frac{1}{2k-1} (-1)^k 4^{-k} \binom{n-1}{k-1} [z^{2n}] (1 - z^2)^{k-1} (1 + z) \log \frac{1}{1 - z}.\]

The coefficient extractor in \(z\) has two parts, the first of which is

\[\sum_{q=0}^{k-1} (-1)^q \binom{k-1}{q} \frac{1}{2n-2q}\]

which contributes half the value of the piece B. The second is

\[\sum_{q=0}^{k-1} (-1)^q \binom{k-1}{q} \frac{1}{2n-1-2q}.\]

This yields

\[-4^n [z^n] \sqrt{1 + z} \sum_{q=0}^{n-1} \binom{n-1}{q} \frac{(-1)^q}{2n-1-2q} (1 + z)^{n-1-q} = -4^n [z^n] \sum_{q=0}^{n-1} \binom{n-1}{q} \frac{(-1)^q}{2n-1-2q} (1 + z)^{n-1/2-q} = -4^n \sum_{q=0}^{n-1} \binom{n-1}{q} \frac{(-1)^q}{2n-1-2q} (n - 1/2 - q)^n/n!.

We have for the falling factorial

\[\prod_{p=0}^{n-1} (n - 1/2 - q - p) = \frac{1}{2^n} \prod_{p=0}^{n-1} (2n - 1 - 2q - 2p) = \frac{1}{2^n} \prod_{p=-(n-1)}^{0} (1 - 2q - 2p) = \frac{(-1)^n}{2^n} \prod_{p=q-(n-1)}^{q} (2p - 1) = (-1)^{n+1} \frac{(2q-1)!}{2^{q-1}(q-1)!} \prod_{p=q-(n-1)}^{1} (2p - 1).\]
With $2q - 2(n - 1) - 1 = 2q - 2n + 1$ this finally becomes
\[ \frac{(-1)^q (2q - 1)!}{2^n \cdot 2^{q-1}(q-1)!} \cdot \frac{(2n - 1 - 2q)!}{2^{n-1-q}(n-1-q)!} \]
\[ = \frac{(-1)^q (2q)! (2n - 1 - 2q)!}{2^{2n-1} q! (n-1-q)!}. \]
This was for $1 \leq q \leq n - 1$. We get for $q = 0$
\[ \frac{1}{2^n} \prod_{p=(n-1)}^{0} (1 - 2p) = \frac{1}{2^n} \frac{(2n)!}{2^{n-1}(n-1)!} \]
and we see that the generic term in four factorials represents this case correctly as well.
Returning to the sum we obtain
\[ -\frac{2}{n} \sum_{q=0}^{n-1} \frac{(2q)!}{q!} \left( \frac{2n - 2 - 2q}{n - 1 - q} \right) \]
\[ = -\frac{2}{n} \sum_{q=0}^{n-1} \frac{1}{\sqrt{1 - 4z}} \frac{1}{\sqrt{1 - 4z}} = -\frac{2}{n} \sum_{q=0}^{n-1} \frac{1}{1 - 4z} = -\frac{2}{n} \frac{4^{n-1}}{1} = -\frac{14^n}{2}. \]
**Conclusion.** We now collect the three pieces with $A$ first then $B$:
\[ -\frac{14^n}{2} - \frac{14^n}{2n} + \frac{1}{2} \frac{2n}{n} \]
\[ + 2 \frac{4^n}{n} - \frac{1}{2} \frac{2n}{n} = \frac{4^n}{n} - \frac{3}{2} \frac{2n}{n} = \frac{4^n}{n} - \frac{3}{n} \frac{2n - 1}{n - 1}. \]
This is indeed
\[ \frac{1}{n} \left[ 4^n - 3 \binom{2n - 1}{n} \right]. \]
This was math.stackexchange.com problem 4054024.

**76.43 MSE 4084763**

We seek to evaluate
\[ \sum_{q=0}^{n} \binom{n}{q} q^k, \]
$k$ a positive integer. We get
\[ k! \cdot \frac{z^k}{k} \sum_{q=0}^{n} \binom{n}{q} \exp(qz) = k! [z^k] (\exp(z) + 1)^n \]
\[ k! [z^k] \sum_{q=0}^{n} \binom{n}{q} (\exp(z) - 1)^q 2^{n-q} = \sum_{q=0}^{n} \binom{n}{q} q! \{\binom{k}{q}\} 2^{n-q} \]
\[ = \sum_{q=0}^{n} n^q \{\binom{k}{q}\} 2^{n-q}. \]

Now we may set the upper limit to \( k \). If \( n > k \) we may lower to \( k \) because the extra range \( k < q \leq n \) produces zero from the Stirling number. If \( n < k \) we may raise to \( k \) because the extra range \( n < q \leq k \) produces zero from the falling factorial. We get
\[ \sum_{q=1}^{k} n^q \{\binom{k}{q}\} 2^{n-q}. \]

In this way we obtain e.g. for \( k = 4 \)
\[ 2^{n-1} n^1 \left\{ \begin{array}{c} 4 \\ 1 \end{array} \right\} + 2^{n-2} n^2 \left\{ \begin{array}{c} 4 \\ 2 \end{array} \right\} + 2^{n-3} n^3 \left\{ \begin{array}{c} 4 \\ 3 \end{array} \right\} + 2^{n-4} n^4 \left\{ \begin{array}{c} 4 \\ 4 \end{array} \right\}. \]

Now the Stirling numbers can be evaluated by inspection:
\[ 2^{n-1} n^1 \times 1 + 2^{n-2} n^2 \times \left( \begin{array}{c} 4 \\ 2 \end{array} \right) + \left( \begin{array}{c} 4 \\ 1 \end{array} \right) + 2^{n-3} n^3 \times \left( \begin{array}{c} 4 \\ 2 \end{array} \right) + 2^{n-4} n^4 \times 1. \]

We find at last
\[ 2^{n-1} n^1 + 7 \times 2^{n-2} n^2 + 6 \times 2^{n-3} n^3 + 2^{n-4} n^4. \]

We may expand the falling factorial if desired:
\[ 2^{n-1} \times n + 7 \times 2^{n-2} \times n(n-1) + 6 \times 2^{n-3} \times n(n-1)(n-2) + 2^{n-4} \times n(n-1)(n-2)(n-3). \]

This was math.stackexchange.com problem 4084763.

76.44 MSE 4095795

We seek to evaluate
\[ \sum_{r=0}^{n} r^k. \]

We may also express this in terms of Stirling numbers of the second kind and falling factorials. We start with
\[ \sum_{r=0}^{n} r^k = k! [z^k] \sum_{r=0}^{n} \exp(rz) = k! [z^k] \frac{\exp((n+1)z) - 1}{\exp(z) - 1}. \]
\[
\begin{align*}
&= k! \left[ z^k \right] \frac{1}{\exp(z) - 1} \sum_{q=1}^{n+1} \binom{n+1}{q} (\exp(z) - 1)^q \\
&= k! \left[ z^k \right] \sum_{q=1}^{n+1} \frac{(n+1)^{q-1}}{(q-1)!} \\
&= k! \left[ z^k \right] \sum_{q=1}^{n+1} \frac{1}{q} \frac{(n+1)^{q-1}}{(q-1)!} \\
&= \sum_{q=1}^{n+1} \frac{1}{q} \binom{k}{q-1}.
\end{align*}
\]

Note that we may set the upper limit of the sum to \( k+1 \). If \( n+1 > k+1 \) we may lower to \( k+1 \) because the removed terms from the range \( k+2 \leq q \leq n+1 \) produce zero by the Stirling number. If \( k+1 > n+1 \) we may raise to \( k+1 \) because the extra terms from the range \( n+2 \leq q \leq k+1 \) produce zero through the falling factorial.

We get
\[
\sum_{q=2}^{k+1} (n+1) \frac{1}{q} \binom{k}{q-1} = (n+1) \sum_{q=2}^{k+1} \frac{1}{q} \binom{k}{q-1}
\]
or alternatively
\[
\sum_{r=0}^{n} r^k = (n+1) \sum_{q=1}^{k} n^{q-1} \frac{1}{q+1} \binom{k}{q}.
\]

In this way we get e.g. with \( k = 4 \)
\[
(n+1) \times \left[ n^{\frac{1}{2}} \binom{4}{1} + n^{\frac{3}{2}} \binom{4}{2} + n^2 \binom{4}{3} + n^3 \binom{4}{4} \right]
\]
The Stirling numbers may be evaluated by inspectiona as before and we find
\[
\sum_{r=0}^{n} r^4 = (n+1) \times \left[ \frac{1}{2} n^4 + \frac{7}{3} n^3 + \frac{3}{2} n^2 + \frac{1}{9} n \right].
\]

This was math.stackexchange.com problem 4095795.

76.45 MSE 4098492

We seek to verify that
\[
\sum_{k=0}^{n} \binom{k}{m} \binom{n-k}{r-m} = \binom{n+1}{r+1}
\]
where \( n \geq 0 \) and \( 0 \leq m \leq n \) and \( m \leq r \leq n \).

We get for the LHS

\[
[z^m][w^{r-m}] \sum_{k=0}^{n} (1 + z)^k (1 + w)^{n-k}
\]

\[
= [z^m][w^{r-m}](1 + w)^n \sum_{k=0}^{n} (1 + z)^k (1 + w)^{-k}
\]

\[
= [z^m][w^{r-m}](1 + w)^n \frac{(1 + z)^{n+1}/(1 + w)^{n+1} - 1}{(1 + z)/(1 + w) - 1}
\]

\[
= [z^m][w^{r-m}](1 + w)^n \frac{(1 + z)^{n+1}/(1 + w)n - (1 + w)}{z - w}
\]

\[
= [z^m][w^{r-m}](1 + z)^{n+1} - (1 + w)^{n+1}.
\]

Now we have

\[
\frac{(1 + z)^{n+1} - (1 + w)^{n+1}}{z - w} = \sum_{q=0}^{n} \frac{(n + 1)}{q + 1} \sum_{p=0}^{q} z^p w^{q-p}.
\]

This is because the RHS is

\[
= \sum_{q=0}^{n} \frac{(n + 1)}{q + 1} w^q \sum_{p=0}^{q} z^p/w^p = \sum_{q=0}^{n} \frac{(n + 1)}{q + 1} w^q \frac{z^{q+1}/w^{q+1} - 1}{z/w - 1}
\]

\[
= \sum_{q=0}^{n} \frac{(n + 1)}{q + 1} w^q \frac{z^{q+1}/w^{q+1} - 1}{z - w} = \sum_{q=0}^{n} \frac{(n + 1)}{q + 1} \frac{z^{q+1} - w^{q+1}}{z - w}
\]

\[
= \frac{1}{z - w} \left[ \sum_{q=0}^{n} \frac{(n + 1)}{q + 1} z^{q+1} - \sum_{q=0}^{n} \frac{(n + 1)}{q + 1} w^{q+1} \right]
\]

\[
= \frac{1}{z - w} \left[ (1 + z)^{n+1} - (1 + w)^{n+1} \right].
\]

Returning to the main sum we now see that it is given by

\[
[z^m][w^{r-m}] \sum_{q=0}^{n} \frac{(n + 1)}{q + 1} \sum_{p=0}^{q} z^p w^{q-p} = [z^m][w^{r-m}] \sum_{p=0}^{n} \frac{z^p}{w^p} \sum_{q=p}^{n} \frac{(n + 1)}{q + 1} w^q.
\]

With \( m \leq n \) we obtain
\[ [w^{r-m}] \frac{1}{w^m} \sum_{q=m}^{n} \binom{n + 1}{q + 1} w^q = [w^r] \sum_{q=m}^{n} \binom{n + 1}{q + 1} w^q. \]

With \( m \leq r \leq n \) this becomes at last

\[ \binom{n + 1}{r + 1}. \]

The concluding step also follows by inspection seeing that \( p = m \) and \( q = r \) are the only combination \( z^p w^q \) that can possibly contribute to \([z^m][w^{r-m}]\).

This was [math.stackexchange.com problem 4098492](https://math.stackexchange.com/questions/4098492).

### 76.46 MSE 4127695

In seeking to evaluate

\[ S_n = \sum_{r=0}^{n} 2^{n-r} \binom{n + r}{r} \]

we find that it is

\[ [z^n] \frac{1}{1 - 2z (1 - z)^{n+1}} = \text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{1 - 2z (1 - z)^{n+1}}. \]

We will use the fact that residues sum to zero, which requires the residue at \( z = 1/2 \) and the residue at \( z = 1 \) as well as the residue at infinity. The latter is zero by inspection, however. We get for the residue at \( z = 1/2 \)

\[ -\frac{1}{2} \text{Res}_{z=1/2} \frac{1}{z^{n+1}} \frac{1}{z - 1/2 (1 - z)^{n+1}} \]

We obtain

\[ -\frac{1}{2} \times 2^{n+1} 2^{n+1} = -2 \times 4^n. \]

We also have for the residue at \( z = 1 \)

\[ \text{Res}_{z=1} \frac{1}{z^{n+1}} \frac{1}{1 - 2z (1 - z)^{n+1}} \]

\[ = \text{Res}_{z=1} \frac{1}{(1 + (z - 1))^{n+1}} \frac{1}{1 - 2(z - 1) (1 - z)^{n+1}} \]

\[ = (-1)^n \text{Res}_{z=1} \frac{1}{(1 + (z - 1))^{n+1}} \frac{1}{1 + 2(z - 1) (z - 1)^{n+1}}. \]

This is

300
\[(−1)^n \sum_{r=0}^{n} (−1)^r \binom{n + r}{r} \binom{n−r}{r} = S_n.\]

We have shown that \(S_n - 2 \times 4^n + S_n = 0\) or

\[S_n = 4^n.\]

For the residue at infinity we get

\[-\text{Res}_{z=0} \frac{1}{z^2} \frac{1}{1 - 2/z} \frac{1}{(1 - 1/z)^{n+1}} = -\text{Res}_{z=0} \frac{1}{z} \frac{1}{z - 2} \frac{1}{(z - 1)^{n+1}} = 0.\]

This was math.stackexchange.com problem 4127695.
Additional answers appeared at math.stackexchange.com problem 1874816.

76.47 MSE 4131219

Defining the Kravchuck polynomial as (the definition in its full generality is at Wikipedia)

\[K_k(x; n) = \sum_{j=0}^{k} (-1)^j \binom{x}{j} \binom{n-x}{k-j}\]

we seek to show that

\[\sum_{\ell=0}^{n} \binom{n-\ell}{n-m} K_\ell(x; n) = 2^m \times \binom{n-x}{m}.\]

We prove this for \(x = p\) an integer and then it holds for all \(x\) because \(K_k(x; n)\) is a polynomial in \(x\).

We have

\[K_k(p; n) = [z^k](1 + z)^{n-p} \sum_{j=0}^{k} (-1)^j \binom{p}{j} z^j.\]

Here the coefficient extractor enforces the upper limit of the sum and we get

\[K_k(p; n) = [z^k](1 + z)^{n-p} \sum_{j=0}^{k} (-1)^j \binom{p}{j} z^j = [z^k](1 + z)^{n-p}(1 - z)^p.\]

We also get for the coveted identity that it is
\[
\sum_{\ell=0}^{n} \binom{n}{n-m} K_{n-\ell}(p; n) = \sum_{\ell=0}^{n} \binom{n}{n-m} [z^{n-\ell}(1 + z)^{n-p}(1 - z)^{p}]
\]

\[= [z^n](1 + z)^{n-p}(1 - z)^{p} \sum_{\ell=0}^{n} \binom{n}{n-m} z^\ell \]

\[= [z^n](1 + z)^{n-p}(1 - z)^{p} \sum_{\ell=0}^{n} \binom{n}{n-m} z^\ell \]

\[= [z^n](1 + z)^{n-p}(1 - z)^{p} \sum_{\ell=0}^{n} \binom{n}{n-m} z^\ell. \]

Now here we have another coefficient extractor enforcing the upper range of the sum and we get

\[= [z^n](1 + z)^{n-p}(1 - z)^{p} \sum_{\ell=0}^{m} \binom{\ell+n-m}{n-m} z^\ell. \]

This is

\[
\frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{m+1}(1 + z)^{n-p}(1 - z)^{m-1}} \frac{1}{(1 - z)^{n-p}} \, dz.
\]

Now put \((1 + z)/(1 - z) = w\) so that \(z = (w - 1)/(1 + w)\) and \(dz = 2/(1 + w)^2 \, dw\) to obtain (observe that due to the fact that \(w = 1 + 2z + \cdots\) the image of a small circle \(|z| = \varepsilon\) can be deformed to another small circle \(|w-1| = \gamma\) because when \(z\) makes one turn around zero so does \(w\) around one)

\[
\frac{1}{2\pi i} \int_{|w-1|=\gamma} \frac{(1 + w)^{m+1}}{(w - 1)^{m+1}} w^{n-p} \frac{2^{m-1}}{(1 + w)^{m-1}} \frac{2}{(1 + w)^2} \, dw
\]

\[= \frac{2^m}{2\pi i} \int_{|w-1|=\gamma} \frac{1}{(w - 1)^{m+1}} w^{n-p} \, dw
\]

\[= \frac{2^m}{2\pi i} \int_{|w-1|=\gamma} \frac{1}{(w - 1)^{m+1}} \sum_{r=0}^{\infty} \binom{n-p}{r} (w - 1)^r \, dw. \]

There were no poles other than \(w = 1\) inside the image contour and the series in \(w - 1\) converges including for \(n - p < 0\) because \(\gamma \ll 1\).

This yields

\[
2^m \times \binom{n-p}{m}
\]

as claimed.

This was [math.stackexchange.com problem 4131219](https://math.stackexchange.com/questions/4131219).

302
We seek to prove the identity
\[ B_n = \sum_{k=0}^{n} (-1)^k \frac{1}{k+1} H_{k+1}(k+2)! \binom{n+1}{k+1} + (-1)^{n+1}(n+1). \]

The sum is
\[ (n+1)! [z^{n+1}] \sum_{k=0}^{n} (-1)^k \left( 1 + \frac{1}{k+1} \right) H_{k+1}(\exp(z) - 1)^{k+1}. \]

With \( \exp(z) - 1 = z + \cdots \) the coefficient extractor enforces the upper limit of the sum and we get
\[ (n+1)! [z^{n+1}] \sum_{k=0}^{n} (-1)^k \left( 1 + \frac{1}{k+1} \right) (\exp(z) - 1)^{k+1} [w^{k+1}] \frac{1}{1 - w} \log \frac{1}{1 - w}. \]

Note that the term in \( w \) starts at \( w \). We get for the first piece
\[-(n+1)! [z^{n+1}] \exp(-z) \log \exp(-z) = (n+1)! [z^n] \exp(-z) = (-1)^n(n+1). \]

We see that this cancels the extra term from the initial closed form. Therefore the remaining term must give the Bernoulli numbers:
\[ (n+1)! [z^{n+1}] \sum_{k=0}^{n} (-1)^k \frac{1}{k+1} (\exp(z) - 1)^{k+1} [w^{k+1}] \frac{1}{1 - w} \log \frac{1}{1 - w}. \]

Differentiate to get
\[ n! [z^n] \exp(z) \sum_{k=0}^{n} (-1)^k (\exp(z) - 1)^k [w^k] \frac{1}{1 - w} \log \frac{1}{1 - w} = n! [z^n] \exp(z) \sum_{k=0}^{n} (-1)^k (\exp(z) - 1)^k \frac{1}{w} \frac{1}{1 - w} \log \frac{1}{1 - w}. \]

This is
\[ n! [z^n] \exp(z) \frac{1}{1 - \exp(z)} \exp(-z) \log \exp(-z) = n! [z^n] \frac{z}{\exp(z) - 1} = B_n \]
as claimed.

This was math.stackexchange.com problem 4139722
We seek to show that
\[
\sum_{q \geq k} \binom{m+1}{2q+1} \binom{q}{k} = \binom{m-k}{k} 2^{m-2k}.
\]

For the initial analysis note that the first binomial coefficient requires \(m \geq 2q\) so that when \(k > m/2\) which would imply \(2q > m\) the LHS evaluates to zero, even though the RHS is nonzero when \(k > m\). We will therefore restrict to \(k \leq m/2\). We get for the LHS
\[
\sum_{q \geq 0} \binom{m+1}{2q+1} \binom{q+k}{k} = \sum_{q \geq 0} \binom{m+1}{m-2k-2q} \binom{q+k}{k} = \left[z^{m-2k}\right](1 + z)^{m+1} \sum_{q \geq 0} z^{2q} \binom{q+k}{k}.
\]

Observe that this coefficient extractor produces a finite sum with no contribution from \(2q > m - 2k\). Continuing,
\[
[z^{m-2k}](1 + z)^{m+1} \frac{1}{(1 - z)^{k+1}} = [z^{m-2k}](1 + z)^{m-k} \frac{1}{(1 - z)^{k+1}}.
\]

This is
\[
\text{res}_z \frac{1}{z^{m-2k+1}}(1 + z)^{m-k} \frac{1}{(1 - z)^{k+1}} = \text{res}_z \frac{z^{k-1}}{z^{m-k}}(1 + z)^{m-k} \frac{1}{(1 - z)^{k+1}}.
\]

See how the residue vanishes when \(2k > m\). Now put \(z/(1 + z) = w\) so that \(z = w/(1 - w)\) and \(1/(1 - z) = (1 - w)/(1 - 2w)\) and \(dz = 1/(1 - w)^2\ dw\) to obtain
\[
\text{res}_w \frac{1}{w^{m-k}} \frac{w^{k-1}}{(1 - w)^{k+1}} \frac{1}{(1 - 2w)^{k+1}} = \text{res}_w \frac{1}{w^{m-2k+1}} \frac{1}{(1 - 2w)^{k+1}}.
\]

This is
\[
2^{m-2k} \binom{m-k}{k}
\]
as claimed.

This was math.stackexchange.com problem 4192271.
We are interested in the asymptotics of

\[ g(n) = \sum_{k=1}^{n-1} k \binom{n}{k} \frac{(2n - 2k - 1)!!}{(2n - 1)!!} = n \sum_{k=1}^{n-1} \binom{n-1}{k-1} \frac{(2n - 2k - 1)!!}{(2n - 1)!!}. \]

Now we have

\[ (2n - 1)!! = \frac{(2n - 1)!}{2^{n-1} \times (n-1)!} \]

so we get for our sum

\[
\frac{n! \times 2^{n-1}}{(2n-1)!} \sum_{k=0}^{n-2} \binom{n-1}{n-2-k} \frac{1}{2^{n-k-2} \times (n-k-2)!} \frac{(2k+1)!}{2^k \times k!}
\]

\[ = 2^{n-1} \binom{2n-1}{n}^{-1} \left[ z^{-2} \right] \exp(z) \sum_{k=0}^{n-2} z^k \frac{1}{2^k} \binom{2k+1}{k}. \]

Here the coefficient extractor enforces the upper limit of the sum and we obtain

\[ 2^{2n-2} \binom{2n}{n}^{-1} \left[ z^{-2} \right] \exp(z/2) \sum_{k \geq 0} z^k \frac{1}{2^k} \binom{2k+1}{k}. \]

The sum is

\[ -\frac{2}{z} + \frac{2}{z \sqrt{1-z}}. \]

We get from the first piece

\[ -2^{2n-1} \binom{2n}{n}^{-1} \left[ z^{-1} \right] \exp(z/2) = -2^n \binom{2n}{n}^{-1} \frac{1}{(n-1)!}. \]

Now from the asymptotic \( \binom{2n}{n}^{-1} \sim \sqrt{\pi n}/2^n \) we get for the modulus \( \sqrt{\pi n}/2^n/(n-1)! \) so this vanishes quite rapidly. Continuing with the second piece we obtain
\[ 2^{2n-1} \left( \frac{2n}{n} \right)^{-1} [z^{n-1}] \exp(z/2) \sqrt{1-z}. \]

We apply the Darboux method here as documented on page 180 section 5.3 of Wilf’s *generatingfunctionology* [Wil94] where we expand \( \exp(z/2) \) about 1 and take the first term, extracting the corresponding factor from the singular term. This yields

\[
\exp(1/2) \times 2^{2n-1} \left( \frac{2n}{n} \right)^{-1} [z^{n-1}] \frac{1}{\sqrt{1-z}}
= \exp(1/2) \times 2^{2n-1} \left( \frac{2n}{n} \right)^{-1} \frac{1}{n-3/2} \left( \frac{n-1}{n} \right)
= \exp(1/2) \times 2^{2n-1} \left( \frac{2n}{n} \right)^{-1} \frac{n - 1/2}{n-1/2} \left( \frac{n}{n} \right).
\]

Using the Gamma function approximation of the second binomial coefficient from the Wilf text we get

\[
\exp(1/2) \times 2^{2n-1} \left( \frac{2n}{n} \right)^{-1} \frac{n - 1/2}{n-1/2} \left( \frac{n}{n} \right) \\
\sim \exp(1/2) \times 2^{2n} \frac{n - 1/2}{n-1/2} \frac{1}{\sqrt{n}} \Gamma(1/2) \sim \frac{1}{2} \exp(1/2)
\]

We have obtained

\[
\sqrt{e} \frac{1}{2}
\]

the same as in the contributions that were first to appear. This was [math.stackexchange.com problem 4212878](https://math.stackexchange.com/questions/4212878).

### 76.51 A different obstacle

We seek to evaluate for \( n, m \geq 0 \) the sum

\[
\sum_{k=0}^{n} \frac{(-1)^k}{k+1+m} \left( \frac{n+k}{2k} \right) \left( \begin{array}{c} 2k \\ k \end{array} \right).
\]

First note that

\[
\left( \frac{n+k}{2k} \right) \left( \begin{array}{c} 2k \\ k \end{array} \right) = \frac{(n+k)!}{(n-k)! \times k! \times k!} = \left( \frac{n+k}{k} \right) \left( \begin{array}{c} n \\ k \end{array} \right)
\]

We get for our sum

\[
\sum_{k=0}^{n} \frac{n}{k+1+m} \left( \begin{array}{c} n \\ k \end{array} \right) \frac{(-1)^k}{k+1+m} \left( \frac{n+k}{n} \right).
\]

306
Now introduce

\[ f(z) = \frac{(-1)^n}{z + 1 + m} \prod_{q=0}^{n-1} \frac{1}{z - q} \prod_{p=0}^{n-1} (n + z - p). \]

Note that \( n + z - p \neq 0 \) for \( z = q \) with \( 0 \leq q \leq n \) so the simple poles from the first product are preserved.

This function \( f(z) \) has the property that with \( 0 \leq k \leq n \)

\[
\text{Res}_{z=k} f(z) = \frac{(-1)^n}{k + 1 + m} \prod_{q=0}^{k-1} \frac{1}{k - q} \prod_{q=k+1}^{n} \frac{1}{k - q} \prod_{p=0}^{n-1} (n + k - p)
\]

\[
= \binom{n + k}{n} \frac{n!}{k + 1 + m} \frac{1}{k!} \frac{(-1)^{n-k}}{(n-k)!}.
\]

Upon simplifying we find that our sum is given by

\[
\sum_{k=0}^{n} \text{Res}_{z=k} f(z).
\]

Now using the fact that residues sum to zero and that the residue at infinity of \( f(z) \) is zero by inspection (compare degree of denominator and numerator which are \( n + 2 \) and \( n \) resp.) we have that the sum must be

\[-\text{Res}_{z=\infty} f(z).\]

Compute this to get

\[
-(-1)^n k! \prod_{q=0}^{n-1} \frac{1}{1 - m - q} \prod_{p=0}^{n-1} (n - 1 - m - p)
\]

\[
= \prod_{q=0}^{n} \frac{1}{q + m + 1} \prod_{p=0}^{n-1} (p - m).
\]

Here we get a zero value when \( 0 \leq m \leq n - 1 \) or \( n > m \). Otherwise the terms in the second product are all negative and we get

\[
(-1)^n \frac{m!}{(m + n + 1)!} \prod_{p=0}^{n-1} (m - p) = (-1)^n \frac{m!}{(m + n + 1)!} \frac{m!}{(m - n)!}
\]

\[
= (-1)^n \frac{m! \times n!}{(m + n + 1)!} \binom{m}{n}.
\]

Here the last binomial coefficient produces zero when \( n > m \) as required.

This is a simplified version of an earlier answer prompted by an observation by Markus Scheuer at math.stackexchange.com problem 4504576.

This problem has not yet appeared at math.stackexchange.com. The source is problem 8 “A different obstacle” from section 5.2 of Concrete Mathematics by Graham, Knuth and Patashnik [GKP89].

307
We seek a closed form of
\[
\sum_{k=0}^{n} \frac{(-1)^k \binom{n+k}{2k} \binom{2k}{k}}{2k+1 \binom{n-k}{k}}.
\]

This follows the template from the previous section very closely with only the type of the auxiliary residue being different. First note that
\[
\binom{n+k}{n-k} \binom{2k}{k} = \frac{(n+k)!}{(n-k)! \times k! \times k!} = \binom{n+k}{k} \binom{n}{k}.
\]

We get for our sum
\[
\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{2k+1} \binom{n+k}{n}.
\]

Now introduce
\[
f(z) = \frac{(-1)^n}{2z+1} \prod_{q=0}^{n} \frac{1}{1-z-q} \prod_{p=0}^{n-1} (n+z-p).
\]

Note that \(n+z-p \neq 0\) for \(z = q\) with \(0 \leq q \leq n\) so the simple poles from the first product are preserved.

This function \(f(z)\) has the property that with \(0 \leq k \leq n\)
\[
\text{Res}_{z=k} f(z) = \frac{(-1)^n}{2k+1} \prod_{q=0}^{k-1} \frac{1}{1-z-q} \prod_{p=0}^{n-1} (n+k-p)
\]
\[
= \binom{n+k}{n} \frac{n! \times (-1)^n}{2k+1} \frac{1}{k! \times (n-k)!}.
\]

Upon simplifying we find that our sum is given by
\[
\sum_{k=0}^{n} \text{Res}_{z=k} f(z).
\]

Now using the fact that residues sum to zero and that the residue at infinity of \(f(z)\) is zero by inspection (compare degree of denominator and numerator which are \(n+2\) and \(n\) resp.) we have that the sum must be
\[-\text{Res}_{z=-1/2} f(z).
\]

Compute this to get
\[-\frac{(-1)^n}{2} \prod_{q=0}^{n} \frac{1}{1-1/2-q} \prod_{p=0}^{n-1} (n-1/2-p)
\]

308
\[
\begin{align*}
\frac{1}{2} \prod_{q=0}^{n-1} \frac{1}{1/2 + q} \prod_{p=0}^{n-1} (n - 1/2 - p) \\
= \prod_{q=0}^{n} \frac{1}{1 + 2q} \prod_{p=0}^{n-1} (2n - 1 - 2p) = \frac{1}{2n+1}.
\end{align*}
\]

This is a simplified version of an earlier answer prompted by an observation by Markus Scheuer at [math.stackexchange.com problem 4504576](https://math.stackexchange.com/questions/4504576). This was [mathoverflow.net problem 291738](https://mathoverflow.net/questions/291738).

### 76.53 Stirling number identity by Gould

We seek to show that

\[
\left[ \frac{n}{n-k} \right] = (-1)^{k} \binom{n}{k} \sum_{j=0}^{k} \binom{k}{j} \sum_{q=0}^{j} (-1)^{q} \binom{j+1}{q+1} \left( \frac{j + qn + q}{qn+q} \right)^{-1} \left( j + qn + q \right). 
\]

Using the standard EGF on the RHS we find for the inner sum

\[
\begin{align*}
\sum_{q=0}^{j} (-1)^{j} \frac{1}{q+1} \left( \frac{j + qn + q}{qn+q} \right)^{-1} \left( j + qn + q \right)
&= \sum_{q=0}^{j} (-1)^{j+1} \frac{1}{q+1} \left( \frac{j + qn + q}{qn+q} \right) \left( \frac{z}{\exp(z)-1} \right)^{qn+q}.
\end{align*}
\]

Observe that when we raise \( q \) to \( j + 1 \) we obtain for the sum

\[
\begin{align*}
-j! \left[ z^{j(n+2)} \right] & (\exp(z) - 1) j^{(n+1)} \left[ \left( \frac{z}{\exp(z)-1} \right)^{n+1} - 1 \right]^{j+1} \\
&= -j! \left[ z^{j(n+2)} \right] (\exp(z) - 1) j^{(n+1)} \sum_{q=0}^{j} (-1)^{j+1-q} \frac{1}{q} \left( \frac{z}{\exp(z)-1} \right)^{qn+q}.
\end{align*}
\]

We have however that \( \left[ z^{j(n+2)} \right] (-1)^{j+1} ((n+1)/2)^{j+1} z^{j+1} + \cdots = 0. \)

Hence the sum is minus the value at \( q = j + 1 \) and we get
\[ j![z^j(n+2)](\exp(z) - 1)^j(n+1) \left( \frac{z}{\exp(z) - 1} \right)^{(j+1)(n+1)} \]
\[ = j![z^j] \left( \frac{z}{\exp(z) - 1} \right)^{(j+1)(n+1)} \]
\[ = j![z^j] \left( \frac{z}{\exp(z) - 1} \right)^{n+1}. \]

We obtain for the outer sum in \( j \)
\[ k! \sum_{j=0}^{k} \frac{1}{(k-j)!}[z^j] \left( \frac{z}{\exp(z) - 1} \right)^{n+1} \]
\[ = k![z^k] \left( \frac{z}{\exp(z) - 1} \right)^{n+1} \sum_{j=0}^{k} \frac{1}{j!} z^j. \]

We may raise the upper limit beyond \( k \) because there is no contribution to the coefficient extractor in front and find
\[ k![z^k] \exp(z) \left( \frac{z}{\exp(z) - 1} \right)^{n+1}. \]

This is
\[ k! \int_{|z|=\varepsilon} \exp(z) \frac{z^{n-k}}{(\exp(z) - 1)^{n+1}} dz. \]

Note that with the arithmetic we have preserved the pole at \( z = 0 \). Now put \( \exp(z) - 1 = w \) so that \( \exp(z) dz = dw \) and \( z = \log(1 + w) \). (Branch cut of the logarithm is \((-\infty, -1]\).) This yields
\[ \frac{k!}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} \frac{\log(1 + w))^{n-k}}{w^{n-k}} dw. \]

Putting it all together we have
\[ (-1)^k \binom{n}{k} k![w^n](\log(1 + w))^{n-k} = (-1)^{n-k} \binom{n}{k} k![w^n](\log(1 - w))^{n-k} \]
\[ = \binom{n}{k} k![w^n] \left( \log \frac{1}{1-w} \right)^{n-k} = n![w^n] \left( \frac{1}{(n-k)!} \log \frac{1}{1-w} \right)^{n-k} = \left[ \frac{n}{n-k} \right] \]

as claimed. Concerning the choice for \( \varepsilon \) and \( \gamma \) we have for the image of \( |z| = \varepsilon \) using \( |\exp(\varepsilon \exp(i\theta))| = \exp(\varepsilon \cos(\theta)) \) that \( 1 - \exp(-\varepsilon) \leq |\exp(z) - 1| \leq \exp(\varepsilon) - 1 \). The image is contained in two circles of radius \( \varepsilon - \frac{1}{2} \varepsilon^2 \) and \( \varepsilon/(1-\varepsilon) \) and we may take \( \gamma = \varepsilon - \frac{1}{2} \varepsilon^2 \).

This problem has not appeared at math.stackexchange.com. It is from page 179 eqn. 13.10 of H.W. Gould’s *Combinatorial Identities for Stirling Numbers* [Gou16].
Stirling number identity by Gould II

The claim here is

\[
\binom{n}{n-k} = (-1)^k \binom{n-1}{k} \sum_{j=0}^{k} (-1)^j \binom{k+1}{j+1} \left( jn + k \right)^{-1} \binom{jn+k}{j}. 
\]

Using the standard EGF this becomes

\[
(-1)^k \binom{n-1}{k} k! \sum_{j=0}^{k} (-1)^j \binom{k+1}{j+1} [z^{jn+k}](\exp(z) - 1)^n 
\]

\[
= \binom{n-1}{k} k! [z^{k(n+1)}] \sum_{j=0}^{k} (-1)^j \binom{k+1}{j} z^{jn}(\exp(z) - 1)^{k-n-j}.
\]

Raising the index to \(k+1\) we obtain for the sum

\[
(\exp(z) - 1)^{kn} \left[ 1 - \left( \frac{z}{\exp(z) - 1} \right)^{n} \right]^{k+1}. 
\]

Note that \((\exp(z) - 1)^{kn} = z^{kn} + \ldots\) and

\[
\left[ 1 - \left( \frac{z}{\exp(z) - 1} \right)^{n} \right]^{k+1} = (n/2)^{k+1} z^{k+1} + \ldots 
\]

We have however that \([z^{k(n+1)}]((n/2)^{k+1} z^{k(n+1)} + \ldots) = 0\). Hence the sum is minus the value at \(j = k+1\) and we get

\[
(-1)^k \binom{n-1}{k} k! [z^{k}] \frac{1}{(\exp(z) - 1)^n} 
\]

\[
= (-1)^k \binom{n-1}{k} k! [z^{k}] \left( \frac{z}{\exp(z) - 1} \right)^n 
\]

\[
= \binom{n-1}{k} k! [z^{k}] \left( \frac{z}{1 - \exp(-z)} \right)^n 
\]

\[
= \binom{n-1}{k} k! [z^{k}] \left( \frac{z \exp(z)}{\exp(z) - 1} \right)^n. 
\]

Here we recognize the generating function of the Stirling polynomials (consult e.g. Concrete Mathematics [GKP89] section 6.2) and we obtain at last

\[
\binom{n-1}{k} k! \times n \sigma_k(n) = \frac{n!}{(n-1-k)!} \left[ \frac{n}{n-k} \right] \prod_{q=0}^{k} \frac{1}{n-q} = \binom{n}{n-k} 
\]

as claimed.

This problem has not appeared at math.stackexchange.com. It is from page 183 eqn. 13.28 of H.W.Gould’s Combinatorial Identities for Stirling Numbers [Gou16].


76.55 Schläfli’s identity for Stirling numbers

Gould [Gou16] presents the following version of Schläfli’s formula linking the two kinds of Stirling numbers: where \( n \geq 1 \) and \( n > k \) (the first binomial coefficient vanishes when \( n = k \))

\[
\left[ \begin{array}{c} n \\ n-k \end{array} \right] = \sum_{q=0}^{k} (-1)^{k-q} \binom{n+q-1}{n-k-1} \binom{n+k}{k-q} \frac{[k+q]}{q}.
\]

The RHS is

\[
\sum_{q=0}^{k} (-1)^{q} \frac{(n+k-q-1)}{n-k-1} \binom{n+k}{q} \frac{[2k-q]}{k-q}.
\]

Using the standard EGF this becomes

\[
\frac{(n-1)!}{(n-k-1)!} \sum_{q=0}^{k} (-1)^{q} \frac{(n+k-q-1)}{k-q} \binom{n+k}{q} z^{2k-q} (\exp(z) - 1)^{k-q}
\]

\[
= \frac{(n-1)!}{(n-k-1)!} [z^{2k}] (\exp(z) - 1)^{k} w^{k} (1+w)^{n+k-1}
\]

\[
\times \sum_{q \geq 0} (-1)^{q} \frac{w^{q}}{(1+w)^{q}} \binom{n+k}{q} z^{q} (\exp(z) - 1)^{-q}.
\]

Here we have extended \( q \) to infinity because of the coefficient extractor in \( w \). Continuing,

\[
\frac{(n-1)!}{(n-k-1)!} [z^{2k}] (\exp(z) - 1)^{k} w^{k} (1+w)^{n+k-1}
\]

\[
\times \left[ 1 - \frac{wz}{(1+w)(\exp(z) - 1)} \right]^{n+k}
\]

\[
= \frac{(n-1)!}{(n-k-1)!} [z^{2k}] (\exp(z) - 1)^{-n} w^{k} \frac{1}{1+w}
\]

\[
\times [(1+w)(\exp(z) - 1) - wz]^{n+k}.
\]

Now we have for the inner powered term

\[
[w(\exp(z) - 1 - z) + (\exp(z) - 1)]^{n+k}
\]

\[
= \sum_{q=0}^{n+k} \binom{n+k}{q} w^{q}(\exp(z) - 1 - z)^{q}(\exp(z) - 1)^{n+k-q}.
\]

Extracting the coefficient on \([w^{k}]\) (note the upper range)
\[
\frac{(n-1)!}{(n-k-1)!}[z^{2k}](\exp(z)-1)^{-n} \\
\times \sum_{q=0}^{k} \binom{n+k}{q} (-1)^{k-q} (\exp(z)-1)^q (\exp(z)-1)^{n+k-q}.
\]

Observe that \((\exp(z)-1-z)^q = z^{2q}/2^{2q} + \cdots\) so that the sum terms start at \(z\) to the power \(2q+n+k-q-n = k+q\) so we may raise \(q\) to \(n+k\) once more due to the extractor in \(z\) (the outer exponential has a pole of order \(n\) which gets canceled however, yielding a FPS). We get

\[
\frac{(n-1)!}{(n-k-1)!}[z^{2k}](\exp(z)-1)^{-n}(-1)^k z^{n+k}.
\]

Revealing the formal power series we finally have

\[
\frac{(n-1)!}{(n-k-1)!} (-1)^k [z^k] \left[ \frac{z}{\exp(z)-1} \right]^n.
\]

The core term is

\[
\text{res}_z \frac{1}{z^{k+1} (\exp(z)-1)^n}.
\]

Now put \(\exp(z) - 1 = w\) so that \(z = \log(1+w)\) and \(dz = 1/(1+w)\) \(dw\) to get

\[
\text{res}_w \frac{1}{w^n} (\log(1+w))^{n-k-1} \frac{1}{1+w} = \frac{n}{n-k} [w^n] (\log(1+w))^{n-k}.
\]

Collecting everything we have

\[
\frac{n!}{(n-k)!} (-1)^k [w^n] (\log(1+w))^{n-k} = \frac{n!}{(n-k)!} (-1)^{n+k} [w^n] (\log(1-w))^{n-k}.
\]

\[
= n! [w^n] \frac{1}{(n-k)!} \left( \log \frac{1}{1-w} \right)^{n-k} = \left[ \frac{n}{n-k} \right].
\]

This problem has not appeared at math.stackexchange.com. It is from page 183 eqn. 13.32 of H.W.Gould’s \textit{Combinatorial Identities for Stirling Numbers} \cite{Gou16}.
Stirling numbers and Faulhaber’s formula

Suppose we seek to prove that with \( p \geq 1 \) (polynomial representation of the power sum)

\[
\sum_{k=0}^{n} k^p = \sum_{j=1}^{n} n^j \sum_{k=j}^{p+1} \binom{p+1}{k} (-1)^{k-j} \binom{k}{j}.
\]

With the usual EGFs we obtain for the inner sum

\[
(p + 1)! [z^{p+1}] \sum_{k=j}^{p+1} \frac{1}{k!} (\exp(z) - 1)^k (-1)^{k-j} [w^k] \frac{1}{j!} \left( \log \frac{1}{1-w} \right)^j.
\]

Now with \( \exp(z) - 1 = z + \cdots \) the coefficient extractor in \( z \) enforces the upper limit of the sum and we get

\[
(-1)^j p! [zp] \exp(z) \sum_{k=j}^{p+1} (\exp(z) - 1)^k (-1)^{k-j} [w^k] \frac{1}{j!} \left( \log \frac{1}{1-w} \right)^j.
\]

Since \( \log \frac{1}{1-z} = z + \cdots \) the coefficient extractor in \( w \) covers the whole of the powered logarithmic term and we find

\[
p! [zp] \frac{\exp(z)}{\exp(z) - 1} \frac{1}{j!} z^j.
\]

Substitute into the outer sum to obtain (here the exponential terms yield two formal power series):

\[
p! [zp] \frac{\exp(z)}{\exp(z) - 1} \sum_{j=1}^{p+1} n^j \frac{z^j}{j!} = p! [zp+1] \exp(z) \frac{z}{\exp(z) - 1} \sum_{j=1}^{p+1} n^j \frac{z^j}{j!}.
\]

The coefficient extractor once more enforces the upper limit of the sum and we have

\[
p! [zp+1] \exp(z) \frac{z}{\exp(z) - 1} (\exp(nz) - 1) = p! [zp+1] \exp(z) \sum_{k=0}^{n-1} \exp(kz)
\]

\[
= p! \sum_{k=0}^{n-1} \exp((k+1)z) = \sum_{k=0}^{n-1} (k+1)^p = \sum_{k=1}^{n} k^p.
\]
This is the claim. With \( p \geq 1 \) we may restore the \( k = 0 \) value with no change. Note that this also yields

\[
\frac{1}{p+1} (p+1)!(z^{p+1}) \left( \frac{z}{1 - \exp(-z)} \right) (\exp(nz) - 1)
\]

\[
= \frac{(-1)^{p+1}}{p+1} (p+1)!(z^{p+1}) \left( \frac{z}{\exp(z) - 1} \right) (\exp(-nz) - 1)
\]

\[
= \frac{(-1)^{p+1}}{p+1} (p+1)! \sum_{k=1}^{p+1} \frac{B_{p+1-k} (-1)^{k} n^{k} \frac{1}{k!}}{(p+1-k)!}
\]

\[
= \frac{1}{p+1} \sum_{k=1}^{p+1} \binom{p+1}{k} B_{p+1-k} (-1)^{p+1-k} n^{k}
\]

\[
= \frac{1}{p+1} n^{p+1} + \sum_{k=1}^{p} \binom{p}{k} \frac{(-1)^{p+1-k} B_{p+1-k} n^{k}}{p+1-k}
\]

Now for \( q \geq 2 \) we have that \( B_{q} \) is non-zero only if \( q \) is even so we may write

\[
\frac{1}{p+1} n^{p+1} + \frac{1}{2} n^{p} + \sum_{k=1}^{p-1} \binom{p}{k} \frac{(-1)^{p+1-k} B_{p+1-k} n^{k}}{p+1-k}
\]

We have derived Faulhaber’s formula.

This problem has not appeared at math.stackexchange.com. It is from page 214 eqn. 15.32 of H.W.Gould’s *Combinatorial Identities for Stirling Numbers* [Gou16].

### 76.57 Stirling number and binomial coefficient

Suppose we seek to prove that

\[
\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} (x - k)^{n+j} = \sum_{k=0}^{j} \binom{x-n}{k} (n+k)! \binom{n+j}{n+k}.
\]

Starting with the LHS we obtain

\[
(n+j)! [z^{n+j}] \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \exp((x - k)z)
\]

\[
= (n+j)! [z^{n+j}] \exp(xz) \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \exp(-kz)
\]

\[
= (n+j)! [z^{n+j}] \exp(xz)(1 - \exp(-z))^{n}
\]

315
Now observing that \( \exp(z) - 1 = z + \cdots \) we find
\[
(n + j)! \sum_{k=n}^{n+j} [z^{n+j-k}] \exp((x - n)z) [z^k] (\exp(z) - 1)^n
\]
\[
= (n + j)! \sum_{k=0}^{j} \frac{(x - n)^{j-k}}{(j-k)!} \frac{n!}{(n+k)!} \binom{n+j}{n+k}
\]
\[
= (n + j)! \sum_{k=0}^{j} \frac{(x - n)^{k}}{k!} \frac{n!}{(n+j-k)!} \binom{n+j-k}{n}
\]
\[
= n! \sum_{k=0}^{j} \binom{n+j}{k} (x-n)^{k} \binom{n+j-k}{n}
\]

Expanding the powered term in \( x \) yields
\[
n! \sum_{k=0}^{j} \binom{n+j}{k} \binom{n+j-k}{n} \sum_{p=0}^{k} \binom{k}{p} (x-n)^{p}
\]
\[
= n! \sum_{p=0}^{j} \binom{x-n}{p} p! \sum_{k=0}^{j} \binom{n+j}{k} \binom{n+j-k}{n} \binom{k}{p}
\]

It remains to simplify
\[
n! p! \sum_{k=p}^{j} \binom{n+j}{k} \binom{n+j-k}{n} \binom{k}{p}
\]
\[
= (n + j)! \sum_{k=p}^{j} [z^{n+j-k}] \exp(z) - 1)^n [w^k] (\exp(w) - 1)^p
\]
\[
= (n + j)! [z^{n+j}] (\exp(z) - 1)^n \sum_{k=p}^{j} z^k [w^k] (\exp(w) - 1)^p.
\]

Now with \( \exp(w) - 1 = w + \cdots \) the coefficient extractor in \( w \) starts at the first non-zero coefficient on \([w^p]\). We may extend \( k \) beyond \( j \) to infinity owing to the powered exponential in \( n \) because \( k > j \) is \( n + k > n + j \) and there is no contribution due to the coefficient extractor in \( z \). We obtain at last
\[
(n + j)! [z^{n+j}] (\exp(z) - 1)^n \sum_{k=p}^{j} z^k [w^k] (\exp(w) - 1)^p
\]
\[ (n + j)! \left[ z^{n+j} \right] (\exp(z) - 1)^{n+p} = (n+p)! \binom{n+j}{n+p}. \]

This is the claim because we have the coefficient on the falling factorial in \( x \) and we may conclude.

This problem has not appeared at math.stackexchange.com. It is from page 2 eqn. 1.16 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.58 Stirling number and double binomial coefficient

We seek to show that

\[
\sum_{k=0}^{n} (-1)^k \binom{x}{k} k^r = \sum_{k=0}^{r} (-1)^k \binom{n}{k} \binom{n-x}{n-k} k! \binom{r}{k}.
\]

We will prove this for \( x \) a positive integer, it then follows for all \( x \) including complex because LHS and RHS are polynomials in \( x \). (Use e.g. \( \binom{x}{k} = \frac{x^k}{k!} \).) Starting with the RHS we find

\[
= r! \sum_{k=0}^{r} (-1)^k [z^k] (1 + z)^x \sum_{k=0}^{r} (-1)^k w^k (\exp(v) - 1)^k [z^k] (1 + z)^x
\]

Now with \( \exp(v) - 1 = v + \cdots \) we may raise the upper limit of the sum to infinity because the additional values do not pass the coefficient extractor in \( v \):

\[
= r! \sum_{k=0}^{r} (-1)^k w^k (\exp(v) - 1)^k [z^k] (1 + z)^x
\]

The coefficient extractor in \( w \) is \( [w^n-k](1+w)^{n-k} \) which is one when \( n \geq k \) and zero otherwise (residue definition). Hence if \( x > n \) we may lower the upper limit of the sum to \( n \) because the range \( x > k > n \) does not contribute. On the other hand when \( x < n \) we may raise the limit to \( n \) because we get zero from \( \binom{x}{k} \) for the range \( x < k \leq n \). This leaves

\[
r! \sum_{k=0}^{n} \binom{x}{k} (-1)^k \exp(kv) = \sum_{k=0}^{n} (-1)^k \binom{x}{k} k^r
\]

as claimed.

This problem has not appeared at math.stackexchange.com. It is from page 1 eqn. 1.6 of H.W. Gould’s *Combinatorial Identities* [Gou72].
We seek to show that
\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} k^{n+j} = (-1)^n (n+j)! \sum_{k=0}^{j} \binom{j-n}{j-k} \binom{n}{k} \frac{k!}{(k+j)!} \left\{ \begin{array}{c} k+j \\ k \end{array} \right\}.
\]

Start with the LHS to get
\[
(n+j)! [z^{n+j}] \sum_{k=0}^{n} (-1)^k \binom{n}{k} \exp(kz) = (n+j)! [z^{n+j}] (1 - \exp(z))^{n+j} = (-1)^n (n+j)! \left\{ \begin{array}{c} n+j \\ n \end{array} \right\}.
\]

**Proof for \( j = 0 \)**

This follows by substituting \( j = 0 \) into LHS and RHS and observing that they produce the same value.

**Proof for \( n > j \) with \( n, j \geq 1 \)**

Re-write the sum without the scalar in front as
\[
\sum_{k=0}^{j} (-1)^{j-k} \binom{n-k-1}{j-k} \binom{n}{k} \frac{k!}{(k+j)!} \left\{ \begin{array}{c} k+j \\ k \end{array} \right\}.
\]

Recall the following result from [GKP89] that we used in section 76.38:
\[
\left\{ \begin{array}{c} n \\ m \end{array} \right\} = (-1)^{n-m} \binom{n-1}{m-1} [z^{n-m}] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-n}.
\]

We apply this to the RHS. Because we assumed \( j \geq 1 \) we have that \( \left\{ \begin{array}{c} k+j \\ k \end{array} \right\} = 0 \) when \( k = 0 \) and we may start the sum at \( k = 1 \). We obtain
\[
[w^j] (1+w)^{n-1} \sum_{k=1}^{j} \binom{n}{k} (-1)^{j-k} \frac{w^k}{(1+w)^k} \times \frac{k!}{(k+j)!} (-1)^{j} \frac{(k+j-1)!}{(k-1)!} [z^j] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-k-j} = n[w^j] (1+w)^{n-1} \sum_{k=1}^{j} \frac{n-1}{k-1} (-1)^{k} \frac{w^k}{(1+w)^k} \times \frac{1}{k+j} [z^j] \left( \frac{1}{z} \log \frac{1}{1-z} \right)^{-k-j}.
\]
We may raise $k$ to $n$ due to the coefficient extractor in $w$:

\[-n \times \text{res}_v \frac{1}{v^{j+2}} \log \frac{1}{1-v} \left[w^{j-1}(1+w)^{n-2}\right]
\times \sum_{k=1}^{n} \binom{n-1}{k-1} (-1)^{k-1} \frac{1}{v^{k-1}} \frac{w^{k-1}}{(1+w)^{k-1}} [z^j] \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-k-j}
\]

\[= -n \times \text{res}_v \frac{1}{v^{j+2}} \log \frac{1}{1-v} [w^{j-1}(1+w)^{n-2}[z^j] \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-j-1}
\times \left(1 - \frac{1}{v} \frac{w}{1+w} \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-1}\right)^{n-1}
\]

\[= -n \times \text{res}_v \frac{1}{v^{j+2}} \log \frac{1}{1-v} [w^{j-1}] \frac{1}{1+w} [z^j] \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-j-1}
\times \left(1 + w \left(1 - \frac{1}{v} \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-1}\right)\right)^{n-1}.
\]

Re-expand the powered term in $n-1$ being extracted by $[w^{j-1}]$:

\[-n \times \text{res}_v \frac{1}{v^{j+2}} \log \frac{1}{1-v} [z^j] \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-j-1}
\times \sum_{q=0}^{j-1} (-1)^{j-1-q} \binom{n-1}{q} \left(1 - \frac{1}{v} \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-1}\right)^q
\]

\[= -n \times \text{res}_v \frac{1}{v^{j+2}} \log \frac{1}{1-v} [z^j] \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-j-1}
\times \sum_{q=0}^{j-1} (-1)^{j-1-q} \binom{n-1}{q} \sum_{p=0}^{q} \binom{q}{p} (-1)^p \frac{1}{v^p} \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{-p}
\]

\[= -n \sum_{q=0}^{j-1} (-1)^{j-1-q} \binom{n-1}{q}
\times \sum_{p=0}^{q} \binom{q}{p} (-1)^p \frac{1}{j+p+1} \binom{j+p+1}{p+1} (-1)^j \frac{p!}{(j+p)!}
\]

\[= n \sum_{q=0}^{j-1} (-1)^q \binom{n-1}{q}
\times \sum_{p=0}^{q} \binom{q}{p} (-1)^p \frac{1}{p+1} \frac{(p+1)!}{(j+p+1)!} \binom{j+p+1}{p+1}.
\]
There follows some simple binomial coefficient manipulation:

\[\begin{align*}
& n \sum_{q=0}^{j-1} (-1)^q \binom{n-1}{q} \frac{1}{q+1} \\
\times & \sum_{p=0}^{q} \binom{q+1}{p+1} (-1)^p \frac{(p+1)!}{(j+p+1)! (p+1)} \\
= & \sum_{q=0}^{j-1} (-1)^q \binom{n}{q+1} \\
\times & \sum_{p=0}^{q} \binom{q+1}{p+1} (-1)^p \frac{(p+1)!}{(j+p+1)! (p+1)}.
\end{align*}\]

Continue with the standard Stirling number EGF:

\[\begin{align*}
\res_z \frac{1}{z^{j+1}} & \sum_{q=0}^{j-1} (-1)^{q+1} \binom{n}{q+1} \\
\times & \sum_{p=0}^{q} \binom{q+1}{p+1} (-1)^{p+1} \frac{1}{z^{p+1}} (\exp(z) - 1)^{p+1}.
\end{align*}\]

With \(j \geq 1\) we may include \(p = -1\) as it makes no contribution and obtain

\[\begin{align*}
\res_z & \frac{1}{z^{j+1}} \sum_{q=0}^{j-1} (-1)^{q+1} \binom{n}{q+1} (1 + (-1) \times (\exp(z) - 1)/z)^{q+1} \\
= & [z^j] \sum_{q=0}^{j-1} (-1)^{q+1} \binom{n}{q+1} \frac{1}{z^{q+1}} (1 + z - \exp(z))^{q+1}.
\end{align*}\]

Now we may extend \(q\) to \(n-1\) because \((1+z-\exp(z))^{q+1}/z^{q+1} = (-1)^{q+1}/2^{q+1} \times z^{q+1} + \cdots\) and hence when \(q+1 > j\) or \(q > j-1\) there is no contribution to the coefficient extractor in \(z\). We may also include \(q = -1\) because \(j \geq 1\) and the sum term is zero in this case:

\[\begin{align*}
[z^j] & \sum_{q=-1}^{n-1} (-1)^{q+1} \binom{n}{q+1} \frac{1}{z^{q+1}} (1 + z - \exp(z))^{q+1} \\
= & [z^j](1 + (-1) \times (1 + z - \exp(z))/z)^n = [z^j] \frac{1}{z^n} (-1 + \exp(z))^n.
\end{align*}\]

It remains to restore the scalar in front:

\[\begin{align*}
(-1)^n (n+j)! [z^{n+j}] (\exp(z) - 1)^n = (-1)^n n! \binom{n+j}{n}
\end{align*}\]

as claimed.
Proof for $n \leq j$ with $n, j \geq 1$

We start with the RHS and obtain for the sum without the scalar

$$[z^j](1 + z)^{j-n} \sum_{k=0}^{j} \binom{n}{k} z^k [w^{k+j}](\exp(w) - 1)^k$$

$$= [z^j](1 + z)^{j-n}[w^j] \sum_{k=0}^{j} \binom{n}{k} z^k \frac{(\exp(w) - 1)^k}{w^k}$$

Now when $k > j$ there is no contribution to the coefficient extractor in $z$ and we may write

$$[z^j](1 + z)^{j-n}[w^j] \sum_{k=0}^{j} \binom{n}{k} z^k \frac{(\exp(w) - 1)^k}{w^k}$$

$$= [z^j](1 + z)^{j-n}[w^j] \left(1 + z \frac{(\exp(w) - 1)}{w}\right)^n$$

$$= [z^j](1 + z)^{j-n}[w^{n+j}](w - z + z \exp(w))^n.$$

Expanding the powered term

$$[z^j](1 + z)^{j-n}[w^{n+j}] \sum_{k=0}^{n} \binom{n}{k} z^k \exp(kw) \sum_{p=0}^{n-k} \binom{n-k}{p} w^p (-1)^{n-k-p} z^{n-k-p}$$

$$= [z^j](1 + z)^{j-n} \sum_{k=0}^{n} \binom{n}{k} \sum_{p=0}^{n-k} \binom{n-k}{p} \frac{k^{n+j-p}}{(n+j-p)!} (-1)^{n-k-p} z^{n-k-p}.$$

The coefficient extractor in $z$ is $[z^{j-n+p}](1 + z)^{j-n}$. Now when $j - n \geq 0$ or $j \geq n$ the only contribution originates with $p = 0$ and we obtain

$$\sum_{k=0}^{n} \binom{n}{k} \frac{k^{n+j}}{(n+j)!} (-1)^{n-k}.$$

Multiply by the scalar from the start to get

$$\sum_{k=0}^{n} \binom{n}{k} k^{n+j} (-1)^k$$

which is the claim.

This problem has not appeared at math.stackexchange.com. It is from page 3 eqn. 1.17 of H.W.Gould’s *Combinatorial Identities* [Gou72].

321
76.60 Stirling number and Bernoulli polynomials

We seek to show that

\[ \sum_{k=0}^{n} (-1)^k \binom{n + x}{n - k} \frac{1}{k + 1} = \frac{1}{n!} \sum_{k=0}^{n} \binom{n + 1}{k + 1} B_k(x) \]

where \( B_k(x) \) is a Bernoulli polynomial. The EGF of these polynomials is

\[ \frac{t \exp(xt)}{\exp(t) - 1} \]

so we get for the RHS

\[ \frac{1}{n!} \sum_{k=0}^{n} (n + 1)! [z^{n+1}] \frac{1}{(k + 1)!} \left( \log \frac{1}{1 - z} \right)^{k+1} k! [t^k] \frac{t \exp(xt)}{\exp(t) - 1} \]

\[ = \frac{1}{n!} \sum_{k=0}^{n} n! [z^n] \frac{1}{k!} \frac{1}{1 - z} \left( \log \frac{1}{1 - z} \right)^{k} k! [t^k] \frac{t \exp(xt)}{\exp(t) - 1}. \]

Now because \( \log \frac{1}{1 - z} = z + \cdots \) there is no contribution to the coefficient extractor in \([z^n]\) when \( k > n \) and we may extend \( k \) to infinity, obtaining (there is no pole at \( t = 0 \))

\[ [z^n] \frac{1}{1 - z} \sum_{k \geq 0} \left( \log \frac{1}{1 - z} \right)^{k} [t^k] \frac{t \exp(xt)}{\exp(t) - 1} \]

\[ [z^n] \frac{1}{1 - z} \frac{1}{(1 - z)^x} = [z^{n+1}] \frac{1}{(1 - z)^x} \log \frac{1}{1 - z}. \]

This is

\[ \text{res}_{z} \frac{1}{z^{n+2}} (1 - z)^{n+2} \frac{1}{(1 - z)^{x+n+2}} \log \frac{1}{1 - z}. \]

Now put \( z/(1 - z) = w \) so that \( z = w/(1 + w) \) and \( dz = 1/(1 + w)^2 \ dw \) which yields

\[ \text{res}_{w} \frac{1}{w^{n+2}} (1 + w)^{x+n+2} \log(1 + w) \frac{1}{(1 + w)^2} \]

\[ = -\text{res}_{w} \frac{1}{w^{n+2}} (1 + w)^{x+n} \log \frac{1}{1 + w}. \]

Extract the coefficient to get

\[ -\sum_{k=0}^{n} \frac{(-1)^{k+1}}{k + 1} \binom{x + n}{n + 1 - (k + 1)} = \sum_{k=0}^{n} (-1)^k \frac{1}{k + 1} \binom{n + x}{n - k}. \]

This is the claim.

This problem has not appeared at math.stackexchange.com. It is from page 13 eqn. 1.102 of H.W.Gould’s *Combinatorial Identities*. [Gou72]
We seek to show that
\[
\sum_{k=0}^{n} \binom{2k}{k} \frac{k^r}{2^{2k}} = 2^{n+1} \frac{1}{2^n} \binom{n}{k} \frac{1}{2k+1} k^r \binom{r}{k}.
\]

**First part**

We get for the sum on the RHS without the scalar in front using the combinatorial EGF of the Stirling numbers of the second kind:
\[
r! \left[ z^r \right] \sum_{k=0}^{n} \binom{n}{k} \frac{1}{2k+1} (\exp(z) - 1)^k.
\]

Now we may extend \(k\) to infinity because with \((\exp(z) - 1)^k = z^k + \cdots\) the coefficient extractor cancels contributions from \(k > r\):
\[
r! \left[ z^r \right] \sum_{k \geq 0} \binom{n}{k} \frac{1}{2k+1} (\exp(z) - 1)^k.
\]

With \(n\) non-negative we may now set the upper limit to \(n\) because the binomial coefficient is zero when \(k > n\) (we also reverse the index on the sum):
\[
r! \left[ z^r \right] \sum_{k=0}^{n} \binom{n}{k} \frac{1}{2n-2k+1} (\exp(z) - 1)^{n-k}
\]
\[
= r! \left[ z^r \right] \left[ \exp(z) - 1 \right]^{n} \left[ w^{2n+1} \right] \log \frac{1}{1 - w} \sum_{k=0}^{n} \binom{n}{k} w^{2k} (\exp(z) - 1)^{n-k}
\]
\[
= r! \left[ z^r \right] \left[ \exp(z) - 1 \right]^{n} \left[ w^{2n+1} \right] \log \frac{1}{1 - w} \left( 1 + \frac{w^2}{\exp(z) - 1} \right)^n
\]
\[
= r! \left[ z^r \right] \left[ w^{2n+1} \right] \log \frac{1}{1 - w} (\exp(z) - 1 + w^2)^n.
\]

Expanding the powered term we find
\[
r! \left[ z^r \right] \left[ w^{2n+1} \right] \log \frac{1}{1 - w} \sum_{k=0}^{n} \binom{n}{k} \exp(kz)(w^2 - 1)^{n-k}
\]
\[
= \left[ w^{2n+1} \right] \log \frac{1}{1 - w} \sum_{k=0}^{n} \binom{n}{k} k^r (w^2 - 1)^{n-k}
\]
\[
= \sum_{q=0}^{n} \left[ w^{2q+1} \right] \log \frac{1}{1 - w} \sum_{k=0}^{n} \binom{n}{k} k^r [w^{2n-2q}](w^2 - 1)^{n-k}
\]
\begin{align*}
&= \sum_{q=0}^{n} \frac{1}{2q+1} \sum_{k=0}^{n} \binom{n}{k} k^r [w^{n-q}(w-1)^{n-k} \\
&= \sum_{q=0}^{n} \frac{1}{2q+1} \sum_{k=0}^{n} \binom{n}{k} k^r \binom{n-k}{n-q} (-1)^{q-k}.
\end{align*}

Switching sums we find
\begin{align*}
\sum_{k=0}^{n} \binom{n}{k} k^r \sum_{q=0}^{n} \frac{1}{2q+1} \binom{n-k}{n-q} (-1)^{q-k}.
\end{align*}

We have the claim if we can show that
\begin{align*}
\frac{1}{22k} \binom{2k}{k} = \frac{2n+1}{2n} \binom{n}{n} \frac{1}{2q+1} \binom{n-k}{n-q} (-1)^{q-k}.
\end{align*}

**Second part**

Working with the inner sum we obtain
\begin{align*}
(-1)^{n-k} \sum_{q=0}^{n} \frac{1}{2n-2q+1} \binom{n-k}{n-q} (-1)^q.
\end{align*}

Now with \( n \geq k \geq 0 \) the binomial coefficient is zero when \( q > n - k \) so we may discard the upper range to obtain
\begin{align*}
(-1)^{n-k} \sum_{q=0}^{n-k} \frac{1}{2n-2q+1} \binom{n-k}{n-q} (-1)^q.
\end{align*}

Next introduce
\begin{align*}
f(z) = \frac{(n-k)!}{2n+1-2z} \prod_{r=0}^{n-k} \frac{1}{z-r}
\end{align*}

This has the property that with \( 0 \leq q \leq n-k \)
\begin{align*}
\text{Res}_{z=q} f(z) = \frac{(n-k)!}{2n+1-2q} \prod_{r=0}^{q-1} \frac{1}{q-r} \prod_{r=q+1}^{n-k} \frac{1}{q-r}
\end{align*}

\begin{align*}
= \frac{(n-k)!}{2n+1-2q} \frac{1}{q!} \frac{(-1)^{n-k-q}}{(n-k-q)!} = (-1)^{n-k} \frac{1}{2n+1-2q} \binom{n-k}{q} (-1)^q.
\end{align*}

With the residue at infinity of \( f(z) \) being zero by inspection and residues adding up to zero we get for the sum that it is
\begin{align*}
-\text{Res}_{z=(2n+1)/2} f(z) = \frac{1}{2} (n-k)! \times \text{Res}_{z=(2n+1)/2} \frac{1}{z-(2n+1)/2} \prod_{r=0}^{n-k} \frac{1}{z-r}
\end{align*}

324
\[
= \frac{1}{2} (n-k)! \prod_{r=0}^{n-k} \frac{1}{(2n+1)/2 - r} = 2^{n-k} (n-k)! \prod_{r=0}^{n-k} \frac{1}{2n+1 - 2r}.
\]

When \( k = 0 \) the product works out to
\[
\frac{n! \times 2^n}{(2n+1)!}.
\]

When \( k \geq 1 \) we find
\[
\prod_{r=0}^{n} \frac{1}{2n+1 - 2r} \prod_{r=0}^{n-k+1} (2n+1 - 2r)
\]
\[
= \frac{n! \times 2^n}{(2n+1)!} \prod_{r=0}^{k-1} (2k - 1 - 2r) = \frac{n! \times 2^n}{(2n+1)!} (2k - 1)! (k-1)! \times 2^{k-1}
\]
\[
= \frac{n! \times 2^n}{(2n+1)!} (2k)! \times 2^k.
\]

We observe that this formula correctly represents the case \( k = 0 \). To put it all together restore the two factors in front to obtain
\[
\frac{2n+1}{2^n} \binom{2n}{n} \binom{n}{k} 2^{n-k}(n-k)! \frac{n! \times 2^n}{(2n+1)!} (2k)! \frac{n! (2k)!}{(2n)!} k! \times 2^k
\]
\[
= \frac{1}{2^k} \binom{2k}{k}.
\]

This concludes the argument.

This problem has not appeared at math.stackexchange.com. It is from page 14 eqn. 1.108 of H.W. Gould’s Combinatorial Identities [Gou72].

76.62 Single variable monomial and two binomial coefficients

We seek to show that with \( m \geq n \)
\[
x^n = (-1)^{m+n} \sum_{k=0}^{m+1} \binom{x+k-1}{m} \sum_{p=0}^{k} (-1)^p \binom{m+1}{p} (k-p)^n.
\]

We will prove this for \( x \) a positive integer. It then holds for arbitrary \( x \) since both LHS and RHS are polynomials in \( x \).
First part

We get for the inner sum

$$\sum_{p=0}^{k} (-1)^{k-p} \binom{m+1}{k-p} p^n = n! [w^n][z^k](1 + z)^{m+1} \sum_{p=0}^{k} (-1)^{k-p} z^p \exp(pw).$$

Here the coefficient extractor in \( z \) enforces the upper limit of the sum and we may raise \( p \) to infinity to get

$$n! [w^n][z^k](1 + z)^{m+1} \frac{1}{1 + z \exp(w)} = n! [w^n][z^k](1 - z)^{m+1} \frac{1}{1 - z \exp(w)}.$$

We get from the outer sum (reverse index)

$$(-1)^{n+m} n! [w^n][z^{m+1}](1 - z)^{m+1} \frac{1}{1 - z \exp(w)} \sum_{k=0}^{m+1} \binom{x + m - k}{m} z^k.$$

Applying the coefficient extractor to limit the sum we find

$$(-1)^{n+m} n! [w^n][z^{m+1}](1 - z)^{m+1} \frac{1}{1 - z \exp(w)} \frac{1}{1 - z/(1 + v)}.$$

The contribution from \( z \) is

$$\text{res}_z \frac{1}{z^{m+2} (1 - z)^{m+1}} \frac{1}{1 - z \exp(w)} \frac{1}{1 - z/(1 + v)}.$$

Now put \( z/(1 - z) = u \) so that \( z = u/(1 + u) \) and \( dz = 1/(1 + u)^2 \) \( du \) to get

$$\text{res}_u \frac{1}{u^{m+1}} \frac{1 + u}{1 - u \exp(w)} \frac{1}{1 - u/(1 + v)/(1 + u)} \frac{1}{(1 + u)^2} = \text{res}_u \frac{1}{u^{m+2}} (1 + u) \frac{1}{1 + u - u \exp(w)} \frac{1}{1 + u - u/(1 + v)} \frac{1}{1 + v} = \text{res}_u \frac{1}{u^{m+2}} (1 + u) \frac{1}{1 - u \exp(w - 1)} \frac{1 + v}{1 + v(1 + u)}.$$

Extract the coefficient on \([w^n]\) to get

$$\text{res}_u \frac{1}{u^{m+2}} (1 + u) \frac{1 + v}{1 + v(1 + u)} \sum_{q=0}^{n} u^q q! \binom{n}{q}.$$
Next do the coefficient on $v$ to find

$$\text{res}_u \frac{1}{u^{m+2}} (1 + u) \sum_{p=0}^{m} \binom{x+m+1}{p} (-1)^{m-p}(1 + u)^{m-p} \sum_{q=0}^{n} u^q q! \binom{n}{q}.$$  

Resolve the residue in $u$ and obtain

$$(-1)^n \sum_{p=0}^{m} \binom{x+m+1}{p} (-1)^p \sum_{q=0}^{n} q! \binom{n}{q} \frac{1}{m+1-q}.$$  

Second part

The binomial coefficient in $q$ is fine because $m \geq n$ and $q \leq n$ so that $q \leq m$. Switch sums to get

$$(-1)^n \sum_{q=0}^{n} q! \binom{n}{q} \sum_{p=0}^{m} \binom{x+m+1}{p} (-1)^p \frac{1}{m+1-q}.$$  

We have for the inner sum where we take $q \geq 1$:

$$\sum_{p=0}^{m} \binom{x+m+1}{p} (-1)^{m-p} \frac{1}{m+1-q} = \left[ z^m \right] (1 + z)^{x+m+1} [w^{m+1-q}] (1 + w)^{m+1-q}.$$  

The coefficient extractor in $z$ once more enforces the upper limit of the sum and we may extend to infinity:

$$(-1)^m [z^m] (1 + z)^{x+m+1} [w^{m+1-q}] (1 + w)^{m+1-q}.\frac{1}{1 + z + zw}$$

$$= (-1)^m [z^m] (1 + z)^{x+m} \left[ (-1)^{m+1-q} \frac{z^{m+1-q}}{(1 + z)^{m+1-q}} + (-1)^{m-q} \frac{z^{m-q}}{(1 + z)^{m-q}} \right]$$

$$= (-1)^{q-1} \binom{x+q-1}{q-1} + (-1)^q \binom{x+q}{q} = (-1)^{q-1} \binom{x+q-1}{q-1} \left[ 1 - \frac{x+q}{q} \right]$$

$$= (-1)^q \frac{x+q-1}{q-1} \frac{x}{q} = (-1)^q \binom{x+q-1}{q}.$$  

Note that when $q = 0$ only $p = 0$ contributes for a contribution of one, so this is covered by the previous formula as well.

To conclude the argument substitute this into the remaining outer sum to find
Here the coefficient extractor enforces the range one last time because \( \exp(w) - 1 = w + \cdots \) and we have

\[
(1 - 1)^m = \sum_{q=0}^n (\exp(w) - 1)^q (1 - 1)^q = \sum_{q=0}^n (\exp(w) - 1)^q \frac{1}{q!} \frac{x}{q}.
\]

which is the claim. QED.

This problem has not appeared at math.stackexchange.com. It is from page 16 eqn. 1.128 of H.W. Gould’s *Combinatorial Identities [Gou72].

### 76.63 Use of an Iverson bracket

We seek to show that

\[
\sum_{k=0}^n \binom{2k+1}{j} = \frac{(-1)^{j+1}}{2^{j+2}} \left\{ \sum_{k=0}^{j+1} (-1)^k \binom{2n+3}{k} 2^k + 1 \right\}.
\]

We get for the LHS using an Iverson bracket

\[
\sum_{k \geq 0} \binom{2k+1}{j} [z^n] \frac{z^k}{1-z} = \left[ z^j \right] (1 + w) [z^n] \frac{1}{1-z} \sum_{k \geq 0} (1 + w)^{2k} z^k
\]

\[
= \left[ z^j \right] (1 + w) [z^n] \frac{1}{1-z} \frac{1}{1-z(1+w)^2}
\]

\[
= \left[ z^j \right] \frac{1}{1+w} [z^n] \frac{1}{z-1} \frac{1}{z-1/(1+w)^2}.
\]

The contribution from \( z \) is

\[
\text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{z-1} \frac{1}{z-1/(1+w)^2}.
\]

Residues sum to zero and the residue at infinity is zero by inspection. Hence we may use minus the residues at \( z = 1 \) and \( z = 1/(1+w)^2 \). We get from the first one

\[
\left[ z^j \right] \frac{1}{1+w} \frac{1}{1 - 1/(1+w)^2} = \left[ z^j \right] (1 + w) \frac{1}{w(w+2)}
\]

\[
= \left[ z^j+1 \right] (1 + w) \frac{1}{2} \frac{1}{1 + w/2} = \frac{1}{2} \left( (1)^{j+1} \frac{1}{2^{j+1}} + (1)^j \frac{1}{2^j} \right)
\]

328
\[
= \frac{(-1)^{j+1}}{2j+2} \cdot [-1 + 2] = \frac{(-1)^{j+1}}{2j+2}.
\]

This looks good, we have recovered one of the target terms from the RHS.

The next residue is \(1/(1 + w)^2\):

\[
- [w^j] \frac{1}{1 + w} \frac{1}{(1 + w)^2} \frac{1}{1 + (1 + w)^2} = [w^j] (1 + w)^{2n+3} \frac{1}{w(w + 2)}
\]

\[
= \frac{1}{2} [w^{j+1}] (1 + w)^{2n+3} \frac{1}{1 + w/2} = \frac{1}{2} \sum_{k=0}^{j+1} \binom{2n+3}{k} \frac{(-1)^{j+1-k}}{2^{j+1-k}}
\]

\[
= \frac{(-1)^{j+1} \binom{2n+3}{j}}{2^{j+2}} \sum_{k=0}^{j+1} (-1)^{k} 2^{j}.
\]

This is the second target term and we may conclude.

This problem has not appeared at math.stackexchange.com. It is from page 17 eqn. 1.129 of H.W.Gould’s *Combinatorial Identities* [Gou72].

### 76.64 Use of an Iverson bracket II

We seek to show that

\[
\sum_{k=0}^{n} (-1)^k \binom{j+k}{j} = \frac{(-1)^j}{2^{j+1}} \left\{ (-1)^n \sum_{k=0}^{j} (-1)^k \binom{n+j+1}{k} 2^k + (-1)^j \right\}.
\]

We get for the LHS using an Iverson bracket

\[
\sum_{k \geq 0} (-1)^k \binom{j+k}{j}[z^n] \frac{z^k}{1-z}
\]

\[
= [w^j](1 + w)^j [z^n] \frac{1}{1 - z} \sum_{k \geq 0} (-1)^k z^k (1 + w)^k.
\]

\[
= [w^j](1 + w)^j [z^n] \frac{1}{1 - z} \frac{1}{1 + z(1 + w)}
\]

\[
= -[w^j](1 + w)^{j-1} [z^n] \frac{1}{z - 1/z + 1/(1 + w)}.
\]

The contribution from \(z\)

\[
\text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{z - 1/z + 1/(1 + w)}.
\]

Residues sum to zero and the residue at infinity is zero by inspection. Hence we may use minus the residues at \(z = 1\) and \(z = -1/(1 + w)\). We get from the first one

329
\[ [w^j](1 + w)^j - 1 \frac{1}{1 + 1/(w + 1)} = [w^j](1 + w)^j \frac{1}{2} \frac{1}{1 + w/2} \]

\[ = \frac{1}{2} \sum_{k=0}^{j} \binom{j}{k} (-1)^{j-k} \frac{1}{2^{j-k}} = \frac{1}{2} (1 - 1/2)^j = \frac{(-1)^{2j}}{2^{j+1}}. \]

Nice, we have recovered one of the terms. Continuing with minus the residue at \( z = -1/(1 + w) \) we get

\[ [w^j](1 + w)^{j-1} (-1)^{n+1} (1 + w)^{n+1} \frac{1}{-1/(w + 1) - 1} \]

\[ = [w^j](1 + w)^{n+j+1} (-1)^n \frac{1}{2} \frac{1}{1 + w/2} \]

\[ = \frac{1}{2} (-1)^n \sum_{k=0}^{j} \binom{n+j+1}{k} (-1)^{j-k} \frac{1}{2^{j-k}} \]

\[ = \frac{(-1)^j}{2^{j+1}} (-1)^n \sum_{k=0}^{j} (-1)^k \binom{n+j+1}{k} 2^k. \]

We have recovered the second term and may conclude.

This problem has not appeared at math.stackexchange.com. It is from page 17 eqn. 1.130 of H.W. Gould’s *Combinatorial Identities* [Gou72].

**76.65 Use of an Iverson bracket III**

We seek to show that

\[ S_n(x) = \sum_{k=0}^{n} \binom{x}{n-k} \binom{x}{n+k} = \frac{1}{2} \left\{ \binom{2x}{2n} + \binom{x}{n}^2 \right\}. \]

We will prove this for \( x \) a non-negative integer and it then holds for all \( x \) because both sides are polynomials in \( x \). It also holds by inspection when \( n = 0 \) and we may assume that \( n \geq 1 \). We have

\[ \sum_{k=0}^{n} \binom{x}{k} \binom{x}{2n-k} = \binom{x}{n}^2 + [w^{2n}](1 + w)^x \sum_{k=0}^{n-1} \binom{x}{k} w^k \]

\[ = \binom{x}{n}^2 + [w^{2n}](1 + w)^x \sum_{k \geq 0} \binom{x}{k} w^k [z^{n-1}] \frac{x^k}{1 - z}. \]

We momentarily omit the term in front:

\[ [w^{2n}](1 + w)^x [z^{n-1}] \frac{1}{1 - z} \sum_{k \geq 0} \binom{x}{k} w^k z^k \]

330
\[ = (w^{2n})(1 + w)^x \left[ \sum_{n=1}^{x-1} \frac{1}{1 - z} \right] (1 + wz)^x. \]

Examination of this last expression with respect to \( w \) reveals a value of zero when \( 2x < 2n \) or \( x < n \), which agrees with the proposed closed form. Henceforth we shall assume that \( x \geq n \). The contribution from \( z \) is

\[ \text{Res}_{z=0} \frac{1}{z^n} \frac{1}{1 - z} (1 + wz)^x. \]

Residues sum to zero and thus this term contributes through minus the residue at \( z = 1 \) and \( z = \infty \). We get for the first one

\[ [w^{2n}](1 + w)^x (1 + wz)^x = \binom{2x}{2n}. \]

The negative of the residue at infinity is

\[ \text{Res}_{z=0} \frac{1}{z^{x-n+1}} \frac{1}{1 - z} (w + z)^x. \]

Expanding the powered term and substituting yields

\[-[w^{2n}](1 + w)^x \sum_{k=0}^{x-n} \binom{x}{k} w^{x-k} = -\sum_{k=0}^{x-n} \binom{x}{k} \left( \frac{x}{2n - x + k} \right).\]

Put \( k = x - q \) to get

\[-\sum_{q=n}^{x-n} \binom{x}{x-q} \left( \frac{x}{2n - q} \right) = -\sum_{q=n}^{x-n} \binom{x}{q} \left( \frac{x}{2n - q} \right) \]

\[= -\sum_{p=0}^{x-n} \binom{x}{n+p} \left( \frac{x}{n-p} \right).\]

Now when \( x - n > n \) we have in the range \( x - n \geq p > n \) that the second binomial coefficient is zero (residue definition) and we may lower the upper limit to \( n \). On the other hand when \( n > x - n \) we have in the added range \( n \geq p > x - n \) the first binomial coefficient is zero and we may raise the upper limit to \( n \), getting at last

\[-\sum_{p=0}^{n} \binom{x}{n+p} \binom{x}{n-p} = -S_n(x).\]

We have shown that

\[ S_n(x) = \binom{x}{n} + \binom{2x}{2n} - S_n(x). \]
Solve for $S_n(x)$ to obtain the claim, which we have now verified for $x$ a non-negative integer and hence for complex $x$ with both sides being polynomials in $x$. QED.

This problem has not appeared at math.stackexchange.com. It is from page 22 eqn. 3.6 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.66 Basic example

We seek to show that

$$S_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{x}{2k} \binom{x}{n-2k} = \frac{1}{2} \binom{2x}{n} + \frac{1}{2} (-1)^{n/2} \binom{x}{n/2} \frac{1 + (-1)^n}{2}. \tag{332}$$

We will prove this for $x$ a non-negative integer and it then holds for all $x$ because both sides are polynomials in $x$. We start with the LHS to get

$$[z^x](1 + z)^x [w^n](1 + w)^x \sum_{k=0}^{\lfloor n/2 \rfloor} z^{2k} w^{2k}. \tag{332}$$

Here the coefficient extractor in $w$ enforces the upper limit of the sum and we have

$$[z^x](1 + z)^x [w^n](1 + w)^x \sum_{k=0}^{\lfloor n/2 \rfloor} z^{2k} w^{2k} = [z^x](1 + z)^x [w^n](1 + w)^x \frac{1}{1 - z^2 w^2}. \tag{332}$$

With

$$\frac{1}{1 - z^2 w^2} = \frac{1}{2} \frac{1}{1 + wz} + \frac{1}{2} \frac{1}{1 - wz} \tag{332}$$

we get two pieces. The first one is

$$\frac{1}{2} [w^{n+1}](1 + w)^x \text{Res}_{z=0} \frac{1}{z^{x+1}} (1 + z)^x \frac{1}{z + 1/w}. \tag{332}$$

Here the residue at infinity in $z$ is zero so we may take minus the residue at $z = -1/w$ to obtain

$$-\frac{1}{2} [w^{n+1}](1 + w)^x (-1)^x w^{x+1} \left(1 - \frac{1}{w}\right)^x \tag{332}$$

$$= \frac{1}{2} [w^n](1 - w^2)^x. \tag{332}$$

We get for $n$ even
\[ \frac{1}{2} [w^{n/2}] (1 - w)^2 = \frac{1}{2} (-1)^{n/2} \binom{x}{n/2}. \]

Continuing with the second piece we find

\[ -\frac{1}{2} [w^{n+1}] (1 + w)^x \text{Res}_{z=0} \frac{1}{z^{x+1}} (1 + z)^x \frac{1}{z - 1/w}. \]

We once more have a residue of zero at infinity and hence we may evaluate at minus the residue at \( z = 1/w \) to get

\[ \frac{1}{2} [w^{n+1}] (1 + w)^x \left( 1 + \frac{1}{w} \right)^x = \frac{1}{2} [w^n] (1 + w)^{2x} = \frac{1}{2} \binom{2x}{n}. \]

Joining the two pieces we have the claim.

This problem has not appeared at math.stackexchange.com. It is from page 22 eqn. 3.8 of H.W.Gould’s *Combinatorial Identities* [Gou72].

### 76.67 Basic example continued

We seek to show that

\[ \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{x}{2k} \binom{2n - x}{n - 2k} = \frac{1}{2} \left\{ \binom{2n}{n} + (-1)^n 2^n \binom{\frac{n-1}{2}}{\frac{n}{2}} \right\}. \]

We will prove this for \( x \) a non-negative integer and it then holds for all \( x \) because both sides are polynomials in \( x \). We start with the LHS to get

\[ [z^x] (1 + z)^x [w^n] (1 + w)^{2n-x} \sum_{k=0}^{\lfloor n/2 \rfloor} z^{2k} w^{2k}. \]

Here the coefficient extractor in \( w \) enforces the upper limit of the sum and we obtain

\[ [z^x] (1 + z)^x [w^n] (1 + w)^{2n-x} \sum_{k=0}^{\infty} z^{2k} w^{2k} = [z^x] (1 + z)^x [w^n] (1 + w)^{2n-x} \frac{1}{1 - z^2 w^2}. \]

With

\[ \frac{1}{1 - z^2 w^2} = \frac{1}{2} \frac{1}{1 + wz} + \frac{1}{2} \frac{1}{1 - wz} \]

we get two pieces. The first one is

\[ \frac{1}{2} [w^{n+1}] (1 + w)^{2n-x} \text{Res}_{z=0} \frac{1}{z^{x+1}} (1 + z)^x \frac{1}{z + 1/w}. \]
Here the residue at infinity in $z$ is zero so we may take minus the residue at $z = -1/w$ to obtain

$$-\frac{1}{2} [w^{n+1}](1 + w)^{2n-x}(-1)^x w^{x+1} (1 - \frac{1}{w})^x$$

$$= \frac{1}{2} [w^n](1 + w)^{2n-x}(1 - w)^x$$

$$= \frac{1}{2} \text{Res}_w \frac{1}{w^{n+1}} (1 + w)^{n+1} (1 + w)^{n-1-x}(1 - w)^x.$$

Now we put $w/(1 + w) = v$ so that $w = v/(1 - v)$ and $dw = 1/(1 - v)^2 \, dv$ and get

$$\frac{1}{2} \text{Res}_v \frac{1}{v^{n+1}} (1 - v)^{n-1-x} \frac{(1 - 2v)^x}{(1 - v)^x} \frac{1}{(1 - v)^2}$$

$$= \frac{1}{2} \text{Res}_v \frac{1}{v^{n+1}} (1 - v)^{n+1} (1 - 2v)^x.$$

Next put $v(1 - v) = u$ so that $v = (1 - \sqrt{1 - 4u})/2$ and $dv = 1/\sqrt{1 - 4u} \, du$. We get

$$\frac{1}{2} \text{Res}_u \frac{1}{u^{n+1}} \sqrt{1 - 4u} \frac{1}{\sqrt{1 - 4u}}$$

$$= \frac{1}{2} \text{Res}_u \frac{1}{u^{n+1}} (1 - 4u)^{(x-1)/2} = \frac{1}{2} (-1)^n 2^n \binom{x-1}{n}.$$

This concludes the computation of the first piece which we recognize from the proposed closed form. Continuing with the second piece we obtain

$$-\frac{1}{2} [w^{n+1}](1 + w)^{2n-x} \text{Res}_{z=0} \frac{1}{z^{n+1}} (1 + z)^x \frac{1}{z - 1/w}.$$

We once more have a residue of zero at infinity and hence we may evaluate at minus the residue at $z = 1/w$ to get

$$\frac{1}{2} [w^{n+1}](1 + w)^{2n-x} w^{x+1} \left(1 + \frac{1}{w}\right)^x = \frac{1}{2} [w^n](1 + w)^{2n} = \frac{1}{2} \binom{2n}{n}.$$

We also recognize this piece as the second one from the closed form. Joining the two pieces we have the claim.

This problem has not appeared at math.stackexchange.com. It is from page 23 eqn. 3.12 of H.W. Gould’s Combinatorial Identities [Gou72].
An identity by Erik Sparre Andersen

We seek to show that with \( n \geq 1 \) and \( 0 \leq r \leq n \)

\[
S_{n,r}(x) = \sum_{k=0}^{r} \binom{x}{k} \left( \frac{-x}{n-k} \right) = \frac{n-r}{n} \binom{x-1}{r} \left( \frac{-x}{n-r} \right).
\]

We will prove this for \( x \) a positive integer and it then holds for all \( x \) because both sides are polynomials in \( x \). We start with the LHS to get using an Iverson bracket

\[
\sum_{k \geq 0} \binom{x}{k} \left( \frac{-x}{n-k} \right) \left[ z^r \right] \frac{z^k}{1-z}
\]

\[
= \left[ z^r \right] \frac{1}{1-z} \frac{w^n}{(1+w)^x} \sum_{k \geq 0} \binom{x}{k} z^k w^k
\]

\[
= \left[ z^r \right] \frac{1}{1-z} \frac{w^n}{(1+w)^x} (1+wz)^x.
\]

The contribution from \( w \) is

\[
\text{Res}_{w=0} \frac{1}{w^{n+1}} \frac{1}{(1+w)^x} (1+wz)^x.
\]

With \( n \geq 1 \) we have that the residue at infinity is zero by inspection and we may evaluate through minus the residue at \( w = -1 \) because residues sum to zero. We write

\[
-(-1)^{n+1} \text{Res}_{w=0} \frac{1}{(1-(w+1))^{n+1}} \frac{1}{(1+w)^x} (1-z + (1+w)z)^x
\]

\[
= (-1)^n (1-z)^x \text{Res}_{w=0} \frac{1}{(1-(w+1))^{n+1}} \frac{1}{(1+w)^x} (1 + (1+w)z/(1-z))^x.
\]

This yields

\[
(-1)^n (1-z)^x \sum_{q=0}^{x-1} \binom{x}{q} \frac{z^q}{(1-z)^q} \left( \frac{x-1-q+n}{n} \right).
\]

Restore \( z \) to find

\[
(-1)^n \sum_{q=0}^{x-1} \binom{x}{q} (-1)^{r-q} \left( \frac{x-1-q}{r-q} \right) \left( \frac{x-1-q+n}{n} \right).
\]

Observe that the second binomial coefficient is zero when \( r > x-1 \) which agrees with the proposed RHS. Thus we may henceforth assume that \( r \leq x-1 \). We may lower the upper limit to \( r \) because the range \( r < q \leq x-1 \) produces

335
zero from that same binomial coefficient by construction from the coefficient extractor in \( z \). We thus have
\[
(-1)^n \sum_{q=0}^{r} \binom{x}{q} (-1)^{r-q} \binom{x-1-q}{r-q} \binom{x-1-q+n}{n}.
\]

Next observe that
\[
\binom{x-1-q}{r-q} \binom{x-1-q+n}{n} = \frac{(x-1-q+n)!}{(r-q)! \times (x-1-r)! \times n!} = \binom{x-1-r+n}{n} \binom{x-1-q+n}{r-q}.
\]

We thus have for our sum
\[
(-1)^n \binom{x-1-r+n}{n} \sum_{q=0}^{r} \binom{x}{q} (-1)^{r-q} \binom{x-1-q+n}{r-q}.
\]

Working with the remaining sum,
\[
[z^r](1+z)^{x-1+n} \sum_{q \geq 0} \binom{x}{q} (-1)^{r-q} \frac{z^q}{(1+z)^q} = (-1)^r [z^r](1+z)^{x-1+n} \left(1 - \frac{z}{1+z}\right)^x = (-1)^r [z^r](1+z)^{n-1} = (-1)^r \binom{n-1}{r}.
\]

We have obtained the preliminary closed form
\[
(-1)^{n+r} \binom{x-1-r+n}{n} \binom{n-1}{r}.
\]

which produces zero when \( n-1 < r \) so we may suppose that \( n-1 \geq r \), a refinement of the initial \( r \leq n \). This is
\[
(-1)^{n+r} \binom{x-1-r+n}{n} \binom{n-r}{r} = \frac{n-r}{n} (-1)^{n+r} (x-1-r+n)^n \frac{1}{r! \times (n-r)!}.
\]

With (this also goes through for \( r = 0 \))
\[
(x-1-r+n)^n = \prod_{p=0}^{n-1} (x-r+p) = \prod_{p=0}^{r-1} (x-r+p) \prod_{p=r}^{n-1} (x-r+p)
\]

336
\[
(x - 1)^r \prod_{p=0}^{n-1-r} (x + p) = (x - 1)^r (-1)^{n+r} \prod_{p=0}^{n-1-r} (-x - p)
\]

\[
= (x - 1)^r (-1)^{n+r} (-x)^{n-r}
\]

we at last have the claim. QED.

**Remark**

Apparently we also have

\[
S_{n,r} = - \sum_{k=r+1}^{n} \binom{x}{k} \binom{-x}{n-k}.
\]

This entails showing

\[
S_{n,n} = \sum_{k=0}^{n} \binom{x}{k} \binom{-x}{n-k} = 0
\]

This is the case of \( r = n \) which was shown to be zero in the previous section.

This problem has not appeared at math.stackexchange.com. It is from page 23 eqn. 3.14 of H.W.Gould’s *Combinatorial Identities* [Gou72].

**76.69 Very basic example**

We seek to show that

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{x}{k} \binom{x-k}{n-2k} 2^{n-2k} = \binom{2x}{n}.
\]

We will prove this for \( x \) a positive integer and it then holds for all \( x \) because both sides are polynomials in \( x \). We start with the LHS to get

\[
[z^n](1 + z)^x \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{x}{k} 2^{n-2k} \frac{z^{2k}}{(1 + z)^k}.
\]

Here the coefficient extractor enforces the upper limit of the sum and we get

\[
[z^n](1 + z)^x \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{x}{k} 2^{n-2k} \frac{z^{2k}}{(1 + z)^k}
\]

\[
= 2^n \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{x}{k} \left( 1 + \frac{z^2}{4(1+z)} \right)^x
\]

\[
= 2^n \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{x}{k} \left( 1 + \frac{z^2}{4(1+z)} \right)^x
\]

\[
= 2^n \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{x}{k} \left( 1 + \frac{z^2}{4(1+z)} \right)^x
\]

This problem has not appeared at math.stackexchange.com. It is from page 24 eqn. 3.22 of H.W.Gould’s *Combinatorial Identities* [Gou72].
We seek to show that
\[ \sum_{k=0}^{n} \binom{x}{k} \binom{y+k}{n-k} 2^{2k} = \sum_{k=0}^{n} \binom{2x}{k} \binom{y}{n-k} 2^k = \sum_{k=0}^{n} \binom{2x}{k} \binom{2x+y-k}{n-k}. \]

We will prove this for \( x, y \) positive integers and it then holds for all \( x \) and \( y \) because both sides are polynomials in \( x \) and \( y \).

We start with the first sum to get
\[ [z^n](1 + z)^y \sum_{k=0}^{n} \binom{x}{k} (1 + z)^k z^{2k}. \]

Here the coefficient extractor enforces the upper limit of the sum and we find
\[ [z^n](1 + z)^y \sum_{k=0}^{n} \binom{x}{k} (1 + z)^k z^{2k} = \sum_{k=0}^{n} \binom{2x}{k} (1 + z)^k z^{2k}. \]

This is the second sum. Observe carefully that the coefficient extractor returns zero when \( n > 2x + y \). We may henceforth assume that \( n \leq 2x + y \). This yields
\[ \text{res}_{z} \frac{1}{z^{n+1}} (1 + z)^y(1 + 2z)^{2x} \]
\[ = \text{res}_{z} \frac{1}{z^{n+1}} (1 + z)^{n+1}(1 + z)^{y-n}(1 + 2z)^{2x}. \]

Next put \( z/(1 + z) = w \) so that \( z = w/(1 - w) \) and \( dz = 1/(1 - w)^2 \) \( dw \) to obtain
\[ \text{res}_{w} \frac{1}{w^{n+1}} \frac{1}{(1 - w)^{y-1-n}} \frac{(1+w)^{2x}}{(1-w)^2} \frac{1}{(1-w)^2} \]
\[ = \text{res}_{w} \frac{1}{w^{n+1}} \frac{1}{(1-w)^{2x+y-1-n}} (1 + w)^{2x}. \]

This is using \( n \leq 2x + y \)
\[ \sum_{k=0}^{n} \binom{2x}{k} \binom{2x+y-n+n-k}{n-k} = \sum_{k=0}^{n} \binom{2x}{k} \binom{2x+y-k}{n-k}. \]
We have found the third sum and may conclude. Note that there is another substitution we can make by writing
\[ \text{res}_{z} \frac{1}{z^{n+1}} (1 + 2z)^{n+1} (1 + z)^{y} (1 + 2z)^{2x-n-1}. \]

We put \( z/(1 + 2z) = w \) so that \( z = w/(1 - 2w) \) and \( dz = 1/(1 - 2w)^2 \) dw to get

\[ \text{res}_{w} \frac{1}{w^{n+1}} \frac{(1 - w)^{y}}{(1 - 2w)^2} \frac{1}{(1 - 2w)^{2x-n-1}} = \text{res}_{w} \frac{1}{w^{n+1}} \frac{1}{(1 - 2w)^{2x+y+1-n}} (1 - w)^{y}. \]

This yields a fourth sum:
\[ \sum_{k=0}^{n} \binom{y}{k} (-1)^{k} 2^{n-k} \binom{2x+y-n+k}{n-k} = \sum_{k=0}^{n} \binom{y}{k} (-1)^{k} 2^{n-k} \binom{2x+y-k}{n-k}. \]

This problem has not appeared at math.stackexchange.com. It is from page 24 eqn. 3.21 of H.W. Gould’s *Combinatorial Identities* [Gou72].

76.71 Sum producing a square root

We seek to show that
\[ \sum_{k=0}^{n} \binom{2x}{2k} \binom{x-k}{n-k} = \frac{x}{x+n} \binom{x+n}{2n} 2^{2n} = \frac{2^{2n}}{(2n)!} \prod_{k=0}^{n-1} (x^2 - k^2). \]

We will prove this for \( x \) a positive integer and it then holds for all \( x \) because both sides are polynomials in \( x \). We need some preliminary observations about the definition of the binomial coefficients that we are using. We have
\[ \binom{x-k}{n-k} = \text{Res}_{z=0} \frac{1}{z^{n-k+1}} (1 + z)^{x-k}. \]

This is zero when \( k > n \) or \( n-k > x-k \) i.e. \( n > x \) and \( x \geq k \). Otherwise we may evaluate through minus the residue at infinity to get
\[ \text{Res}_{z=0} \frac{1}{z^{n-k+1}} (1 + 1/z)^{x-k} = \text{Res}_{z=0} \frac{1}{z^{x-n+1}} (1 + z)^{x-k} = \binom{x-k}{x-n}. \]

This residue vanishes when \( x < n \) or when \( x-n > x-k \) i.e. \( k > n \) and \( x \geq k \). As the closed form is also zero when \( x < n \) we will henceforth assume that \( x \geq n \).
We start with the LHS to get

$$\text{res}_z \frac{1}{z^{x-n+1}} (1+z)^x \sum_{k=0}^{n} \frac{2x}{2k} \frac{1}{(1+z)^k}$$

Here we may raise the upper limit to $x$ because with $x \geq n$ for the range $x \geq k > n$ the residue is zero:

$$\text{res}_z \frac{1}{z^{x-n+1}} (1+z)^x \sum_{k=0}^{x} \frac{2x}{2k} \frac{1}{(1+z)^{2k}}$$

$$= \text{res}_z \frac{1}{z^{x-n+1}} (1+z)^x \sum_{k=0}^{2x} \frac{2x}{k} \frac{1}{\sqrt{1+z}} \frac{1+(-1)^k}{2}$$

$$= \frac{1}{2} \text{res}_z \frac{1}{z^{x-n+1}} (1+z)^x \left[ \left(1 + \frac{1}{\sqrt{1+z}} \right)^{2x} + \left(1 - \frac{1}{\sqrt{1+z}} \right)^{2x} \right].$$

Next we put $1 - 1/\sqrt{1+z} = w$ so that $z = w(2-w)/(1-w)^2$ and $dz = 2/(1-w)^3 dw$ to get

$$\frac{1}{2} \text{res}_w \frac{(1-w)^{2x-2n+2}}{w^{x-n+1}(2-w)^n+x+1} \frac{1}{(1-w)^{2x}} \left[ (2-w)^{2x} + w^{2x} \right] \frac{2}{(1-w)^3}$$

$$= \text{res}_w \frac{1}{w^{x-n+1}(2-w)^n+x+1} \frac{1}{(1-w)^{2n+1}} \left[ (2-w)^{2x} + w^{2x} \right]$$

The term $w^{2x}$ does not contribute and we are left with

$$\text{res}_w \frac{1}{w^{x-n+1}(2-w)^n+x+1} \frac{1}{(1-w)^{2n+1}}.$$

Extracting the coefficient yields (recall that $x \geq n$)

$$\sum_{k=0}^{x-n} \binom{x+n-1}{k} (-1)^k 2^{x+n-1-k} \frac{x+n-k}{2n}$$

$$= 2^{x+n-1} \sum_{k=0}^{x-n} \binom{x+n-1}{k} (-1)^k 2^{-k} \frac{x+n-k}{x-n-k}$$

$$= 2^{x+n-1} (z-x-n)(1+z)^x+n \sum_{k=0}^{x-n} \binom{x+n-1}{k} (-1)^k 2^{-k} \frac{z^k}{(1+z)^k}.$$

The coefficient extractor enforces the upper limit of the sum and we have
\[ 2^{x+n-1} [z^{x-n}](1 + z)^{x+n} \sum_{k \geq 0} \binom{x+n-1}{k} (-1)^k 2^{-k} \frac{z^k}{(1 + z)^k} \]

\[ = 2^{x+n-1} [z^{x-n}](1 + z)^{x+n} \left( 1 - \frac{1}{2} \frac{z}{1 + z} \right) \]

\[ = 2^{x+n-1} [z^{x-n}](1 + z) \]

This gives

\[ 2^{x+n-1} \left( \frac{x+n-1}{x-n} \right) 2^{-(x-n)} + 2^{x+n-1} (x+n-1) \]

\[ = 2^{2n-1} \left( \frac{x+n-1}{2n-1} \right) + 2^n \left( \frac{x+n-1}{2n} \right), \]

We thus have for our answer

\[ 2^{2n-1} \frac{2n}{x+n} \left( \frac{x+n}{2n} \right) + 2^{2n} \frac{x-n}{x+n} \left( \frac{x+n}{2n} \right) = \frac{x}{x+n} \left( \frac{x+n}{2n} \right) 2^{2n} \]

which is the claim. As for the alternate form we get without the multiplier \( 2^{2n}/(2n)! \) in front

\[ \frac{x}{x+n} \prod_{k=0}^{2n-1} (x+n-k) = x \prod_{k=1}^{2n-1} (x+n-k) \]

\[ = x \prod_{k=1}^{n} (x+n-k) \prod_{k=n+1}^{2n-1} (x+n-k) = x \prod_{k=0}^{n-1} (x+k) \prod_{k=1}^{n-1} (x-k). \]

We obtain at last

\[ \frac{2^{2n}}{(2n)!} \prod_{k=0}^{n-1} (x^2 - k^2). \]

This problem has not appeared at math.stackexchange.com. It is from page 25 eqn. 3.26 of H.W.Gould’s *Combinatorial Identities* [Gou72]. For additional information the reader is asked to consult math.stackexchange.com problem [1098257].

76.72 Sum producing a square root II

We seek to show that

\[ \sum_{k=0}^{n} \binom{2x+1}{2k+1} \binom{x-k}{n-k} = \frac{2x+1}{2n+1} \frac{2x+n}{2n} 2^{2n} = \frac{2x+1}{(2n+1)!} \prod_{k=0}^{n-1} ((2x+1)^2 - (2k+1)^2). \]
We will prove this for \( x \) a positive integer and it then holds for all \( x \) because both sides are polynomials in \( x \). The assumptions here are the same as in the previous section.

We start with the LHS to get

\[
\text{res}_{z} \frac{1}{z^{x-n+1}} \sum_{k=0}^{n} \binom{2x+1}{2k+1} \frac{1}{(1+z)^k}
\]

Here we may raise the upper limit to \( x \) because with \( x \geq n \) for the range \( x \geq k > n \) the residue is zero:

\[
\text{res}_{z} \frac{1}{z^{x-n+1}} \sum_{k=0}^{x} \binom{2x+1}{2k+1} \frac{1}{(1+z)^k}
\]

\[
= \text{res}_{z} \frac{1}{z^{x-n+1}} (1+z)^{x+1/2} \sum_{k=0}^{2x+1} \binom{2x+1}{k} \frac{1}{(1+z)^{k+1}} \frac{1 - (-1)^k}{2}
\]

Next we put \( 1 - 1/\sqrt{1+z} = w \) so that \( z = w(2-w)/(1-w)^2 \) and \( dz = 2/(1-w)^3 \) \( dw \) to get

\[
\frac{1}{2} \text{res}_{w} \frac{(1-w)^{2x-2n+2}}{w^{x-n+1}(2-w)x-n+1} \frac{1}{(1-w)^{2x+1}} \left[ (2-w)^{2x+1} - w^{2x+1} \right] \frac{2}{(1-w)^3}
\]

\[
= \text{res}_{w} \frac{1}{w^{x-n+1}(2-w)x-n+1} \frac{1}{(1-w)^{2n+2}} \left[ (2-w)^{2x+1} - w^{2x+1} \right]
\]

The term \( w^{2x+1} \) does not contribute and we are left with

\[
\text{res}_{w} \frac{1}{w^{x-n+1}(2-w)^{x+n}} \frac{1}{(1-w)^{2n+2}}.
\]

Extracting the coefficient yields (recall that \( x \geq n \))

\[
\sum_{k=0}^{x-n} \binom{x+n}{k} (-1)^k 2^{x+n-k} \binom{x+n+1-k}{2n+1}
\]

\[
= 2^{x+n} \sum_{k=0}^{x-n} \binom{x+n}{k} (-1)^k 2^{-k} \binom{x+n+1-k}{x-n-k}
\]

\[
= 2^{x+n} [z^{x-n}](1+z)^{x+n+1} \sum_{k=0}^{x-n} \binom{x+n}{k} (-1)^k 2^{-k} \frac{z^k}{(1+z)^k}.
\]

342
The coefficient extractor enforces the upper limit of the sum and we have

\[ 2^{x+n}[z^{x-n}](1 + z)^{x+n+1} \sum_{k \geq 0} \binom{x+n}{k} (-1)^k 2^{-k} \frac{z^k}{(1 + z)^k} \]

\[ = 2^{x+n}[z^{x-n}](1 + z)^{x+n+1} \left( 1 - \frac{z}{2(1 + z)} \right)^{x+n} \]

\[ = 2^{x+n}[z^{x-n}](1 + z)(1 + z/2)^{x+n} \]

This gives

\[ 2^{x+n} \binom{x+n}{x-n} 2^{-(x-n)} + 2^{x+n} \binom{x+n}{x-n-1} 2^{-(x-n-1)} \]

\[ = 2^{2n} \binom{x+n}{2n} + 2^{2n+1} \binom{x+n}{2n+1} \]

We thus have for our answer

\[ 2^{2n} \binom{x+n}{2n} + 2^{2n+1} \binom{x+n}{2n+1} = 2^{x+1} \left( \binom{x+n}{2n+1} \right) 2^{2n} \]

which is the claim. As for the alternate form we get without the multiplier \( \frac{2x+1}{(2n+1)!} \) in front

\[ \prod_{k=0}^{n-1} ((2x + 1)^2 - (2k + 1)^2) \]

\[ = \prod_{k=0}^{n-1} (2x + 2k + 2)(2x - 2k) = 2^{2n} \prod_{k=0}^{n-1} (x + k + 1)(x - k) \]

\[ = 2^{2n}(x + n)^n x^n = 2^{2n}(x + n)^{2n}. \]

Restore the multiplier to obtain at last

\[ \frac{2x+1}{(2n+1)!} 2^{2n}(x + n)^{2n} = \frac{2x+1}{2n+1} 2^{2n} \binom{x+n}{2n} \]

as desired.

This problem has not appeared at math.stackexchange.com. It is from page 25 eqn. 3.27 of H.W. Gould’s *Combinatorial Identities* [Gou72].
76.73 Use of an Iverson bracket IV

We seek to show that

\[ S_n(x) = \sum_{k=0}^{n} (-1)^k \binom{x}{n-k} \binom{x}{n+k} = \frac{1}{2} \left\{ \binom{x}{n} + \binom{x}{n}^2 \right\}. \]

We will prove this for \( x \) a non-negative integer and it then holds for all \( x \) because both sides are polynomials in \( x \). It also holds by inspection when \( n = 0 \) and we may assume that \( n \geq 1 \). We have

\[ (-1)^n \sum_{k=0}^{n} (-1)^k \binom{x}{k} \binom{x}{2n-k} = \left( \frac{x^n}{n} \right)^2 + (-1)^n[w^{2n}](1 + w)^x \sum_{k=0}^{n-1} \binom{x}{k} (-1)^k w^k. \]

We momentarily omit the term in front:

\[ (-1)^n[w^{2n}](1 + w)^x \sum_{k=0}^{n-1} \binom{x}{k} (-1)^k w^k z^k = \frac{1}{1 - z} (1 - wz)^x. \]

Examination of this last expression with respect to \( w \) reveals a value of zero when \( 2x < 2n \) or \( x < n \), which agrees with the proposed closed form. Henceforth we shall assume that \( x \geq n \). The contribution from \( z \) is

\[ \text{Res}_{z=0} \frac{1}{z^n} \frac{1}{1 - z} (1 - wz)^x. \]

Residues sum to zero and thus this term contributes through minus the residue at \( z = 1 \) and \( z = \infty \). We get for the first one

\[ (-1)^n[w^{2n}](1 + w)^x (1 - w)^x = (-1)^n[w^{2n}](1 - w^2)^x \]

\[ = (-1)^n[w^{n}](1 - w)^x = \left( \frac{x}{n} \right). \]

The negative of the residue at infinity is

\[ \text{Res}_{z=0} \frac{1}{z^n} \frac{1}{1 - (z-w)^x} = -\text{Res}_{z=0} \frac{1}{z^{x-n+1}} \frac{1}{1 - z} (z - w)^x. \]

Expanding the powered term and substituting yields

\[-(-1)^n[w^{2n}](1 + w)^x \sum_{k=0}^{n} \binom{x}{k} (-1)^{x-k} w^{x-k} \]

344
\[
= -(-1)^{n+x} \sum_{k=0}^{x-n} \binom{x}{k} (-1)^k \binom{x}{2n-x+k}.
\]

The term being summed is zero by construction when \(2n < x - k\) or \(2n - x + k < 0\). Put \(k = x - q\) to get

\[
-(-1)^n \sum_{q=n}^{x} \binom{x}{x-q} (-1)^q \binom{x}{2n-q} = -(-1)^n \sum_{q=n}^{x} \binom{x}{q} (-1)^q \binom{x}{2n-q} = -\sum_{p=0}^{x-n} \binom{x}{n+p} (-1)^p \binom{x}{n-p}.
\]

Now when \(x - n > n\) we have in the range \(x - n \geq p > n\) that the second binomial coefficient is zero (residue definition) and we may lower the upper limit to \(n\). On the other hand when \(n > x - n\) we have in the added range \(n \geq p > x - n\) the first binomial coefficient is zero and we may raise the upper limit to \(n\), getting at last

\[
-\sum_{p=0}^{n} (-1)^p \binom{x}{n+p} \binom{x}{n-p} = -S_n(x).
\]

We have shown that

\[
S_n(x) = \binom{x}{n} + \binom{x}{n} - S_n(x).
\]

Solve for \(S_n(x)\) to obtain the claim, which we have now verified for \(x\) a non-negative integer and hence for complex \(x\) with both sides being polynomials in \(x\). QED.

This problem has not appeared at math.stackexchange.com. It is from page 26 eqn. 3.35 of H.W. Gould’s Combinatorial Identities [Gou72].

### 76.74 Binomial coefficient manipulation

We seek to show that

\[
\sum_{k=0}^{n} (-1)^k \binom{2n}{k} \binom{2x-2n}{x-k} = \frac{1}{2} (-1)^n \left\{ \binom{x}{n} + \binom{x}{n} \right\} \binom{2x}{n} \binom{2x}{2n}^{-1}.
\]

We will prove this for \(n \geq 0\) a non-negative integer and \(x \geq n\) a non-negative integer. With

\[
\binom{2n}{k} \binom{2x}{2n} = \frac{(2x)!}{k! \times (2n-k)! \times (2x-2n)!} = \binom{2x}{k} \binom{2x-k}{2x-2n}
\]

this is equivalent to
\[ \sum_{k=0}^{n} (-1)^k \binom{2x}{k} \left( \frac{2x-k}{2x-2n} \right) \left( \frac{2x-2n}{x-k} \right) = \frac{1}{2} (-1)^n \left\{ \left( \frac{x}{n} \right) + \left( \frac{x}{n} \right)^2 \right\} \left( \frac{2x}{x} \right). \]

We also have (the second binomial coefficient vanishes when \( x+k-2n < 0 \) or \( x < 2n-k \) in accordance with the residue definition and agrees with the factorials otherwise)

\[ \binom{2x-k}{2x-2n} \binom{2x-2n}{x-k} = \frac{(2x-k)!}{(2n-k)! \times (x-k)! \times (x+k-2n)!} = \binom{2x-k}{x-k} \binom{x}{2n-k}, \]

so the LHS becomes

\[ \sum_{k=0}^{n} (-1)^k \binom{2x}{k} \left( \frac{2x-k}{x-k} \right) \left( \frac{x}{2n-k} \right). \]

Next observe that

\[ \binom{2x}{k} \binom{2x-k}{x-k} = \frac{(2x)!}{k! \times x! \times (x-k)!} = \binom{2x}{k} \binom{x}{k} \]

and we may divide by \( \binom{2x}{x} \) to get as the goal

\[ \sum_{k=0}^{n} (-1)^k \binom{2x}{k} \binom{x}{2n-k} = \frac{1}{2} (-1)^n \left\{ \left( \frac{x}{n} \right) + \left( \frac{x}{n} \right)^2 \right\}. \]

This is the identity from the previous section and we are done.

This problem has not appeared at math.stackexchange.com. It is from page 29 eqn. 3.60 of H.W. Gould’s Combinatorial Identities [Gou72].

76.75 Four binomial sums

We seek to show that

\[ \sum_{k=0}^{n} (-1)^k \binom{x}{k} \binom{2n-x}{n-k} = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{x}{k} \binom{2n-2x}{n-2k} \]

\[ = (-1)^n \sum_{k=0}^{n} (-1)^k \binom{2n-k}{n-k} \binom{2n-x}{2n-k} 2^k \]

\[ = \frac{2^n}{n!} \prod_{k=0}^{n-1} (2k+1-x) = (-1)^n 2^n \binom{x-1}{2n}. \]

There is a fourth sum which will appear during the computation. We will prove this for \( x \) a positive integer and then it holds for all i.e. complex \( x \) because
the expressions involved are all polynomials in $x$. We start with the first formula and obtain

$$[z^n](1 + z)^{2n-x} \sum_{k=0}^{n} (-1)^k \binom{x}{k} z^k.$$ 

Here the coefficient extractor enforces the upper limit of the sum and we get

$$[z^n](1 + z)^{2n-x} \sum_{k \geq 0} (-1)^k \binom{x}{k} z^k = [z^n](1 + z)^{2n-x}(1 - z)^x.$$ 

We can re-write this as

$$[z^n](1 + z)^{2n-2x}(1 - z^2)^x.$$ 

Extract the coefficient to obtain

$$\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{x}{k} \binom{2n-2x}{n-2k}.$$ 

This is the second formula. Continuing with the initial closed form we write

$$\text{res}_{z} \frac{1}{z^{n+1}} (1 + z)^{n+1}(1 + z)^{n-x-1}(1 - z)^x.$$ 

We put $z/(1 + z) = v$ so that $z = v/(1 - v)$ and $dz = \frac{1}{(1-v)^2} \, dv$ to get

$$\text{res}_{v} \frac{1}{v^{n+1}} \frac{1}{(1-v)^{n-x-1}} \frac{(1-2v)^x}{(1-v)^x} \frac{1}{(1-v)^2} = \text{res}_{v} \frac{1}{v^{n+1}} \frac{1}{(1-v)^{n+1}} (1 - 2v)^x.$$ 

This is

$$\sum_{k=0}^{n} (-1)^k 2^k \binom{x}{k} \binom{2n-k}{n}$$

which was not listed in the Gould text. We put $v(1 - v) = w$ so that $v = (1 - \sqrt{1 - 4w})/2$ and $dv = 1/\sqrt{1 - 4w} \, dw$ to find

$$\text{res}_{w} \frac{1}{w^{n+1}} \sqrt{1 - 4w} x \frac{1}{\sqrt{1 - 4w}} = \text{res}_{w} \frac{1}{w^{n+1}} (1 - 4w)^{(x-1)/2}$$

347
This is the fifth and last formula. We get for the fourth formula
\[ (-1)^{n/2} n! \prod_{p=0}^{n-1} ((x - 1)/2 - p) = (-1)^{n/2} n! \prod_{p=0}^{n-1} (x - 1 - 2p) \]
\[ = 2^n \frac{1}{n!} \prod_{p=0}^{n-1} (2p + 1 - x). \]

It remains to show the third formula. We start with the initial closed form and write
\[ \text{res} \frac{1}{z^{n+1}} (1 - z)^{n+1} (1 + z)^{2n-x} (1 - z)^{x-n-1}. \]

We now put \( z/(1 - z) = v \) so that \( z = v/(1 + v) \) and \( dz = 1/(1 + v)^2 \) \( dv \) to obtain
\[ \text{res} \frac{1}{v^{n+1}} (1 + 2v)^{2n-x} (1 + v)^x-n-1 \frac{1}{(1 + v)^2} \]
\[ = \text{res} \frac{1}{v^{n+1}} (1 + 2v)^{2n-x} \frac{1}{(1 + v)^{n+1}}. \]

Extracting the coefficient we find
\[ \sum_{k=0}^{n} \frac{(2n-x)}{k} 2^k (-1)^{n-k} \binom{2n-k}{n}. \]

This was the missing formula and we may conclude.

This problem has not appeared at math.stackexchange.com. It is from page 27 eqn. 3.42 of H.W.Gould’s Combinatorial Identities [Gou72].

76.76 Power term and two binomial coefficients

We seek to show that
\[ \sum_{k=0}^{n} \binom{n}{k}^2 k^r = \sum_{k=0}^{r} \binom{n}{k} \binom{2n-k}{n} k! \binom{r}{k}. \]

We find for the LHS
\[ r! [w^r] \sum_{k=0}^{n} \binom{n}{k}^2 \exp(kw) \]
\[ = r! [w^r] [z^n] (1 + z)^n \sum_{k=0}^{n} \binom{n}{k} z^k \exp(kw) \]
\[ = r! [w^r] [z^n] (1 + z)^n \sum_{k=0}^{n} \binom{n}{k} z^k \exp(kw) \]

348
Continuing, we obtain
\[ \begin{align*}
\frac{r!}{[w^r][z^n]}(1 + z)^n(1 + z \exp(w))^n. \\
= r![w^r][z^n](1 + z)^n(1 + z + z(\exp(w) - 1))^n \\
= r![w^r][z^n](1 + z)^n \sum_{k=0}^{n} \binom{n}{k}(1 + z)^{n-k}(\exp(w) - 1)^k \\
= r![w^r]\sum_{k=0}^{n} \binom{n}{k}\left(2n - k\right)\frac{\exp(w) - 1)^k}{k!} \\
= \sum_{k=0}^{n} \binom{n}{k}\left(2n - k\right)\frac{r!}{k!}\binom{r}{k}.
\end{align*} \]

Now observe that we may set the upper range to \( r \) because if \( r > n \) the first binomial coefficient is zero in the added range \( r \geq k > n \) and if \( n > r \) the Stirling number is zero in the removed range \( n \geq k > r \). Hence we obtain
\[ \sum_{k=0}^{r} \binom{n}{k}\left(2n - k\right)\frac{r!}{k!}\binom{r}{k}. \]

This problem has not appeared at math.stackexchange.com. It is from page 31 eqn. 3.77 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.77 Use of an Iverson bracket \( V \)

We seek to show that
\[ S_n = \sum_{k=0}^{n} (-1)^k \binom{2n}{k}^2 = \frac{1}{2}(-1)^n\left\{ \binom{2n}{n} + \left(\frac{2n}{n}\right)^2 \right\}. \]

We start by writing for the LHS
\[ (-1)^n \binom{2n}{n}^2 + \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k}^2 \]
and introduce an Iverson bracket for the sum
\[ [z^{n-1}]\frac{1}{1-z} \sum_{k \geq 0} (-1)^k \binom{2n}{k} z^k \\
= [w^{2n}](1 + w)^{2n}[z^{n-1}]\frac{1}{1-z} \sum_{k \geq 0} (-1)^k \binom{2n}{k} w^k z^k \\
= [w^{2n}](1 + w)^{2n}[z^{n-1}]\frac{1}{1-z} (1 - wz)^{2n}. \]

The contribution from \( z \) is

\[ [w^{2n}](1 + w)^{2n}[z^{n-1}]\frac{1}{1-z} (1 - wz)^{2n}. \]
Residues sum to zero hence this term is given by minus the sum of the residues at \( z = 1 \) and \( z = \infty \). We get for the first one

\[
[w^{2n}](1 + w)^{2n}(1 - w)^{2n} = [w^{2n}](1 - w^{2})^{2n} = [w^{n}](1 - w)^{2n} = (-1)^{n} \binom{2n}{n}.
\]

For minus the residue at infinity we find

\[
\text{Res}_{z=0} \frac{1}{z} z^{n} \frac{1}{1 - 1/z} (1 - w/z)^{2n} = \text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{z - 1} (z - w)^{2n}.
\]

Restoring the coefficient extractor in \( w \) we obtain

\[
- [w^{2n}](1 + w)^{2n} \sum_{k=0}^{n} \frac{[z^{n-k}]}{1 - z} [z^{k}] (z - w)^{2n} = - [w^{2n}](1 + w)^{2n} \sum_{k=0}^{n} \binom{2n}{k} (-1)^{2n-k} w^{2n-k} = - \sum_{k=0}^{n} \binom{2n}{k} (-1)^{k} \binom{2n}{k} = -S_{n}.
\]

We have shown that \( S_{n} = (-1)^{n} \binom{2n}{n}^{2} + (-1)^{n} \binom{2n}{n} - S_{n} \), which is the claim.

This problem has not appeared at math.stackexchange.com. It is from page 31 eqn. 3.82 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.78 Use of an Iverson bracket VI

We seek to show that

\[
S_{n} = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{2n}{2k}^{2} = \frac{1}{4} \binom{4n}{2n} + \frac{1}{4} (-1)^{n} \binom{2n}{n} + \frac{1 + (-1)^{n}}{4} \binom{2n}{n}^{2}.
\]

Start by observing that

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{2n}{2k}^{2} = \frac{1 + (-1)^{n}}{2} \binom{2n}{n}^{2} + \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{2n}{2k}^{2}.
\]

We introduce an Iverson bracket to treat the remaining sum:
\[
\left[z^{n-1}\right] \frac{1}{1-z} \sum_{k \geq 0} \binom{2n}{2k} z^{2k} = \left[z^{n-1}\right] \frac{1}{1-z} \sum_{k \geq 0} \binom{2n}{k} z^k \frac{1 + (-1)^k}{2}
\]

\[
= \left[w^{2n}\right](1 + w)^{2n} \left[z^{n-1}\right] \frac{1}{1-z} \sum_{k \geq 0} \binom{2n}{k} w^k z^k \frac{1 + (-1)^k}{2}
\]

\[
= \frac{1}{2} \left[w^{2n}\right](1 + w)^{2n} \left[z^{n-1}\right] \frac{1}{1-z} ((1 + wz)^{2n} + (1 - wz)^{2n}).
\]

The contribution from \( z \) is

\[
\frac{1}{2} \text{Res}_{z=0} \frac{1}{z^n} \frac{1}{1 - z} ((1 + wz)^{2n} + (1 - wz)^{2n}).
\]

Residues sum to zero so this is minus the sum of the residues at \( z = 1 \) and \( z = \infty \). We get for the first one

\[
\frac{1}{2} \left[w^{2n}\right](1 + w)^{2n}((1 + w)^{2n} + (1 - w)^{2n}) = \frac{1}{2} \left[w^{2n}\right](1 + w)^{4n} + (1 - w^2)^{2n})
\]

\[
= \frac{1}{2} \binom{4n}{2n} + \frac{1}{2} \left[w^n\right](1 - w)^{2n} = \frac{1}{2} \binom{4n}{2n} + \frac{1}{2} (-1)^n \binom{2n}{n}.
\]

There remains minus the residue at infinity:

\[
\frac{1}{2} \text{Res}_{z=0} \frac{1}{z^n} \frac{1}{1 - z} ((1 + w/z)^{2n} + (1 - w/z)^{2n})
\]

\[
= -\frac{1}{2} \text{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{1 - z} ((z + w)^{2n} + (z - w)^{2n})
\]

\[
= -\frac{1}{2} \left[w^{2n}\right](1 + w)^{2n} \sum_{k=0}^{n} \binom{2n}{k} w^{2n-k} (1 + (-1)^{2n-k})
\]

\[
= -\sum_{k=0}^{n} \binom{2n}{k}^2 \frac{1 + (-1)^k}{2} = -\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{2n}{2k}^2 = -S_n.
\]

We have shown that \( S_n = \frac{1 + (-1)^n}{2} \binom{2n}{n}^2 + \frac{1}{2} \binom{4n}{2n} + \frac{1}{2} (-1)^n \binom{2n}{n} - S_n \) which is the claim.

This problem has not appeared at math.stackexchange.com. It is from page 30 eqn. 3.72 of H.W.Gould’s *Combinatorial Identities* [Gou72].

351
76.79 Appearance of constants three and five

We seek to verify the two related sum identities

\[ 2^{2n} \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} = \sum_{k=0}^{n} \binom{2n-2k}{n-k} \binom{2k}{k} 3^k \]

and

\[ 2^{2n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} = \sum_{k=0}^{n} (-1)^k \binom{2n-2k}{n-k} \binom{2k}{k} 3^k. \]

Observe that for \( k \geq 1 \)

\[ \binom{-1/2}{k} = \frac{1}{k!} \prod_{q=0}^{k-1} (-1/2 - q) = \frac{1}{k!} \frac{(-1)^k}{2^k} \prod_{q=0}^{k-1} (2q + 1) \]

\[ = \frac{1}{k!} \frac{(-1)^k (2k-1)!}{2^k (k-1)! \times 2^{k-1}}. \]

This is

\[ \frac{1}{k!} \frac{(-1)^k (2k)!}{2^k \times 2^k k! \times 2^k}, \]

which also holds for \( k = 0 \). We get

\[ \binom{-1/2}{k} = \frac{(-1)^k}{2^k} \binom{2k}{k}. \]

or alternatively

\[ \binom{2k}{k} = (-1)^k 2^{2k} \left[ z^k \right] \frac{1}{\sqrt{1+z}} = \left[ z^k \right] \frac{1}{\sqrt{1-4z}}. \]

First identity

We start with the LHS to get

\[ 2^{2n} \sum_{k=0}^{n} \binom{n}{k} \binom{2n-2k}{n-k} = 2^{2n} \left[ z^n \right] \frac{1}{\sqrt{1-4z}} \sum_{k=0}^{n} \binom{n}{k} z^k \]

\[ = 2^{2n} \left[ z^n \right] \frac{1}{\sqrt{1-4z}} (1+z)^n. \]

This is

\[ 2^{2n} \text{res}_{z} \frac{1}{z^{n+1}} (1+z)^n \frac{1}{\sqrt{1-4z}}. \]
Now put \( z/(1 + z) = w \) so that \( z = w/(1 - w) \) and \( dz = 1/(1 - w)^2 \, dw \) to obtain

\[
2^{2n} \underset{w}{\text{res}} \, \frac{1}{w^{n+1}} \frac{1}{\sqrt{1 - 4w/(1 - w)}} \frac{1}{(1 - w)^2} = 2^{2n} \underset{w}{\text{res}} \, \frac{1}{w^{n+1}} \frac{1}{\sqrt{1 - 5w}} \frac{1}{\sqrt{1 - w}}
\]

\[
= 2^{2n} \lfloor w^n \rfloor \frac{1}{\sqrt{1 - 5w}} \frac{1}{\sqrt{1 - w}} = \sum_{k=0}^{n} \binom{2k}{k} \frac{2n - 2k}{n - k}.
\]

This is the claim.

**Second identity**

This is very similar to the first. We obtain

\[
2^{2n} (-1)^n \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2n - 2k}{n - k} = 2^{2n} (-1)^n [z^n] \frac{1}{\sqrt{1 - 4z}} \sum_{k=0}^{n} \binom{n}{k} (-1)^k z^k
\]

\[
= 2^{2n} (-1)^n [z^n] \frac{1}{\sqrt{1 - 4z}} (1 - z)^n.
\]

This is

\[
2^{2n} (-1)^n \underset{z}{\text{res}} \frac{1}{z^{n+1}} (1 - z)^n \frac{1}{\sqrt{1 - 4z}}.
\]

Now put \( z/(1 - z) = w \) so that \( z = w/(1 + w) \) and \( dz = 1/(1 + w)^2 \, dw \) to obtain

\[
2^{2n} (-1)^n \underset{w}{\text{res}} \, \frac{1}{w^{n+1}} \frac{1}{\sqrt{1 - 4w/(1 + w)}} \frac{1}{(1 + w)^2} = 2^{2n} (-1)^n \lfloor w^n \rfloor \frac{1}{\sqrt{1 - 3w}} \frac{1}{\sqrt{1 + w}}
\]

\[
= 2^{2n} (-1)^n \lfloor w^n \rfloor \frac{1}{\sqrt{1 - 3w}} \frac{1}{\sqrt{1 + w}} = \sum_{k=0}^{n} \binom{2k}{k} \frac{2n - 2k}{n - k}.
\]

Once more we have the claim.

This problem has not appeared at math.stackexchange.com. It is from page 32 eqns. 3.88 and 3.87 of H.W.Gould’s *Combinatorial Identities* [Gou72].

353
Generating function of a binomial term

We seek to show that
\[
\sum_{k=0}^{n} \binom{2n-2k}{n-k} \frac{x}{k} \binom{2k}{x+k} \frac{1}{x+k} = 2^{2n} \binom{2n}{n}^{-1} \binom{n+x-1/2}{n}.
\]

Note that we get a polynomial in \(x\) on the LHS and the RHS on multiplication by \(\binom{x+n}{n}\) so we just need to prove it for \(x\) a positive integer and it will hold for all i.e. complex \(x\). We start with the following claim where \(q \geq 1\) is a positive integer:
\[
\binom{2k}{k} \frac{1}{k+q} = \left[ z^{k+q} \right] \frac{1 - \sqrt{1 - 4z}}{q \times \binom{2q}{q}}.
\]

We also claim that the first non-zero coefficient of this OGF is on \(z^q\). The constant coefficient is zero by inspection (compare Catalan number GF). We have for the coefficient on \(z^m\) where \(1 \leq m \leq q-1\) without the scalar in \(q\) and the sign
\[
\sum_{p=0}^{m} \binom{2p}{p} \left[ z^{m-p} \right] \frac{1 - \sqrt{1 - 4z}}{q} \binom{m}{m} = \left[ z^m \right] 1 = 0.
\]

On the other hand for \(m = q\) we get
\[
-\binom{2q}{q} + \sum_{p=0}^{q} \binom{2p}{p} \left[ z^{q-p} \right] \frac{1 - \sqrt{1 - 4z}}{q} = -\binom{2q}{q} \frac{1}{q}.
\]

so the coefficient on \(q\) is \(\binom{2q}{q}/q/\binom{2q}{q} = 1/q\).
This leaves \(m \geq q\) which corresponds to \(k \geq 0\). On differentiating the OGF we must obtain
\[
\frac{z^{q-1}}{\sqrt{1 - 4z}}.
\]
Doing the differentiation of the functional term we find
\[
-\frac{2}{\sqrt{1 - 4z}} \sum_{p=0}^{q-1} \binom{2p}{p} z^p + \frac{1 - 4z}{\sqrt{1 - 4z}} \sum_{p=1}^{q-1} \binom{2p}{p} z^{p-1}.
\]
Without the square root we have
\[
-2 \sum_{p=0}^{q-1} \binom{2p}{p} z^p + \sum_{p=0}^{q-2} (p+1) \binom{2p+2}{p+1} z^p - 4 \sum_{p=0}^{q-1} \binom{2p}{p} z^p.
\]

The contribution from \(p \leq q - 2\) is
\[-2\binom{2p}{p} + (p + 1)\binom{2p + 2}{p + 1} - 4p\binom{2p}{p} = 0.\]

Restoring the scalar and the sign we get for \(p = q - 1\)
\[-z^{q-1} \frac{1}{q} \left(\frac{2q}{q}\right)^{-1} \left[ -2\binom{2q - 2}{q - 1} + 4(q - 1)\binom{2q - 2}{q - 1} \right] = z^{q-1} \]
as desired. Using the newly established closed form for the OGF of \(\binom{2k}{k} \frac{1}{k + q}\) we have by convolution of formal power series (in fact two functions that are analytic in a neighborhood of the origin) that the LHS of the proposed identity is
\[
[z^n]q \left(1 - \frac{\sqrt{1 - 4z}}{q \times \left(\frac{2q}{q}\right) \times z^q} \frac{1}{\sqrt{1 - 4z}}\right)
= [z^{q+n}]\left(\frac{2q}{q}\right)^{-1} \frac{1}{\sqrt{1 - 4z}} - [z^{q+n}]\left(\frac{2q}{q}\right)^{-1} \sum_{p=0}^{q-1} \left(\frac{2p}{p}\right) z^p.
\]
The second term does not contribute to the coefficient extractor and we get
\[
[z^{q+n}]\left(\frac{2q}{q}\right)^{-1} \frac{1}{\sqrt{1 - 4z}} = \left(\frac{2q}{q}\right)^{-1} (2q + 2n).\]
We simplify to the required form:
\[
\frac{q! \times q!}{(2q)!} \left(\frac{2q + 2n)!}{(q + n)! \times (q + n)!}\right)
= \left(\frac{q + n}{n}\right)^{-1} \frac{q! \times (2q + 2n)!}{n! \times (2q)! \times (q + n)!}
= \left(\frac{q + n}{n}\right)^{-1} 2^{q + n} \prod_{p=0}^{q-1} (2q + 2n - 1 - 2p) \frac{(2q)!}{q! \times 2^q}
= \left(\frac{q + n}{n}\right)^{-1} 2^{n} \left(\frac{q + n - 1/2}{n}\right).
\]
With the definition \(\binom{n}{k} = n^k/k!\) this extends to
\[
\left(\frac{x + n}{n}\right)^{-1} 2^{n} \left(\frac{x + n - 1/2}{n}\right),
\]
which is the claim. Note that it can be re-written for \(n \geq 1\) as
\[
2^n \prod_{p=1}^{n} \frac{1}{x + p} \prod_{p=0}^{n-1} (2x + 2n - 1 - 2p) = 2^n \prod_{p=1}^{n} \frac{1}{x + p} \prod_{p=0}^{n-1} (2x + 2p + 1)
\]
355
which shows the singularities and zeros.

This problem is from page 33 eqn. 3.95 of H.W. Gould’s *Combinatorial Identities* [Gou72]. This has also appeared at [math.stackexchange.com problem 4461543](https://math.stackexchange.com/questions/4461543) Markus Scheuer has written a detailed explanation of the above which can be found at [math.stackexchange.com problem 4537379](https://math.stackexchange.com/questions/4537379).

### 76.81 Double square root

We seek to show that

\[
\sum_{k=0}^{n} \frac{(2n-2k)\binom{2k}{k}}{(2k-1)(2n-2k+1)} \frac{1}{(2k-1)(2n-2k+1)} = \frac{2^{4n}}{2n(2n+1)} \binom{2n}{n}^{-1}.
\]

Re-write the LHS to obtain

\[
(-1)^n \sum_{k=0}^{n} \left( \frac{-n + k - 1}{n - k} \right) \binom{2k}{k} \frac{1}{(2k-1)(2n-2k+1)} (-1)^{k}.
\]

This is

\[
(-1)^n [z^{2n+1}] \log \frac{1}{1-z} [w^n](1+w)^{-n-1} \sum_{k=0}^{n} \binom{2k}{k} \frac{1}{2k-1} (-1)^{k} w^k (1+w)^k z^{2k}.
\]

Here the coefficient extractor in \( w \) enforces the upper limit of the sum and we may extend to infinity:

\[
(-1)^{n+1} [z^{2n+1}] \log \frac{1}{1-z} [w^n] (1+w)^n \sqrt{1+4z^2w(1+w)}.
\]

The contribution from \( w \) is

\[
\text{res}_w \frac{1}{w^{n+1}} \frac{1}{(1+w)^{n+1}} \sqrt{1+4z^2w(1+w)}.
\]

Now put \( w(1+w) = v \) so that \( w = (-1+\sqrt{1+4v})/2 \) and \( dw = 1/\sqrt{1+4v} \) dv:

\[
\text{res}_v \frac{1}{v^{n+1}} \sqrt{1+4z^2v} \frac{1}{\sqrt{1+4v}}.
\]

This could have been obtained by inspection. Continuing,

\[
\text{res}_v \frac{1}{v^{n+1}} \sqrt{1+4z^2v} \frac{1}{\sqrt{1+4v}} v^k = -[v^n] \sum_{k=0}^{n} \binom{2k}{k} \frac{1}{2k-1} (-1)^{k} (z^2-1)^{k} v^k (1+4v)^k.
\]
\[- \sum_{k=1}^{n} \binom{2k}{k} \frac{1}{2k-1} (-1)^k (z^2 - 1)^k \binom{n-1}{k-1} (-1)^{n-k} 4^{n-k} \]

\[= (-1)^{n+1} \sum_{k=1}^{n} \binom{2k}{k} \frac{1}{2k-1} \binom{n-1}{k-1} 4^{n-k} \sum_{q=0}^{k} \binom{k}{q} (-1)^{k-q} z^{2q}. \]

Activating the coefficient extractor in \( z \) will produce

\[\sum_{k=1}^{n} \binom{2k}{k} \frac{1}{2k-1} \binom{n-1}{k-1} 4^{n-k} \sum_{q=0}^{k} \binom{k}{q} (-1)^{k-q} \frac{1}{2n - 2q + 1}. \]

For the inner sum we introduce

\[f(z) = k! \frac{1}{2n + 1 - 2z} \prod_{p=0}^{k} \frac{1}{z - p}, \]

which has the property that with \( 0 \leq q \leq k \)

\[\text{Res}_{z=q} f(z) = k! \frac{1}{2n + 1 - 2q} \prod_{p=0}^{q-1} \frac{1}{q - p} \prod_{p=q+1}^{k} \frac{1}{q - p} \]

\[= k! \frac{1}{2n + 1 - 2q} \frac{1}{q!} \frac{(-1)^{k-q}}{(k-q)!} = \binom{k}{q} \frac{(-1)^{k-q}}{2n + 1 - 2q}. \]

With residues summing to zero and the residue at infinity being zero by inspection the sum is minus the residue at \( z = \frac{2n+1}{2} \):

\[\frac{1}{2} k! \prod_{p=0}^{k} \frac{1}{(2n+1)/2 - p} = 2^k k! \prod_{p=0}^{k} \frac{1}{2n + 1 - 2p} \]

\[= 2^k k! \frac{1}{(2n+1)!!} (2n - 2k - 1)!! = 2^k k! \frac{2^n \times n!}{(2n+1)!} \frac{(2n - 2k - 1)!}{2^{n-k-1} \times (n - k - 1)!}. \]

Merging in the case \( k = n \) yields

\[2^k k! \frac{2^n \times n!}{(2n+1)!} \frac{(2n - 2k)!}{2^{n-k} \times (n - k)!} = 2^k k! \frac{n!}{(2n+1)!} \frac{(2n - 2k)!}{(n - k)!}. \]

We find for our sum

\[4^n \frac{n!}{(2n+1)!} \sum_{k=1}^{n} \binom{2k}{k} \frac{1}{2k-1} \binom{n-1}{k-1} k! \frac{(2n - 2k)!}{(n - k)!}. \]

This is

\[4^n \frac{n! \times (n-1)!}{(2n+1)!} \sum_{k=0}^{n} \binom{2k}{k} \binom{2n - 2k}{n - k} \frac{k}{2k - 1}. \]
With
\[ \frac{k}{2k-1} = \frac{1}{2} + \frac{1}{2} \frac{1}{2k-1} \]
we get two pieces.
We can evaluate the first one by inspection and find
\[ \frac{2^n}{n(2n+1)} \binom{2n}{n} \frac{1}{2} \left[ \binom{2n}{n} \frac{1}{1-4z} \right] = \frac{2^n}{2n(2n+1)} \binom{2n}{n} \left[ \binom{2n}{n} \right]^{-1}. \]
This is precisely the claim. It remains to show that the other piece is zero.
We get
\[ -\frac{1}{2} [z^n] \sqrt{1 - 4z} \frac{1}{\sqrt{1 - 4z}} = -[z^n] 1 = 0 \]
when \( n \geq 1 \). This completes the proof.

**Remark.** In the above we have used the following coefficient extractors:
\[ [z^n] \frac{1}{\sqrt{1 - 4z}} = \text{res} \frac{1}{z^n+1} \frac{1}{\sqrt{1 - 4z}}. \]
With \( w = \frac{1-\sqrt{1-4z}}{2} \) we get \( z = w(1-w) \) and \( dw = (1-2w) \, dw \) and we have
\[ \text{res} \frac{1}{w^{n+1}(1-w)^{n+1}} \frac{1}{1-2w} (1-2w) = \binom{2n}{n}. \]
We also use
\[ -[z^n] \sqrt{1 - 4z} = -\text{res} \frac{1}{z^n+1} \sqrt{1 - 4z} \]
\[ = -\text{res} \frac{1}{w^{n+1}(1-w)^{n+1}} (1-2w)(1-2w) \]
\[ = -\binom{2n}{n} + 4 \binom{2n-1}{n} - 4 \binom{2n-2}{n} \]
\[ = \binom{2n}{n} \times \left[-1 + 4 \frac{n}{2n} - 4 \frac{n(n-1)}{2n(2n-1)}\right] \]
\[ = \binom{2n}{n} \frac{1}{2n-1}. \]

This problem has not appeared at math.stackexchange.com. It is from page 33 eqn. 3.94 of H.W. Gould’s *Combinatorial Identities* [Gou72].
Central Delannoy Numbers

We seek to show that

\[
\sum_{k=0}^{n} \binom{4n - 4k}{2n - 2k} \binom{4k}{2k} = 2^{4n-1} + 2^{2n-1} \binom{2n}{n}
\]

and

\[
\sum_{k=0}^{n-1} \binom{4n - 4k - 2}{2n - 2k - 1} \binom{4k + 2}{2k + 1} = 2^{4n-1} - 2^{2n-1} \binom{2n}{n}.
\]

First sum

We get for the first sum

\[
\sum_{k=0}^{2n} \binom{4n - 2k}{2n - k} \binom{2k}{k} \frac{1 + (-1)^k}{2}.
\]

The first piece is

\[
\frac{1}{2} \sum_{k=0}^{2n} \binom{4n - 2k}{2n - k} \binom{2k}{k}
\]

\[
= \frac{1}{2} \left[ z^{2n} \right] \left( 1 + z \right)^{4n} \sum_{k=0}^{2n} z^k \left( 1 + z \right)^{-2k} \binom{2k}{k}.
\]

Here the coefficient extractor enforces the upper limit of the sum and we may extend to infinity:

\[
\frac{1}{2} \left[ z^{2n} \right] \left( 1 + z \right)^{4n} \frac{1}{\sqrt{1 - 4z/(1 + z)^2}} = \frac{1}{2} \left[ z^{2n} \right] \left( 1 + z \right)^{4n+1} \frac{1}{1 - z}
\]

\[
= \frac{1}{2} \sum_{q=0}^{2n} \binom{4n + 1}{q} = \frac{1}{4} 2^{4n+1} = 2^{4n-1}.
\]

Good, we have obtained the first term of the closed form. The second piece is

\[
\frac{1}{2} \left[ z^{2n} \right] \left( 1 + z \right)^{4n} \frac{1}{\sqrt{1 + 4z/(1 + z)^2}}
\]

\[
= \frac{1}{2} \left[ z^{2n} \right] \left( 1 + z \right)^{4n+1} \frac{1}{\sqrt{1 + 6z + z^2}}.
\]

Now observe that

\[
[z^q] \frac{1}{\sqrt{1 + 6z + z^2}} = [z^q] \frac{1}{\sqrt{1 + 4z(3/2 + z/4)}}
\]

359
\[ \frac{1}{2} \sum_{q=0}^{2n} \binom{4n+1}{q} (-1)^q [w^{2n-q}](1 + 2w)^{2n-q}(1 + w)^{2n-q} \]

\[ = \frac{1}{2} [w^{2n}](1 + 2w)^{2n}(1 + w)^{2n} \sum_{q=0}^{2n} \binom{4n+1}{q} \frac{(-1)^q w^q}{(1 + 2w)^q(1 + w)^q}. \]

Here the coefficient extractor again enforces the upper limit and we may extend to infinity:

\[ \frac{1}{2} [w^{2n}](1 + 2w)^{2n}(1 + w)^{2n} \left[ 1 - \frac{w}{(1 + 2w)(1 + w)} \right]^{4n+1} \]
Now put $w(1+w) = v$ so that $w = (-1+\sqrt{1+4v})/2$ and $dw = 1/\sqrt{1+4v} \, dv$ to obtain

\[
\frac{1}{2} \, \frac{\text{res}_w}{w^{2n+1}} \left( \frac{1}{(1+2w)^{2n+1}} \frac{1}{(1+w)^{2n+1}} [2w(1+w) + 1]^{4n+1} \right)
\]

\[
= \frac{1}{2} \, \frac{1}{\sqrt{1+4v}} \frac{1}{(1+2v)^{2n+1}} \frac{1}{(1+v)^{2n+1}} [2v(1+v) + 1]^{4n+1} \cdot
\]

Using the coefficient extractor to enforce the range,

\[
2^{2n-1} \frac{[w^{2n}]}{(1+w)^{2n+2}} \sum_{q=0}^{2n} \frac{w^q}{(1+w)^q} 2^q \binom{q+n}{q}
\]

This is the second term from the closed form and concludes the proof.

**Second sum**

We get for the second sum

\[
\sum_{k=0}^{2n-1} \binom{4n-2k}{2n-k} \frac{(2k)}{k} \frac{1-(-1)^k}{2}
\]

Now we just recombine the pieces from the previous calculation to obtain the result.

This problem has not appeared at math.stackexchange.com. It is from page 33 eqn. 3.97 and eqn. 3.98 of H.W.Gould’s *Combinatorial Identities* [Gou72].
76.83 A case of factorization

We seek to show that

\[ \sum_{k=0}^{n} (-1)^k \binom{n+k}{2k} \binom{2k}{k} \frac{x}{x+k} = (-1)^n \binom{x+n}{n}^{-1} \binom{x-1}{n}. \]

Note that we get a polynomial in \( x \) on the LHS and the RHS on multiplication by \( \binom{x+n}{n} \), so we just need to prove it for \( x \) a positive integer and it will hold for all \( x \), i.e. complex \( x \).

Recall from section 76.80 that

\[ \binom{2k}{k+q} = \frac{1}{1-\sqrt{1-4z}} \sum_{p=q}^{\infty} \binom{2p}{p} z^p \frac{1}{q \times \binom{2q}{q}}. \]

Note also that the first non-zero coefficient of this OGF is on \( z^q \). We get for the LHS

\[ \sum_{k=0}^{n} (-1)^k \binom{n+k}{n-k} \binom{2k}{k} \frac{x}{x+k} \]

\[ = [z^n](1+z)^n \sum_{k=0}^{n} (-1)^k z^k (1+z)^k \binom{2k}{k} \frac{x}{x+k} \]

\[ = x (-1)^x [z^n](1+z)^n \sum_{k=0}^{n} (-1)^k z^k (1+z)^k \binom{2k}{k} \frac{x}{x+k} \]

\[ = x (-1)^x \frac{1}{x \times \binom{2x}{x} \times z^x \times (1+z)^x}. \]

Here the coefficient extractor has enforced the range of the sum. Continuing,

\[ (-1)^x \binom{2x}{x}^{-1} \operatorname{res}_{z=0} \frac{1}{z^{x+n+1}} (1+z)^{n-x} \left[ 1 - (1+2z) \sum_{p=0}^{x-1} \binom{2p}{p} (-1)^p z^p (1+z)^p \right]. \]

We get three pieces here without the scalar in front, the first is

\[ \binom{n-x}{n+x}. \]

The second is (write \( 1+2z = z+(1+z) \))

\[ - \sum_{p=0}^{x-1} \binom{2p}{p} (-1)^p \binom{n-x+p}{n+x-p-1}. \]

The third is

\[ - \sum_{p=0}^{x-1} \binom{2p}{p} (-1)^p \binom{n-x+p+1}{n+x-p}. \]

Continuing with the second,
\[ (-1)^x \sum_{p=0}^{x-1} \left( \frac{2x - 2 - 2p}{x - 1 - p} \right) (-1)^p \left( \frac{n - 1 - p}{n + p} \right) \]

\[ = (-1)^{x+n} \sum_{p=0}^{x-1} \left( \frac{2x - 2 - 2p}{x - 1 - p} \right) \left( \frac{2p}{n + p} \right) \]

\[ = (-1)^{x+n} \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^n} (1 + z)^{2x-2} \]

\[ \times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} \sum_{p=0}^{x-1} \frac{z^p}{(1 + z)^{2p}} \frac{(1 + w)^{2p}}{w^p} \, dw \, dz. \]

The residue in \( z \) enforces the range and we may extend the sum to infinity. For this to converge we need \(|z/(1 + z)^2| < |w/(1 + w)^2|\). We have \(|z/(1 + z)^2| \leq \varepsilon/(1 - \varepsilon)^2\) and \(\gamma/(1 + \gamma)^2 \leq |w/(1 + w)^2|\). Note that we have \(\varepsilon/(1 - \varepsilon)^2 < 2\varepsilon\) when \(1/2 < (1 - \varepsilon)^2\) or \(\varepsilon < 1 - 1/\sqrt{2}\). This will be our choice of \(\varepsilon\). We also have \(\gamma/2 < \gamma/(1 + \gamma)^2\) when \((1 + \gamma)^2 < 2\) or \(\gamma < \sqrt{2} - 1\). This will be our choice of \(\gamma\). Now we just need to impose with these two conditions a third, which is \(2\varepsilon < \gamma/2\) or \(\varepsilon < \gamma/4\). A possible pair that works is \(\gamma = 1/5\) and \(\varepsilon = 1/21\).

Continuing,

\[ (-1)^{x+n} \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^n} (1 + z)^{2x-2} \]

\[ \times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^{n+1}} \frac{1}{1 - z(1 + w)^2/w/(1 + z)^2} \, dw \, dz \]

\[ = (-1)^{x+n} \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^n} (1 + z)^{2x} \]

\[ \times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^n} \frac{1}{w(1 + z)^2 - z(1 + w)^2} \, dw \, dz \]

\[ = (-1)^{x+n+1} \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{n+1}} (1 + z)^{2x} \]

\[ \times \frac{1}{2\pi i} \int_{|w|=\gamma} \frac{1}{w^n} \frac{1}{w - z(w - 1/z)} \, dw \, dz. \]

Note here that with \(\varepsilon < \gamma/4\) the pole at \(w = z\) is now inside the contour in addition to the pole at zero. The pole at \(w = 1/z\) has norm \(1/\varepsilon > 1\) and is definitely not inside the contour. Since residues sum to zero and the residue at infinity is zero by inspection our integral in \(w\) is minus the residue at \(w = 1/z\), which yields

\[ (-1)^{x+n} \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{n+1}} (1 + z)^{2x} z^n \frac{1}{1/z - z} \, dz \]
\[
= (-1)^{x+n} \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{x-n}} (1+z)^{2x} \frac{1}{1-z^2} \, dz
\]

\[
= (-1)^{x+n} \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{x-n}} (1+z)^{2x-1} \frac{1}{1-z} \, dz.
\]

We discover here that we require \( x \geq n + 1 \). We still have agreement at an infinite number of values for our polynomials, so the initial equality is not questioned. The remaining integral yields

\[
(-1)^{x+n} \sum_{p=0}^{x-n-1} \binom{2x-1}{p}.
\]

Next observe that the third piece is just the second with \( n \) replaced by \( n+1 \) so we get

\[
-(-1)^{x+n} \sum_{p=0}^{x-n-2} \binom{2x-1}{p}.
\]

Adding these two pieces yields

\[
(-1)^{x+n} \binom{2x-1}{x-n-1} = (-1)^{x+n} \binom{2x-1}{n+x} = \binom{n-x}{n+x}.
\]

We have established the closed form

\[
2 \times (-1)^x \binom{2x-1}{x}^{-1} \binom{n-x}{n+x}.
\]

Now to morph this into the RHS of the proposed identity:

\[
2 \times (-1)^x \frac{x!}{(2x)!} \times \frac{1}{(n+x)!} \prod_{p=0}^{n+x-1} (n-x-p)
\]

\[
= \left(\frac{x+n}{n}\right)^{-1} \times 2 \times (-1)^x \frac{x!}{(2x)!} \times \frac{1}{n!} \prod_{p=0}^{n-1} (n-x-p) \prod_{p=n}^{x-1} (n-x-p)
\]

\[
= \left(\frac{x+n}{n}\right)^{-1} \times 2 \times (-1)^x \frac{x!}{(2x)!} \times \frac{(-1)^n}{n!} \prod_{p=0}^{n-1} (x+p-n) \prod_{p=0}^{x-1} (-x-p)
\]

\[
= (-1)^n \binom{x+n}{n}^{-1} \binom{x-1}{n} \times 2 \times \frac{x!}{(2x)!} \times \prod_{p=0}^{x-1} (x+p)
\]

\[
= (-1)^n \binom{x+n}{n}^{-1} \binom{x-1}{n} \times 2 \times \frac{x!}{(2x)!} \times \frac{(2x-1)!}{(x-1)!}
\]

\[
= (-1)^n \binom{x+n}{n}^{-1} \binom{x-1}{n}.
\]
This is the claim and we may conclude. We have a quotient of two polynomials that factor very nicely.

This problem has not appeared at math.stackexchange.com. It is from page 34 eqn. 3.100 of H.W. Gould’s *Combinatorial Identities* [Gou72].

76.84 Two identities due to Grosswald

We seek to show that

$$
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \left(\frac{n + 2r + k}{n + r}\right)^{2^n-k} = (-1)^{n/2} \frac{1 + (-1)^n}{2} \binom{n + r}{n/2} \binom{n + 2r}{r}
$$

as well as

$$
\sum_{k=0}^{n-r} (-1)^k \binom{n + k + r}{k} \left(\frac{n}{n + k + r}\right)^{2^{n-r-k}} = (-1)^{(n-r)/2} \frac{1 + (-1)^{n-r}}{2} \binom{n}{(n-r)/2}.
$$

First identity

We get for the LHS

$$
2^n [z^{n+r}](1 + z)^{n+2r} \sum_{k=0}^{n} (-1)^k \binom{n}{k} 2^{-k}(1 + z)^k
$$

$$
= 2^n [z^{n+r}](1 + z)^{n+2r}(1 - (1 + z)/2)^n
$$

$$
= [z^{n+r}](1 + z)^{n+2r}(1 - z)^n
$$

$$
= \text{res}_{z} \frac{1}{z^{n+r+1}(1 + z)^{n+2r}(1 - z)^n}.
$$

Now put $z/(1 + z) = w$ so that $z = w/(1 - w)$ and $dz = 1/(1 - w)^2 dw$ to get

$$
\text{res}_{w} \frac{1}{w^{n+r+1}} \frac{1}{(1 - w)^{r-1}} \frac{(1 - 2w)^n}{(1 - w)^n} \frac{1}{(1 - w)^2}
$$

$$
= \text{res}_{w} \frac{1}{w^{n+r+1}} \frac{1}{(1 - w)^{n+r+1}} (1 - 2w)^n.
$$

Next put $w(1-w) = v$ so that $w = (1 - \sqrt{1 - 4v})/2$ and $dw = 1/\sqrt{1 - 4v} dv$:

$$
\text{res}_{v} \frac{1}{v^{n+r+1}} \frac{1}{\sqrt{1 - 4v}} \frac{1}{\sqrt{1 - 4v}^{n-1}} = [v^{n+r}](1 - 4v)^{(n-1)/2}.
$$

Now if $n$ is positive and odd we have $n > (n - 1)/2$ and the powered term is a finite series so we obtain zero as per the factor in the RHS. If $n$ is even we get
\[(-1)^{n+r}2^{n+2r} \binom{n-1}{n+r},\]

This is
\[
\binom{n+r}{n}^{-1} \times (-1)^{n+r}2^{n+2r} \frac{1}{n! r!} \prod_{p=0}^{n+r-1} (n/2 - 1/2 - p)
\]
\[
= \binom{n+r}{n}^{-1} \times (-1)^{r}2^{n+r} \frac{1}{n! r!} \prod_{p=0}^{n/2-1} (n - 1 - 2p)
\]
\[
= \binom{n+r}{n}^{-1} \times (-1)^{r}2^{n+r} \frac{1}{n! r!} (n-1)!! \prod_{p=0}^{n/2-1} (-1 - 2p)
\]
\[
= \binom{n+r}{n}^{-1} \times (-1)^{n/2}2^{n+r} \frac{1}{n! r!} \prod_{p=0}^{n/2-1} (n!/(n/2 - 1)!) (2p + 1)
\]
\[
= \binom{n+r}{n}^{-1} \times (-1)^{n/2}2^{n+r} \frac{1}{n! r!} \prod_{p=0}^{n/2+r-1} (n + 2r - 1)!!
\]
\[
= \binom{n+r}{n}^{-1} \times (-1)^{n/2}2^{n+r} \frac{1}{n! r!} \prod_{p=0}^{n/2+r-1} (n + 2r - 1)!!
\]
\[
= \binom{n+r}{n}^{-1} \times (-1)^{n/2}2^{n+r} \frac{1}{n! r!} \prod_{p=0}^{n/2-1} (n + 2r - 1)!!
\]
\[
= \binom{n+r}{n}^{-1} \times (-1)^{n/2}2^{n+r} \frac{1}{n! r!} \prod_{p=0}^{n/2+r-1} (n/2 + r - 1)!
\]
\[
= \binom{n+r}{n}^{-1} \times (-1)^{n/2}2^{n+r} \frac{1}{n! r!} \prod_{p=0}^{n/2+r-1} (n/2 + r)!
\]
\[
= (-1)^{n/2} \binom{n+r}{n}^{-1} \binom{n+2r}{r} \binom{n+r}{n/2}.
\]

Second identity

We get for the LHS where \(n \geq r\)
\[
\sum_{k=0}^{n-r} (-1)^k \binom{n}{n-r-k} \binom{n+k+r}{n+r} 2^{n-r-k}
\]
\[
= 2^{n-r} [z^{n-r}] (1+z)^n [w^{n+r}] (1+w)^n \sum_{k=0}^{n-r} (-1)^k z^k (1+w)^k 2^{-k}.
\]

366
The coefficient extractor in $z$ enforces the upper limit of the sum:

$$2^{n-r} [z^{n-r}] (1 + z)^n [w^{n+r}] (1 + w)^{n+r} \frac{1}{1 + z(1 + w)/2}.$$ 

The contribution from $w$ is

$$\frac{\text{res}_{w} \frac{1}{w^{n+r+1}} (1 + w)^{n+r}}{1 + z(1 + w)/2}.$$ 

Now put $w/(1 + w) = v$ so that

$$w = v/(1 - v)$$

and $dw = 1/(1 - v)^2 \, dv$ to get

$$\frac{\text{res}_{v} \frac{1}{v^{n+r+1}} (1 - v)^{n}}{1 + z/(1 - v)} \frac{1}{(1 - v)^2}.$$ 

Substituting into the coefficient extractor in $z$ we obtain

$$2^{n-r} \frac{\text{res}_{z} \frac{1}{z^{n-r+1}} (1 + z)^n}{(1 + z/2)^{n+r+1}}.$$ 

Here the residue at infinity is zero and residues sum to zero so we may evaluate through minus the residue at $z = -2$. We write

$$-2^{n+1} \text{Res}_{z=-2} \frac{1}{((z + 2) - 2)^{n-r+1}} \frac{1}{(z + 2)^{n+r+1}}$$

$$= (-1)^r 2^{n+r} \text{Res}_{z=-2} \frac{1}{(1 - (z + 2)/2)^{n-r+1}} \frac{1}{(z + 2)^{n+r+1}}.$$ 

This is

$$(-1)^r 2^{n+r} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2n - k}{n - r} \frac{1}{2^{n-r-k}}$$

$$= (-1)^r \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2n - k}{n - r} 2^k$$

$$= (-1)^r [z^{n-r}] (1 + z)^{2n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{2^k}{(1 + z)^k}$$

$$= (-1)^r [z^{n-r}] (1 + z)^{2n} \left[ 1 - \frac{2}{1 + z} \right]^n$$

$$= (-1)^r [z^{n-r}] (1 + z)^{2n} (-1 + z)^n = (-1)^{n-r} [z^{n-r}] (1 - z^2)^n.$$ 

This is zero if $n$ and $r$ do not have the same parity, precisely as in the proposed RHS. If they do have the same parity we obtain
\((-1)^{(\frac{n-r}{2})} \binom{n}{(\frac{n-r}{2})}\)

as claimed.

This problem has not appeared at math.stackexchange.com. It is from page 34 eqns. 3.103 and 3.104 of H.W. Gould’s *Combinatorial Identities* [Gou72].

**76.85 Appearance of the constant three**

We seek to show that

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2n+2k}{n+k} 3^{2n-k} = \binom{2n}{n}.
\]

We have for the LHS

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{2n-k} \binom{2n+2k}{n+k} 3^{2n-k}
= 3^{2n} \text{res}_w \frac{(1+w)^{2n}}{w^{n+1}} \frac{[z^{2n}](1+z)^{2n}}{1+z(1+w)^2/w^3} 3^{-k}.
\]

The coefficient extractor in \(z\) enforces the upper range of the sum and we may extend to infinity to obtain

\[
3^{2n} \text{res}_w \frac{(1+w)^{2n}}{w^{n+1}} \frac{[z^{2n}](1+z)^{2n}}{1+z(1+w)^2/w^3} \frac{1}{1+z(1+w)^2/w^3}
\]

The contribution from \(z\) is

\[
\text{res}_z \frac{1}{z^{2n+1}(1+z)^{2n}} \frac{1}{1+z(1+w)^2/w^3}
\]

Now put \(z/(1+z) = v\) so that \(z = v/(1-v)\) and \(dz = 1/(1-v)^2 \, dv\) to get

\[
\text{res}_v \frac{1}{v^{2n+1}(1-v)^2} \frac{1}{1+v(1+w)^2/w^3/(1-v)} \frac{1}{(1-v)^2}
= \text{res}_v \frac{1}{v^{2n+1}} \frac{1}{1-v(1+w)^2/w^3/(1-v)^2}.
\]

Substitute into the residue in \(w\) to find

\[
3^{2n} \text{res}_w \frac{(1+w)^{2n}}{w^{n+1}} \frac{1-(1+w)^2/w^3)^2}{1-(1+w)^2/w^3)^2n}
= \text{res}_w \frac{(1+w)^{2n}}{w^{n+1}} \frac{3w-(1+w)^2}{w^{3n+1}}
= \text{res}_w \frac{(1+w)^{2n}}{w^{3n+1}} (-1+w-w^2)^2
\]

368
This is the claim.

This problem has not appeared at math.stackexchange.com. It is from page 34 eqn. 3.106 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.86 Very basic example

We seek to show that

\[ \sum_{k=0}^{n} \binom{4n + 1}{2n - 2k} \binom{k + n}{n} = 2^{2n} \binom{3n}{n}. \]

The LHS is

\[ [z^{2n}](1 + z)^{4n+1} \sum_{k=0}^{n} z^{2k} \binom{k + n}{n}. \]

Here the coefficient extractor enforces the upper limit of the sum and we may extend to infinity:

\[ [z^{2n}](1 + z)^{4n+1} \frac{1}{(1 - z^2)^{n+1}} = [z^{2n}](1 + z)^{3n} \frac{1}{(1 - z)^{n+1}}. \]

This is

\[ \text{res}_z \frac{1}{z^{2n+1}} \frac{1}{(1 + z)^{3n}} \frac{1}{(1 - z)^{n+1}}. \]

Now put \( z/(1 + z) = v \) so that \( z = v/(1 - v) \) and \( dz = 1/(1 - v)^2 \, dv \) to get

\[ \text{res}_v \frac{1}{v^{2n+1}} \frac{1}{(1 - v)^{n+1}} \frac{1}{(1 - 2v)^{n+1}} \frac{1}{(1 - v)^2} \]

\[ = \text{res}_v \frac{1}{v^{2n+1}} \frac{1}{(1 - 2v)^{n+1}} = [v^{2n}] \frac{1}{(1 - 2v)^{n+1}} = 2^{2n} \binom{3n}{2n} = 2^{2n} \binom{3n}{n} \]

as claimed.

This problem has not appeared at math.stackexchange.com. It is from page 35 eqn. 3.115 of H.W. Gould’s *Combinatorial Identities* [Gou72].
We seek to show that

\[ \sum_{k=0}^{n} (-1)^k \binom{2n}{n-k} \binom{2n+2k+1}{2k} = (-1)^n (n+1) 2^{2n}. \]

The LHS is

\[ [z^n](1+z)^{2n} \sum_{k=0}^{n} (-1)^k z^k \binom{2n+2k+1}{2n+1} = [w^{2n+1}](1+w)^{2n+1} [z^n](1+z)^{2n} \sum_{k=0}^{n} (-1)^k z^k (1+w)^{2k}. \]

Here the coefficient extractor in \( z \) enforces the upper limit of the sum and we may extend to infinity:

\[ [w^{2n+1}](1+w)^{2n+1} [z^n](1+z)^{2n} \frac{1}{1+z(1+w)^2}. \]

The contribution from \( z \) is

\[ \text{Res}_{z=0} \frac{1}{z^{n+1}} (1+z)^{2n} \frac{1}{1+z(1+w)^2} = \frac{1}{(1+w)^2} \text{Res}_{z=0} \frac{1}{z^{n+1}} (1+z)^{2n} \frac{1}{z+1/(1+w)^2}. \]

With residues summing to zero this is minus the residue at \( z = -1/(1+w)^2 \) plus minus the residue at infinity. We get for the first one

\[ -[w^{2n+1}](1+w)^{2n+1} \frac{1}{(1+w)^2} (-1)^{n+1} (1+w)^{2n+2} \left[ 1 - \frac{1}{(1+w)^2} \right]^{2n} \]

\[ = (-1)^n [w^{2n+1}](1+w)(2w+w^2)^{2n} = (-1)^n [w^{1}](1+w)(2+w)^{2n} \]

\[ = (-1)^n \binom{2n}{1} 2^{2n-1} + (-1)^n \binom{2n}{0} 2^{2n} = (-1)^n (n+1) 2^{2n} \]

as claimed. Now we just need to verify that the contribution from the residue at infinity is zero. We obtain

\[ [w^{2n+1}](1+w)^{2n+1} \text{Res}_{z=0} \frac{1}{z^{n+1}} (1+z)^{2n} \frac{1}{1+(1+w)^2/z} \]

\[ = [w^{2n+1}](1+w)^{2n-1} \text{Res}_{z=0} \frac{1}{z^{n+1}} (1+z)^{2n} \frac{1}{1+z/(1+w)^2} \]

\[ = [w^{2n+1}](1+w)^{2n-1} \text{Res}_{z=0} \frac{(1+z)^{2n}}{z^{n}} \frac{1}{1+z/(1+w)^2}. \]
Computing the residue,

\[ \left[ w^{2n+1} \right] (1 + w)^{2n-1} \sum_{q=0}^{n-1} \binom{2n}{n-1-q} (-1)^q \frac{1}{(1+w)^{2q}} \]

\[ = \sum_{q=0}^{n-1} \binom{2n}{n-1-q} (-1)^q w^{2n+1} (1 + w)^{2n-1-2q} = 0 \]

as desired. This went through with the maximum upper range of the sum in \( q \), it does not work with \( q = n \).

This problem has not appeared at math.stackexchange.com. It is from page 35 eqn. 3.114 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.88 Nested square root

We seek to show that

\[ \sum_{k=0}^{n} \binom{2k}{k} \binom{2n-k}{n} \frac{k}{(2n-k) \times 2^k} = (-1)^n 2^{2n} \left( -\frac{1}{4} \right) \]

The LHS is

\[ \frac{1}{n} \sum_{k=0}^{n} \binom{2k}{k} \binom{2n-k-1}{n-1} \frac{k}{2^k} \]

\[ = \frac{1}{n} \sum_{k=0}^{n} \binom{2k}{k} \binom{2n-k-1}{n-k} \frac{k}{2^k} \]

\[ = \frac{1}{n} \left[ z^n \right] (1 + z)^{2n-1} \sum_{k=0}^{n} \binom{2k}{k} \frac{k}{2^k} \frac{z^k}{(1+z)^k}. \]

Here we may extend to infinity because of the coefficient extractor in \( z \):

\[ \frac{1}{n} \text{ res}_{z} \frac{1}{z^{n+1}} (1 + z)^{2n-1} \sum_{k=0}^{n} \binom{2k}{k} \frac{k}{2^k} \frac{z^k}{(1+z)^k}. \]

Now put \( z/(1+z) = v \) so that \( z = v/(1-v) \) and \( dz = 1/(1-v)^2 \) \( dv \) to obtain

\[ \frac{1}{n} \text{ res}_{v} \frac{1}{v^{n+1}} (1 - v)^{n-2} \left( \frac{1}{(1-v)^2} \right) \sum_{k=0}^{n} \binom{2k}{k} \frac{k}{2^k} v^k \]

\[ = \frac{1}{n} \text{ res}_{v} \frac{1}{v^n (1-v)^n} \frac{1}{\sqrt{1-2v}}. \]

Next put \( v(1-v) = w \) so that \( v = (1 - \sqrt{1-4w})/2 \) and \( dv = 1/\sqrt{1-4w} \) \( dw \) to get
\[ \frac{1}{n} \text{Res} \frac{1}{w^n} \frac{1}{\sqrt{1 - 4w}} \frac{1}{\sqrt{1 - 4w}} = \frac{1}{n} \text{Res} \frac{1}{w^n (1 - 4w)^{5/4}} \]

\[ = \frac{1}{n} (-1)^{n-1} 2^{2n-2} \binom{-5/4}{n-1} = (-1)^{n-1} 2^{2n-2} \binom{-1/4}{n} (-4) \]

\[ = (-1)^n 2^n \binom{-1/4}{n}. \]

This is the claim. Here we have made use of the fact that

\[ [z^n] \frac{2z}{\sqrt{1 - 4z}} = 2[z^{n-1}] \frac{1}{\sqrt{1 - 4z}} = 2(-1)^{n-1} 2^{2n-2} \binom{-3/2}{n-1} \]

\[ = (-1)^{n-1} 2^{2n-1} \binom{-1/2}{n} (-2) = (-1)^n 2^n \binom{-1/2}{n} = n \binom{2n}{n}. \]

This problem has not appeared at math.stackexchange.com. It is from page 35 eqn. 3.110 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.89 Harmonic numbers and a squared binomial coefficient

We seek to show that

\[ \sum_{k=1}^{n} \binom{n}{k}^2 H_k = \binom{2n}{n} (2H_n - H_{2n}). \]

The LHS is

\[ \sum_{k=0}^{n-1} \binom{n}{k}^2 H_{n-k} = [z^n] \frac{1}{1-z} \log \frac{1}{1-z} \sum_{k=0}^{n-1} \binom{n}{k}^2 z^k. \]

Here the contribution from \( k = n \) is zero and we may include this value in our sum:

\[ [z^n] \frac{1}{1-z} \log \frac{1}{1-z} \sum_{k=0}^{n} \binom{n}{k}^2 z^k \]

\[ = [z^n] \frac{1}{1-z} \log \frac{1}{1-z}[w^n](1+w)^n \sum_{k=0}^{n} \binom{n}{k} w^k z^k \]

\[ = [z^n] \frac{1}{1-z} \log \frac{1}{1-z}[w^n](1+w)^n(1+ wz)^n. \]

The contribution from \( w \) is
\[
\text{res}_{w} \frac{1}{w^{n+1}} (1+w)^n (1+wz)^n.
\]

Now put \(w/(1+w) = v\) so that \(w = v/(1-v)\) and \(dw = 1/(1-v)^2\) \(dv\) to get

\[
\text{res}_{v} \frac{1}{v^{n+1}} (1-v)(1+zv/(1-v))^n \frac{1}{(1-v)^2} = \text{res}_{v} \frac{1}{v^{n+1}(1-v)^{n+1}} (1-(1-z)v)^n.
\]

A binomial identity

Introduce with \(q \geq 1\)

\[
f(z) = n!(-1)^n \frac{1}{z^q} \prod_{p=0}^{n} \frac{1}{z-p}.
\]

This has the property that for \(0 \leq r \leq n\)

\[
\text{Res}_{z=r} f(z) = n!(-1)^n \frac{1}{r+q} \prod_{p=0}^{r-1} \frac{1}{r-p} \prod_{p=r+1}^{n} \frac{1}{r-p} = n!(-1)^n \frac{1}{r+q} \frac{(-1)^{r}}{r+q}.
\]

With the residue at infinity being zero by inspection we obtain

\[
\sum_{r=0}^{n} \binom{n}{r} \frac{(-1)^{r}}{r+q} = -\text{Res}_{z=-q} f(z)
\]

\[
= -n!(-1)^n \prod_{p=0}^{n} \frac{1}{q-p} = n! \prod_{p=0}^{n} \frac{1}{q+p} = n! \frac{(q-1)!}{(q+n)!} = \frac{1}{q} \frac{1}{q} \frac{1}{q} \cdot \frac{1}{q} = \frac{1}{q} \frac{1}{q} \frac{1}{q} \frac{1}{q} \frac{1}{q} \frac{1}{q}.
\]

Therefore with \(1 \leq k \leq n\)

\[
\frac{1}{k} \binom{n}{k}^{-1} = \sum_{r=0}^{n-k} \binom{n-k}{r} \frac{(-1)^{r}}{r+k} = (-1)^{n-k} \sum_{r=0}^{n-k} \binom{n-k}{r} \frac{(-1)^{r}}{n-r}
\]

\[
= [z^n] \log \frac{1}{1-z} (-1)^{n-k} \sum_{r=0}^{n-k} \binom{n-k}{r} (-1)^{r} z^r = [z^n] \log \frac{1}{1-z} (-1)^{n-k} (1-z)^{n-k}.
\]
Processing the first and second piece

Returning to the residue in $v$ we find

$$\text{res}_v \frac{1}{v^{n+1}(1-v)^{n+1}} \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k}(1-z)^{n-k} v^{n-k}.$$ 

Evaluating at $k = n$ and substituting into the coefficient extractor in $z$ yields

$$\left(\frac{2n}{n}\right) H_n$$

which is our first piece. Restoring the coefficient extractor in $z$ will produce

$$[z^n] \log \frac{1}{1-z} \text{ res}_v \frac{1}{v^{n+1}(1-v)^{n+1}} \sum_{k=1}^{n-1} \binom{n}{k} (-1)^{n-k}(1-z)^{n-k-1} v^{n-k}$$

$$= -[z^n] \log \frac{1}{1-z} \text{ res}_v \frac{1}{v^{n+1}(1-v)^{n+1}} \sum_{k=1}^{n} \binom{n}{k-1} (-1)^{n-k}(1-z)^{n-k} v^{n+1-k}$$

$$= -\text{ res}_v \frac{1}{v^{n+1}(1-v)^{n+1}} \sum_{k=1}^{n} \binom{n}{k-1} \frac{1}{k} \binom{n}{k}^{-1} v^{n+1-k}$$

$$= -\sum_{k=1}^{n} \binom{n}{k-1} \frac{1}{k} \binom{n}{k}^{-1} \binom{n+k-1}{n}.$$ 

Observe that

$$\binom{n}{k-1} \frac{1}{k} \binom{n}{k}^{-1} = \frac{n! \times k! \times (n-k)!}{(n+1-k)! \times (k-1)! \times k \times n!}$$

$$= \frac{1}{n+1-k}$$

so that our second piece becomes

$$-\sum_{k=1}^{n} \frac{1}{n+1-k} \binom{n+k-1}{n} = -\sum_{k=1}^{n} \frac{1}{k} \binom{2n-k}{n}.$$

$$= -\sum_{k=1}^{n} \frac{1}{k} \frac{1}{n-k} (2n-k) = -[z^n](1+z)^{2n} \sum_{k=1}^{n} \frac{1}{k} \frac{z^k}{(1+z)^k}.$$ 

Here we may extend to infinity owing to the coefficient extractor:

$$-[z^n](1+z)^{2n} \log \frac{1}{1-z/(1+z)} = [z^n](1+z)^{2n} \log \frac{1}{1+z}$$

$$= \sum_{q=0}^{n-1} \binom{2n}{q} \frac{(-1)^{n-q}}{n-q}.$$ 

374
\[ [z^{2n}] \log \frac{1}{1 - z} \sum_{q=0}^{n-1} \binom{2n}{q} \binom{2n - q}{n - q} (-1)^q z^q (1 - z)^n. \]

Next observe that
\[ \binom{2n}{q} \binom{2n - q}{n - q} = \frac{(2n)!}{q! \times (n - q)! \times n!} = \binom{2n}{n} \binom{n}{q} \]
so we obtain
\[ [z^{2n}] \log \frac{1}{1 - z} (1 - z)^n \sum_{q=0}^{n-1} \binom{n}{q} (-1)^q z^q \]

Two parts of the second piece

The piece now splits into two subpieces, which are (without the central binomial coefficient)

\[ \text{res} \left. \left( -1 \right)^{n+1} \frac{1}{z^{n+1}} \log \frac{1}{1 - z} (1 - z)^n \right| z = w \]

and

\[ \text{res} \left. \left( -1 \right)^{2n} \frac{1}{z^{2n+1}} \log \frac{1}{1 - z} (1 - z)^{2n} \right| z = w \]

We put \( z / (1 - z) = w \) so that \( z = w / (1 + w) \) and \( dz = 1 / (1 + w)^2 \) \( dw \) to get

\[ \text{res} \left. \left( -1 \right)^n \frac{1}{w^{n+1}} \frac{1}{1 + w} \log \frac{1}{1 + w} \right| \frac{1}{1 - w} = \frac{1}{1 - w} \]

and

\[ - \text{res} \left. \left( -1 \right)^{2n} \frac{1}{w^{2n+1}} \frac{1}{1 + w} \log \frac{1}{1 + w} \right| \frac{1}{1 - w} = -\frac{1}{1 - w} \]

Collecting all three components we find

\[ \binom{2n}{n} H_n + \binom{2n}{n} H_n - \binom{2n}{n} H_{2n} \]

as claimed and we may conclude. Regarding this computation consult [76.100] for a generalization.

This problem has not appeared at math.stackexchange.com. It is from page 36 eqn. 3.125 of H.W. Gould’s Combinatorial Identities [Gou72].
76.90 Harmonic numbers and a double binomial coefficient

We seek to show that

\[ \sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n + k - 1}{k} H_k = \frac{(-1)^n}{n} \]

as well as

\[ \sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{n + k - 1}{k} H_{n+k-1} = \frac{(-1)^n}{n}. \]

**First identity**

The LHS is

\[ \sum_{k=0}^{n-1} (-1)^{n-k} \binom{n}{k} \binom{2n - 1 - k}{n - k} H_{n-k} \]

\[ = [z^n] \frac{1}{1-z} \log \frac{1}{1-z} \sum_{k=0}^{n-1} (-1)^{n-k} \binom{n}{k} \binom{2n - 1 - k}{n - k} z^k. \]

Here the contribution from \( k = n \) is zero and we may include this value in our sum:

\[ [z^n] \frac{1}{1-z} \log \frac{1}{1-z} \sum_{k=0}^{n-1} (-1)^{n-k} \binom{n}{k} \binom{2n - 1 - k}{n - k} w^k (1 + w)^{2n - 1} \]

\[ = [z^n] \frac{1}{1-z} \log \frac{1}{1-z} [w^n](1 + w)^{2n-1} \left[ -1 + \frac{wz}{1+w} \right]^n \]

\[ = [z^n] \frac{1}{1-z} \log \frac{1}{1-z} [w^n](1 + w)^{n-1} [-1 - w + wz]^n. \]

The contribution from \( w \) is

\[ \text{res}_{w} \frac{1}{w^{n+1}} (1+w)^{n-1} (-1-w+ wz)^n. \]

Now put \( w/(1+w) = v \) so that \( w = v/(1-v) \) and \( dw = 1/(1-v)^2 \ dv \) to get

\[ \text{res}_{v} \frac{1}{v^{n+1}} (1-v)^2 (-1 - v/(1-v) + vz/(1-v))^{n} \frac{1}{(1-v)^2} \]

\[ = \text{res}_{v} \frac{1}{v^{n+1}} (1-v)^n (-1 + vz)^n \]

376
\begin{equation*}
\begin{aligned}
\frac{1}{v^{n+1}(1-v)^n} \sum_{k=0}^{n} \binom{n}{k} (v-1)^k v^{n-k} (z-1)^{n-k} \\
= \frac{1}{v^{n+1}(1-v)^n} \sum_{k=0}^{n} \binom{n}{k} (v-1)^k v^{n-k} (-1)^{n-k} (1-z)^{n-k}.
\end{aligned}
\end{equation*}

Note that this makes for a zero contribution when \( k = n \). Recall from the previous section that with \( 1 \leq k \leq n \)
\begin{equation*}
\frac{1}{k} \binom{n}{k}^{-1} = [z^n] \log \frac{1}{1-z} (-1)^{n-k}(1-z)^{n-k}.
\end{equation*}

We get for the remaining sum on dividing by \( 1-z \) from the coefficient extractor in \( z \)
\begin{equation*}
\sum_{k=1}^{n-1} \binom{n}{k} (v-1)^k v^{n-k} (-1)^{n-k}(1-z)^{n-k-1} \\
= \frac{1}{n-1} \binom{n}{k-1} (v-1)^{k-1} v^{n+1-k} (-1)^{n-k}(1-z)^{n-k}.
\end{equation*}

Applying the coefficient extractor yields
\begin{equation*}
-\frac{1}{v^{n+1}(1-v)^n} \sum_{k=1}^{n} \binom{n}{k-1} (v-1)^{k-1} v^{n+1-k} \frac{1}{k} \binom{n}{k}^{-1}.
\end{equation*}

Observe that
\begin{equation*}
\binom{n}{k-1} \frac{1}{k} \binom{n}{k} = \frac{k! \times (n-k)!}{(k-1)! \times (n+1-k)! \times k} \\
= \frac{1}{n+1-k}.
\end{equation*}

We obtain
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{(n+1-k)} (-1)^{k} \binom{n-1}{k} \frac{1}{(1-v)^{n+1-k}} \\
= \sum_{k=1}^{n} \frac{1}{(n+1-k)} (-1)^{k} \binom{n-1}{k-1} \\
= [w^n] \log \frac{1}{1-w} \sum_{k=1}^{n} (-1)^{k-1} \binom{n-1}{k-1} w^{k-1} \\
= -[w^n] \log \frac{1}{1-w} (1-w)^{n-1} \\
= -\frac{1}{w^{n+1}} \log \frac{1}{1-w} (1-w)^{n-1}.
\end{equation*}

Now put \( w/(1-w) = v \) so that \( w = v/(1+v) \) and \( dw = 1/(1+v)^2 \ dv \) to get

\[377\]
This is the claim.

Second identity

Recapitulating the work from the first identity we find

\[ [z^{2n-1}] \frac{1}{1 - z} \log \frac{1}{1 - z} [w^n](1 + w)^{n-1}[-1 - w + wz]^n. \]

Start with the contribution from \( w \). It is given by

\[ \text{res}_w \frac{1}{w^{n+1}}(1 + w)^{n-1}[-1 - w + wz]^n. \]

We put \( w/(1 - w + wz) = v \) so that \( w = v/(v(z - 1) - 1) \) and \( dw = -1/(v(z - 1) - 1)^2 \) \( dv \) to get

\[-\text{res}_v \frac{1}{v^{n+1}}(v(z - 1) - 1) \frac{(vz - 1)^{n-1}}{(v(z - 1) - 1)^2} \frac{1}{(v(z - 1) - 1)^2} \]

\[ = (-1)^{n+1} \text{res}_v \frac{1}{v^{n+1}} \frac{(vz - 1)^{n-1}}{(1 - v(z - 1))^n}. \]

This is

\[ (-1)^{n+1} \sum_{q=0}^{n} \binom{n-1}{n-q} z^{n-q}(1)^{q-1} \binom{n-1+q}{q} (z-1)^q. \]

Here \( q = 0 \) makes no contribution by the first binomial coefficient and we have

\[ (-1)^n \sum_{q=1}^{n} \binom{n-1}{n-q} (1)^{q-1} \binom{n-1+q}{q} [z^{n+q-1}] \log \frac{1}{1 - z} (z - 1)^{q-1}. \]

Now we apply the quoted identity for inverse binomial coefficients replacing \( n \) by \( n + q - 1 \) and \( k \) by \( n \) to find

\[ (-1)^n \frac{1}{n} \sum_{q=1}^{n} \binom{n-1}{n-q} (1)^{q-1} \binom{n-1+q}{q} \binom{n+q-1}{n}^{-1}. \]

Observe that

\[ \binom{n-1+q}{q} \binom{n+q-1}{n}^{-1} = \frac{(n-1+q)! \times n! \times (q-1)!}{q! \times (n-1)! \times (n+q-1)!} = \frac{n}{q}. \]
so that we get for our sum

\[
(-1)^n \frac{1}{n} \sum_{q=1}^{n} \binom{n-1}{q-1} (-1)^{q-1} \frac{n}{q} = (-1)^{n+1} \frac{1}{n} \sum_{q=1}^{n} \binom{n}{q} (-1)^q
\]

\[
= (-1)^n \frac{1}{n} + \sum_{q=0}^{n} \binom{n}{q} (-1)^q = (-1)^n + (-1)^n = (-1)^n \frac{1}{n}.
\]

This is the claim. The identity is attributed to R. R. Goldberg.

This problem has not appeared at math.stackexchange.com. It is from pages 36 eqns. 3.123 and 3.124 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.91 Two instances of a harmonic number

We seek to show that

\[
\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \binom{n+k}{k} \frac{1}{k} = 2H_n.
\]

The LHS is

\[
\sum_{k=0}^{n-1} (-1)^{n-k-1} \binom{n}{k} \binom{2n-k}{n-k} \frac{1}{n-k}
\]

\[
= [z^n] \log \left( \frac{1}{1-z} \sum_{k=0}^{n-1} (-1)^{n-k-1} \binom{n}{k} \binom{2n-k}{n-k} z^k \right)
\]

\[
= [z^n] \log \left( \frac{1}{1-z} \left[ w^n(1+w)^{2n} \sum_{k=0}^{n-1} (-1)^{n-k-1} \binom{n}{k} \frac{w^k}{(1+w)^k} z^k \right] \right).
\]

Note that we get a zero contribution from \( k = n \) hence we may include it in our sum to obtain

\[
-[z^n] \log \left( \frac{1}{1-z} \left[ w^n(1+w)^{2n} \left( \frac{wz}{1+w} - 1 \right) \right]^n \right)
\]

\[
= -[z^n] \log \left( \frac{1}{1-z} \left[ w^n(1+w)^n \left( w(z-1) - 1 \right) \right] \right).
\]

Expanding the last powered term yields

\[
-[z^n] \log \frac{1}{1-z} \left[ w^n(1+w)^n \sum_{k=0}^{n} \binom{n}{k} (-1)^k w^{n-k} (z-1)^{n-k} \right].
\]

Recall from the previous section that with \( 1 \leq k \leq n \)

\[
\frac{1}{k} \binom{n}{k}^{-1} = [z^n] \log \left( \frac{1}{1-z} (-1)^k (1-z)^{n-k} \right).
\]

379
In order to apply this formula we first need the term for $k = 0$ from the sum where it does not apply. We get

$$- \operatorname{res}_z z^{n+1} \log \frac{1}{1 - z} (-1)^n (1 - z)^n.$$  

We put $z/(1 - z) = v$ so that $z = v/(1 + v)$ and $dz = 1/(1 + v)^2 \, dv$ to obtain

$$-(-1)^n \operatorname{res}_v v^{n+1} \log \frac{1}{1 - v/(1 + v)} (1 + v) \frac{1}{(1 + v)^2}$$

$$= (-1)^n \operatorname{res}_v v^{n+1} \frac{1}{1 + v} \log \frac{1}{1 + v}$$

$$= (-1)^n [v^n] \frac{1}{1 + v} \log \frac{1}{1 + v} = H_n.$$  

We have produced one instance of the harmonic number and thus the remaining sum must produce the second one. We find

$$-[v^n](1 + w)^n \sum_{k=1}^{n} \binom{n}{k} (-1)^k w^{n-k} \frac{1}{k} = - \sum_{k=1}^{n} \binom{n}{k} (-1)^k \frac{1}{k}$$

$$= -[z^n] \log \frac{1}{1 - z} \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} z^k.$$  

There is no contribution from $k = n$ and we get

$$-[z^n] \log \frac{1}{1 - z} (z - 1)^n = H_n.$$  

This is the term that we evaluated for the first instance and hence we get a second instance of $H_n$ which proves the claim.

This problem has not appeared at math.stackexchange.com. It is from page 36 eqn. 3.122 of H.W.Gould’s *Combinatorial Identities* [Gou72].

### 76.92 Legendre Polynomials

We seek to prove the following identities for Legendre polynomials where we first show that they are all equivalent and then connect them to the generating function

$$\sum_{n \geq 0} P_n(x) t^n = \frac{1}{\sqrt{1 - 2xt + t^2}}.$$  

The four identities are

$$P_n(x) = \frac{1}{2^n} \sum_{k=0}^{[n/2]} (-1)^k \binom{n}{k} \binom{2n - 2k}{n} x^{n-2k}.$$  

380
and
\[ P_n(x) = \left[ \frac{x - 1}{2} \right]^n \sum_{k=0}^{n} \binom{n}{k}^2 \left[ \frac{x + 1}{x - 1} \right]^k \]
as well as
\[ P_n(x) = (-1)^n \sum_{k=0}^{n} \binom{n}{k} \left( \frac{n + k}{k} \right) (-1)^k \left[ \frac{x + 1}{2} \right]^k. \]
and
\[ P_n(x) = \sum_{k=0}^{n} \binom{n}{k} \left( \frac{n + 1}{k} \right) \left[ \frac{x - 1}{2} \right]^k. \]

We get for the first identity
\[ \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \left( \frac{2n - 2k}{n - 2k} \right) x^{n-2k} \]
\[ = x^n \frac{z^n}{2^n} (1 + z)^2 \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \frac{z^{2k}}{(1 + z)^{2k}} \left( x + 1 \right)^{k} \]

Here the coefficient extractor enforces the upper limit of the sum and we may extend to infinity, getting
\[ \frac{x^n}{2^n} [z^n] (1 + z)^2 \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \frac{z^{2k}}{(1 + z)^{2k}} \left( x + 1 \right)^{k} \]
\[ = x^n \frac{z^n}{2^n} [z^n] (1 + z)^2 \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \frac{z^{2k}}{(1 + z)^{2k}} \]
\[ = x^n \frac{z^n}{2^n} \left( 1 + \frac{z}{2^n x^n} \right) \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \frac{z^{2k}}{(1 + z)^{2k}} \]

This is the second identity. Continuing we have
\[ \frac{1}{2^n x^n} \sum_{k=0}^{n} \binom{n}{k} \left( x + 1 \right)^k \left( \frac{n}{n-k} \right) (-1)^{n-k} x^k \]
\[ = \left[ \frac{x - 1}{2^n x^n} \right] \sum_{k=0}^{n} \binom{n}{k} \left[ \frac{x + 1}{x - 1} \right]^k. \]

Now we put \( z/(x + z(x + 1)) = w \) so that \( z = wx/(1 - w(x + 1)) \) and \( dz = x/(1 - w(x + 1))^2 \) \( dw \) to obtain
\[
\frac{1}{2^n \times x^n} \begin{pmatrix} n \times x \end{pmatrix} \frac{1}{w^{n+1}} \frac{1 - w(x + 1)}{x} \frac{x^n(1 - 2w)^n}{(1 - w(x + 1))^n} \frac{x}{(1 - w(x + 1))^2}
\]

\[
= \frac{1}{2^n} \begin{pmatrix} n \times x \end{pmatrix} \frac{1}{w^{n+1}} \frac{(1 - 2w)^n}{(1 - w(x + 1))^{n+1}}
\]

\[
= \frac{1}{2^n} \sum_{k=0}^{n} \binom{n + k}{k} (x + 1)^k \binom{n}{n - k} (-1)^{n-k} 2^{n-k}
\]

\[
= (-1)^n \sum_{k=0}^{n} \binom{n}{k} \binom{n + k}{k} (-1)^k \left[ \frac{x + 1}{2} \right]^k.
\]

This is the third identity. With an alternate substitution we put \(z/(x + z(x - 1)) = w\) so that \(z = wx/(1 - w(x - 1))\) and \(dz = x/(1 - w(x - 1))^2\ dw\) to obtain

\[
\frac{1}{2^n \times x^n} \begin{pmatrix} n \times x \end{pmatrix} \frac{1}{w^{n+1}} \frac{1 - w(x - 1)}{x} \frac{x^n(1 + 2w)^n}{(1 - w(x - 1))^n} \frac{x}{(1 - w(x - 1))^2}
\]

\[
= \frac{1}{2^n} \begin{pmatrix} n \times x \end{pmatrix} \frac{1}{w^{n+1}} \frac{(1 + 2w)^n}{(1 - w(x - 1))^n}
\]

\[
= \frac{1}{2^n} \sum_{k=0}^{n} \binom{n + k}{k} (x - 1)^k \binom{n}{n - k} 2^{n-k}
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} \binom{n + k}{k} \left[ \frac{x - 1}{2} \right]^k.
\]

This is the fourth identity.

**Connection to generating function**

For the remainder we compute

\[
[t^n] \frac{1}{\sqrt{1 - 2xt + t^2}} = [t^n] \frac{1}{\sqrt{1 - 4t(x/2 - t/4)}}
\]

\[
= [t^n] \sum_{k=0}^{n} \binom{2k}{k} (x/2 - t/4)^k = \sum_{k=0}^{n} \binom{2k}{k} [t^{n-k}](x/2 - t/4)^k
\]

\[
= \sum_{k=0}^{n} \binom{2k}{k} \binom{k}{n - k} (-1)^{n-k} 4^{k-n} 2^n 2^{-k} x^{2k-n}
\]

\[
= \frac{1}{2^n} \sum_{k=0}^{n} \binom{2k}{k} \binom{k}{n - k} (-1)^{n-k} x^{2k-n}.
\]

382
Observe that the second binomial coefficient is zero unless \(2k \geq n\). With this condition we have

\[
\binom{2k}{k} \binom{k}{n-k} = \frac{(2k)!}{k! (n-k)! (2k-n)!} = \binom{2k}{n} \binom{n}{k}.
\]

The first binomial coefficient enforces the range condition on \(k\) and there is no singular factorial. At last we have

\[
\frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{n} (-1)^{n-k} x^{2k-n} = \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} \binom{2n-2k}{n} (-1)^k x^{n-2k}
\]

which links us to the first identity, where with \(n\) not negative the condition \(2n - 2k \geq n\) or \(n \geq 2k\) enforces the upper range of the sum.

This problem has not appeared at math.stackexchange.com. It is from page 38 eqns. 3.133, 3.134 and 3.135 of H.W.Gould’s *Combinatorial Identities* [Gou72].

### 76.93 Legendre Polynomials and a square root

We seek to prove the following identity

\[
P_n(x) = \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} 2^{-k} \sqrt{x^2 - 1}^k \left[x - \sqrt{x^2 - 1}\right]^{n-k}
\]

as well as

\[
P_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \binom{2k}{k} 2^{-2k} x^{n-2k} (x^2 - 1)^k.
\]

Expanding the powered term we find for the RHS

\[
\sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} 2^{-k} \sqrt{x^2 - 1}^k \sum_{q=0}^{n-k} \binom{n-k}{q} (-1)^q \sqrt{x^2 - 1}^q x^{n-k-q}
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} 2^{-k} \sum_{q=0}^{n-k} \binom{n-k}{q} (-1)^q \sqrt{x^2 - 1}^q x^{n-k-q}
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} 2^{-k} \sum_{q=k}^{n} \binom{n-k}{q-k} (-1)^{q-k} \sqrt{x^2 - 1}^q x^{n-q}.
\]

Switching summations we obtain
\[
\sum_{q=0}^{n} x^{n-q} \sqrt{x^2 - 1} \sum_{k=0}^{q} \binom{n}{k} \binom{2k}{k} 2^{-k} \binom{n-k}{q-k} (-1)^{q-k}.
\]

Note that
\[
\binom{n}{k} \binom{n-k}{q-k} = \frac{n!}{k! \times (n-q)! \times (q-k)!} = \binom{n}{q} \binom{q}{k}
\]
so we have
\[
\sum_{q=0}^{n} \binom{n}{q} x^{n-q} \sqrt{x^2 - 1} \sum_{k=0}^{q} \binom{q}{k} \binom{2k}{k} 2^{-k} (-1)^{q-k}.
\]

Working with the inner sum we find
\[
\sum_{k=0}^{q} \binom{q}{k} \binom{2k}{k} 2^{k-q} (-1)^k
\]
\[
= [z^q](1 + z)^2q \sum_{k=0}^{q} \binom{q}{k} \frac{z^k}{(1+z)^2k} 2^{k-q} (-1)^k
\]
\[
= 2^{-q} [z^q] (1 + z)^2q \left(1 - \frac{2z}{(1+z)^2}\right)^q
\]
\[
= 2^{-q} [z^q] (1 + z^2)^q.
\]

This is zero when \(q\) is odd and
\(2^{-2p} [z^{2p}] (1 + z)^{2p} = 2^{-2p} [z^{2p}] (1 + z)^{2p} = 2^{-2p} (\frac{2p}{p})\) when \(q\) is even i.e. \(q = 2p\). We get for our sum (the second identity appears)
\[
\sum_{p=0}^{\lfloor n/2 \rfloor} \binom{n}{2p} x^{n-2p} (x^2 - 1)^p 2^{-2p} \binom{2p}{p}.
\]

This is
\[
x^n [z^n] (1 + z)^n \sum_{p=0}^{\lfloor n/2 \rfloor} z^{2p} x^{-2p} (x^2 - 1)^p 2^{-2p} \binom{2p}{p}.
\]

Here the coefficient extractor enforces the upper range of the sum and we may extend to infinity, getting
\[
x^n [z^n] (1 + z)^n \frac{1}{\sqrt{1 - z^2 (x^2 - 1)/x^2}}
\]
\[
= [z^n] (1 + xz)^n \frac{1}{\sqrt{1 - z^2 (x^2 - 1)}}
\]

384
\[ \text{res} \frac{1}{z^{n+1}} (1 + xz)^n \frac{1}{\sqrt{1 - z^2(x^2 - 1)}}. \]

Now we put \( z/(1+xz) = w \) so that \( z = w/(1-xw) \) and \( dz = 1/(1-xw)^2 \) \( dw \) to get

\[ \text{res} \frac{1}{w^{n+1}} (1 - xw) \frac{1}{\sqrt{1 - w^2(x^2 - 1)/(1-xw)^2}} \frac{1}{(1-xw)^2} \]
\[ = \text{res} \frac{1}{w^{n+1}} \frac{1}{\sqrt{(1-xw)^2 - w^2(x^2 - 1)}} \]
\[ = \text{res} \frac{1}{w^{n+1}} \frac{1}{1 - 2xw + w^2}. \]

This is precisely the OGF of the Legendre polynomials which concludes the proof.

This problem has not appeared at math.stackexchange.com. It is from page 39 eqns. 3.136 and 3.137 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.94 Legendre Polynomials and a double square root

We seek to prove the following four identities which form two pairs:

\[ \sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k} x^{2k} = 2^{2n} x^n P_n((x + 1/x)/2) \]
\[ = 2^{2n} \frac{2}{\pi} \int_{0}^{\pi/2} \left( x^2 \sin^2 t + \cos^2 t \right)^n \, dt. \]

and

\[ \sum_{k=0}^{n} \binom{-1/2}{k} \binom{-1/2}{n-k} x^{2k} = (-1)^n x^n P_n((x + 1/x)/2) \]
\[ = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{k-1/2}{n} x^{2k}. \]

#### First identity

We have by inspection for the LHS of the first identity

\[ [t^n] \frac{1}{\sqrt{1 - 4x^2 t}} \frac{1}{\sqrt{1 - 4t}}. \]

The RHS is by the OGF of the Legendre polynomials

\[ 2^{2n} x^n [t^n] \frac{1}{\sqrt{1 - 2 \times 1/2(x + 1/x)t + t^2}} \]

385
\[
= 2^{2n}[t^n] \frac{1}{\sqrt{1 - (x^2 + 1)t + x^2t^2}}
= [t^n] \frac{1}{\sqrt{1 - 4(x^2 + 1)t + 16x^2t^2}}.
\]

Now observe that
\[
(1 - 4x^2t)(1 - 4t) = 1 - 4(x^2 + 1)t + 16x^2t^2
\]
to conclude. For the trigonometric integral we get
\[
2^{2n} \frac{1}{2\pi} \int_0^{2\pi} (x^2 \sin^2 t + \cos^2 t)^n \, dt
= 2^{2n} \frac{1}{2\pi} \int_0^{2\pi} ((x^2 - 1)^n \sin^2 t + 1)^n \, dt
\]
We put \(z = \exp(it)\) so that \(dz = iz \, dt\) to obtain
\[
2^{2n} \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{z^{2n+1}} ((1 - x^2)(z^2 - 1)^2/4 + z^2)^n \, dz.
\]
Evaluating the residue yields a coefficient extractor:
\[
2^{2n} \frac{1}{2\pi} \int_{|z|=1} \frac{1}{z} ((x^2 - 1)((-1/z)/2i)^2 + 1)^n \frac{dz}{iz}
= 2^{2n} \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{z^{2n+1}} ((1 - x^2)(z^2 - 1)^2/4 + z^2)^n \, dz.
\]
Next we put \(z/(1 + z) = t\) so that \(z = t/(1 - t)\) and \(dz = 1/(1 - t)^2 \, dt\) to find
\[
2^{2n} \frac{1}{2\pi} \int_{|t|=1} \frac{1}{t^{n+1}} (1 - t) \frac{1}{\sqrt{1 + (1 - x^2)t/(1 - t)}} \frac{1}{(1 - t)^2}
= 2^{2n} \frac{1}{2\pi i} \int_{|t|=1} \frac{1}{t^{n+1}} \frac{1}{\sqrt{(1 - t)^2 + (1 - x^2)t(1 - t)}}
\]
386
Now \(1 - 2t + t^2 + (1 - x^2)t - (1 - x^2)t^2 = 1 - (x^2 + 1)t + x^2t^2\) and we have at last

\[
2^{2n}[t^n] = [t^n] \frac{1}{\sqrt{1 - (x^2 - 1)t + x^2t^2}}
\]

and we may conclude. Gould references R. P. Kelisky for this identity.

**Second identity**

The first part of the second identity is very similar to the first and we get for the LHS

\[
[t^n] \frac{1}{\sqrt{1 + x^2t}} \frac{1}{\sqrt{1 + t}}.
\]

We get for the RHS

\[
(-1)^n x^n[t^n] \frac{1}{\sqrt{1 - 2 \times 1/2(x + 1/x)t + t^2}}
= (-1)^n[t^n] \sqrt{1 - (x^2 + 1)t + x^2t^2}
= [t^n] \sqrt{1 + (x^2 + 1)t + x^2t^2}.
\]

Now observe that

\[
(1 + x^2t)(1 + t) = 1 + (x^2 + 1)t + x^2t^2
\]

to conclude. For the second part of the second identity we get

\[
[z^n] \frac{1}{\sqrt{1 + z}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (1 + z)^k x^{2k}
= [z^n] \frac{1}{\sqrt{1 + z}} (1 - x^2(1 + z))^n
= \text{res}_{z} \frac{1}{z^{n+1}} \frac{1}{\sqrt{1 + z}} (1 - x^2(1 + z))^n.
\]

Next we put \(z/(1 - x^2(1 + z)) = t\) to get \(z = t(1 - x^2)/(1 + x^2t)\) and \(dz = (1 - x^2)/(1 + x^2t)^2\) dt for

\[
\text{res}_{t} \frac{1}{t^{n+1}} \frac{1 + x^2t}{1 - x^2} \frac{1}{\sqrt{1 + t(1 - x^2)/(1 + x^2t)}(1 + x^2t)^2}
= \text{res}_{t} \frac{1}{t^{n+1}} \frac{1}{\sqrt{(1 + x^2t)^2 + t(1 - x^2)(1 + x^2t)}}
\]
The last step is to note that
\[(1 + x^2 t)^2 + t(1 - x^2)(1 + x^2 t)\]
\[= 1 + 2x^2 t + x^4 t^2 + t - x^2 t + x^2 t^2 - x^4 t^2\]
\[= 1 + (x^2 + 1)t + x^2 t^2.\]

We have a match of the generating function from the first part and may conclude.

These identities are from page 39 eqns. 3.138 and 3.139 of H.W.Gould's *Combinatorial Identities* [Gou72].

76.95  MSE 4304623

We have from first principles that
\[S_n = \sum_{r=0}^{n} \frac{1}{4^r} \binom{2r}{r} = \text{res}_{z} \frac{1}{z^{n+1} \frac{1}{1 - z\sqrt{1 - z}}}\]
and seek to use this to find a closed form of \(S_n\).

Now put \(1 - \sqrt{1 - z} = w\) so that \(z = w(2 - w)\) and \(dz = 2(1 - w) dw\) to get
\[
\text{res}_{w} \frac{1}{w^{n+1}(2-w)^{n+1} (1-w)^2 1-w} 2(1-w)\]
\[= 2(-1)^{n+1} \text{res}_{w} \frac{1}{w^{n+1}(w-2)^{n+1} (w-1)^2}.\]

The residue at infinity is zero by inspection so we need the residues at \(w = 1\) and \(w = 2\). For the former we get without the scalar in front
\[
\left. \left( \frac{1}{w^{n+1} (w-2)^{n+1}} \right) \right|_{w=1}
\[= \left. (n+1) \frac{1}{w^{n+2} (w-2)^{n+1}} - \frac{1}{w^{n+1} (n+1) (w-2)^{n+2}} \right|_{w=1}\]
\[= -(n+1)(-1)^{n+1} - (n+1)(-1)^{n+2} = 0.\]

With this our sum is minus the residue at \(w = 2\). We write
\[
2(-1)^{n} \text{Res}_{w=2} \frac{1}{((w-2)^{n+1} ((w-2) + 1)^2}
\[= \frac{(-1)^{n}}{2^n} \text{Res}_{w=2} \frac{1}{(1 + (w-2)/2)^{n+1} (w-2)^{n+1} (1 + (w-2))^2}.\]

This will produce
\[S_n = \frac{1}{2^n} \sum_{q=0}^{n} \binom{n + q}{n} \frac{1}{2^q} (n - q + 1).\]
First piece

Now we get two pieces here, where \( S_n = A_n + B_n \), the first is

\[
A_n = \frac{n + 1}{2^n} \text{Res}_{z=0} \left( \frac{1}{z^{n+1}} \frac{1}{1 - z} \frac{1}{(1 - z/2)^{n+1}} \right)
\]

\[
= (-1)^n 2(n + 1) \text{Res}_{z=0} \left( \frac{1}{z^{n+1}} \frac{1}{z - 1} \frac{1}{(z - 2)^{n+1}} \right).
\]

We evaluate this using the residues at \( z = 1 \) and \( z = 2 \). We get for the former the value \(-2(n + 1)\). We write for the latter

\[
(-1)^n 2(n + 1) \text{Res}_{z=2} \left( \frac{1}{((z - 2) + 2)^{n+1}} \frac{1}{(z - 2) + 1} \frac{1}{(z - 2)^{n+1}} \right)
\]

\[
= (-1)^n \frac{n + 1}{2^n} \text{Res}_{z=2} \left( \frac{1}{((z - 2)/2 + 1)^{n+1}} \frac{1}{(z - 2) + 1} \frac{1}{(z - 2)^{n+1}} \right)
\]

This yields

\[
(-1)^n \frac{n + 1}{2^n} \sum_{q=0}^{n} \binom{n + q}{q} (-1)^q \frac{1}{2^q} (-1)^{n-q}.
\]

Simplify to obtain \( A_n \). With residues adding to zero, we have established that for the first piece \( A_n \) it evaluates to \( A_n = n + 1 \).

Second piece

For the second piece we find

\[
B_n = -\frac{n + 1}{2^n} \sum_{q=1}^{n} \binom{n + q}{n + 1} \frac{1}{2^q} = -\frac{n + 1}{2^{n+1}} \sum_{q=0}^{n-1} \binom{n + 1 + q}{n + 1} \frac{1}{2^q}
\]

\[
= -\frac{n + 1}{2^{n+1}} \text{Res}_{z=0} \left( \frac{1}{z^n} \frac{1}{1 - z} \frac{1}{(1 - z/2)^{n+2}} \right)
\]

\[
= (-1)^n 2(n + 1) \text{Res}_{z=0} \left( \frac{1}{z^n} \frac{1}{z - 1} \frac{1}{(z - 2)^{n+2}} \right).
\]

Again evaluate using residues at \( z = 1 \) and \( z = 2 \). We get for the former the value \( 2(n + 1) \). For the latter we write

\[
(-1)^n \frac{n + 1}{2^{n-1}} \text{Res}_{z=2} \left( \frac{1}{((z - 2)/2 + 1)^n} \frac{1}{(z - 2) + 1} \frac{1}{(z - 2)^{n+2}} \right)
\]

This yields

\[
(-1)^n \frac{n + 1}{2^{n-1}} \sum_{q=0}^{n+1} \binom{n - 1 + q}{q} (-1)^q \frac{1}{2^q} (-1)^{n+1-q}
\]

389
\[ n + 1 \sum_{q=0}^{n-1} \binom{n-1+q}{q} \frac{1}{2^n} n + 1 \binom{2n-1}{n} - n + 1 \binom{2n}{n+1}. \]

The sum is
\[ \frac{n + 1}{2^{n-1}} A_{n-1} \frac{2^{n-1}}{n} = -(n + 1) \]
hence piece \( B_n \) evaluates as
\[ \frac{n + 1}{2^{2n-1}} \binom{2n-1}{n} + \frac{n + 1}{2^{2n}} \binom{2n}{n+1} - (n + 1). \]

**Conclusion**

Adding the two pieces we have shown that
\[ S_n = \frac{2n + 1}{2^n} \frac{2n}{n} = \left( n + 1/2 \right) \]
as claimed. This may be seen from (evaluate LHS)
\[ (2n + 1)[z^n] \frac{1}{\sqrt{1-z}} = (2n + 1) \binom{-1/2}{n} (-1)^n \]
\[ = (2n + 1) \binom{n - 1/2}{n} = \binom{n + 1/2}{n}. \]

This was math.stackexchange.com problem 4304623.

**76.96 Legendre Polynomials, trigonometric terms and a contour integral**

We seek to prove the following three identities:
\[ P_n(x) = \frac{1}{\pi} \int_0^\pi (x + \sqrt{x^2 - 1} \times \cos t)^n \ dt \]
and for positive integer \( m > n \)
\[ P_n(x) = \frac{1}{m} \sum_{k=0}^{m-1} \left( x + \sqrt{x^2 - 1} \times \cos \frac{2\pi k}{m} \right)^n. \]

as well as
\[ P_n(x) = \frac{1}{2^n} \frac{1}{2\pi i} \int_{|t-x|=\epsilon} \frac{(t^2 - 1)^n}{(t-x)^{n+1}} \ dt. \]
First identity

We get for the first one by symmetry

\[ \frac{1}{2\pi} \int_0^{2\pi} (x + \sqrt{x^2 - 1} \times \cos t)^n \, dt. \]

Now we put \( z = \exp(it) \) so that \( dt = \frac{dz}{iz} \) to obtain

\[ \frac{1}{2\pi i} \int_{|z|=1} \left( xz + \sqrt{x^2 - 1} \times (z^2 + 1)/2 \right)^n \, dz. \]

Computing the residue we find

\[ [z^n] \sum_{q=0}^{n} \binom{n}{q} x^{n-q} \frac{1}{z^q} \sqrt{x^2 - 1} (z^2 + 1)^q / 2^q \]

The only contribution comes from even \( q = 2p \) and we get

\[ \sum_{p=0}^{\lfloor n/2 \rfloor} \binom{n}{2p} x^{n-2p} (x^2 - 1)^p q(z^2 + 1)^{2p} / 2^{2p} \]

Second identity

Starting with the second identity we have

\[ \frac{1}{m} \sum_{k=0}^{m-1} \sum_{q=0}^{n} \binom{n}{q} x^{n-q} \sqrt{x^2 - 1} \cos^q \frac{2\pi k}{m} \]

For the inner sum we introduce \( \rho = \exp(2\pi i/m) \) so that it becomes
\[
\frac{1}{m} \sum_{k=0}^{m-1} (\rho^k + \rho^{-k})^{\frac{1}{2q}} \left( 1 - \frac{1}{2q} \right) m \sum_{k=0}^{m-1} \text{Res}_{z=\rho^k} \left( z + \frac{1}{z} \right)^q \frac{m/z^{m-1}}{z^m - 1}
\]

\[
= \frac{1}{2q} \frac{1}{m} \sum_{k=0}^{m-1} \text{Res}_{z=\rho^k} \left( z + \frac{1}{z} \right)^q \frac{m/z}{z^m - 1} = \frac{1}{2q} \text{Res}_{z=0} \frac{1}{z^{q+1}} (z^2 + 1)^q \frac{1}{1 - z^m}.
\]

This is

\[
\frac{1}{2q} (z^q)(z^2 + 1)^q \frac{1}{1 - z^m}.
\]

Note however that \( q \leq n < m \) as given in the statement of the identity so that only the constant term from \( \frac{1}{1 - z^m} \) contributes, which yields

\[
\frac{1}{2q} (z^q)(z^2 + 1)^q.
\]

This requires \( q = 2p \) and we get

\[
\frac{1}{2q} (z^{2p})(1 + z^2)^{2p} = \frac{1}{22p} (z^p)(1 + z)^{2p} = \frac{1}{22p} \left( \frac{2p}{p} \right).
\]

Substituting this into the sum we obtain the same closed form as in the first identity and may conclude. This is credited to I.J. Good.

**Third identity**

We require the derivative

\[
\frac{1}{n!} \left( (t - 1)^n(t + 1)^n \right)^{(n)}
\]

which by the Leibniz rule is

\[
\frac{1}{n!} \sum_{q=0}^{n} \binom{n}{q} \frac{n!}{(n-q)!} (t-1)^{n-q} n! q! (t+1)^q
\]

\[
= \sum_{q=0}^{n} \binom{n}{q}^2 (t-1)^{n-q}(t+1)^q.
\]

Using the derivative to evaluate the contour integral by the Cauchy Residue Theorem we obtain

\[
P_n(x) = \frac{1}{2n} \sum_{q=0}^{n} \binom{n}{q}^2 (x-1)^{n-q}(x+1)^q
\]

\[
= \left[ \frac{x-1}{2} \right]^n \sum_{q=0}^{n} \binom{n}{q}^2 \left[ \frac{x+1}{x-1} \right]^q.
\]
This is one of the entries in the list from section 76.92 and we may conclude. This is credited to L. Schläfi.

These identities are from page 39 eqns. 3.139 and 3.140 of H.W.Gould’s *Combinatorial Identities* [Gou72].

### 76.97 Sum independent of a variable

We seek to show that

\[
\sum_{k=0}^{n} \binom{x + ky}{k} \binom{p - x - ky}{n - k} = \begin{cases} 
  y^{p+1}(y - 1)^{n-p-1}, & 0 \leq p \leq n - 1 \\
  \frac{y^{n+2}-1}{y-1}, & p = n. 
\end{cases}
\]

As both sides are polynomials in \(x\) and \(y\) we may prove it for positive integer values for \(x\) and \(y\) and it then holds for all i.e. complex \(x\) and \(y\). We have for the LHS

\[
[z^n](1+z)^{p-x} \sum_{k \geq 0} \binom{x + ky}{k} z^k \frac{1}{(1+z)^{ky}}
\]

Here we have extended to infinity because the coefficient extractor enforces the upper range of the sum. Now note that

\[
\binom{x + ky}{k} = \text{res}_w (1+w)^x \frac{(1+w)^{ky}}{w^{k+1}}.
\]

Next introduce \(w/(1+w)^y = v\) and let the inverse be \(w = f(v)\) so that \(f(v)/(1+f(v))^y = v\) and the binomial coefficient becomes

\[
\text{res}_v \frac{1}{v^{k+1}} (1+f(v))^{x-y} f'(v)
\]

Substitute into our sum to get

\[
[z^n](1+z)^{p-x} \sum_{k \geq 0} z^k \frac{1}{(1+z)^{ky}} [v^k] (1+f(v))^{x-y} f'(v)
\]

\[
= [z^n](1+z)^{p-y} f'(z/(1+z)^k).
\]

We also have

\[
1 = f'(v)/(1+f(v))^y - yf(v)/(1+f(v))^{y+1} f'(v)
\]

or

\[
f'(v) = (1+f(v))^{y+1}/(1 - f(v)(y-1)).
\]

This gives for the sum

\[
[z^n](1+z)^{p+1} \frac{1}{1-z(y-1)}.
\]
With \(0 \leq p \leq n - 1\) this is
\[
\sum_{q=0}^{p+1} \binom{p+1}{q} (y-1)^{n-q} = (y-1)^n \left(1 + \frac{1}{y-1}\right)^{p+1} = (y-1)^{n-p-1} y^{p+1}
\]
as claimed. For \(p \geq n\) we get
\[
\sum_{q=0}^{n} \binom{p+1}{q} (y-1)^{n-q}
\]
which for \(p = n\) works out to
\[
-\frac{1}{y-1} + (y-1)^n \left(1 + \frac{1}{y-1}\right)^{n+1} = -\frac{1}{y-1} + \frac{y^{n+1}}{y-1} = \frac{y^{n+1} - 1}{y-1}
\]
also as claimed.

This problem is from page 41 eqn. 3.145 of H.W.Gould’s *Combinatorial Identities* [Gou72].

### 76.98 Polynomial in three variables

We seek to show that
\[
\sum_{k=0}^{n} \binom{x + kt}{k} \binom{y - kt}{n - k} = \sum_{k=0}^{n} \binom{x + y - k}{n - k} t^k.
\]

As both sides are polynomials in \(x, y\) and \(t\) we may prove it for positive integer values for \(x, y\) and \(t\) and it then holds for all i.e. complex \(x, y\) and \(t\). We have for the LHS
\[
[z^n](1+z)^y \sum_{k \geq 0} \binom{x + kt}{k} \frac{z^k}{(1+z)^{kt}}
\]

Here we have extended to infinity because the coefficient extractor enforces the upper range of the sum. Now note that
\[
\binom{x + kt}{k} = \res_{w} (1+w)^x \frac{(1+w)^{kt}}{w^{k+1}}.
\]
Next introduce \(w/(1+w)^t = v\) and let the inverse be \(w = f(v)\) so that \(f(v)/(1+f(v))^t = v\) and the binomial coefficient becomes
\[
\res_{v} \frac{1}{e^{k+1}} (1+f(v))^{z-t} f'(v)
\]

394
Substitute into our sum to get

\[
[z^n](1 + z)^y \sum_{k \geq 0} \frac{z^k}{(1 + z)^k} [v^k](1 + f(v))^{x-t} f'(v)
\]

\[
= [z^n](1 + z)^{x+y-t} f'(z/(1 + z)^k).
\]

We also have

\[
1 = f'(v)/(1 + f(v))^t - tf(v)/(1 + f(v))^{t+1} f'(v)
\]

or

\[
f'(v) = (1 + f(v))^{t+1}/(1 - f(v)(t - 1)).
\]

This gives for the sum

\[
[z^n](1 + z)^{x+y+1} \frac{1}{1 - z(t - 1)}.
\]

This duplicates the calculation from the previous section. We may also write

\[
[z^n](1 + z)^{x+y} \frac{1}{1 - tz/(1 + z)} = [z^n](1 + z)^{x+y} \sum_{k=0}^{n} t^k \frac{z^k}{(1 + z)^k}
\]

\[
= \sum_{k=0}^{n} \binom{x+y-k}{n-k} t^k
\]

which is the claim.

This problem is from page 41 eqn. 3.144 of H.W.Gould’s Combinatorial Identities [Gou72].

76.99 An identity by Van der Corput

We seek to show that

\[
\sum_{k=1}^{n-1} \binom{kx}{k} \binom{nx-kx}{n-k} \frac{1}{kx(nx-kx)} = \frac{2}{nx} \binom{nx}{n} \sum_{k=1}^{n-1} \frac{1}{nx-n+k}.
\]

As we get a polynomial in \( x \) on multiplication by \( x^2 \) we may prove it for \( x \) a positive integer and it then holds for all i.e. complex \( x \). Observe how the binomial coefficient cancels the rational terms.
First phase

A first simplification we can make to the LHS is

\[
\frac{2}{n^2x^2} \sum_{k=1}^{n-1} \binom{kx}{k} \frac{(nx-kx)}{n-k} \frac{1}{k}
\]

\[= - \frac{2}{n^2x^2} \binom{nx}{n} + \frac{2}{nx} \sum_{k=1}^{n} \frac{1}{k} \binom{kx-1}{k-1} \frac{(nx-kx)}{n-k}
\]

\[= - \frac{2}{n^2x^2} \binom{nx}{n} + \frac{2}{nx} \zeta(n) \binom{nx}{n} \sum_{k \geq 1} \frac{1}{k} \binom{kx-1}{k-1} \frac{x^k}{(1+z)^{kx}}.
\]

Here we have extended the sum to infinity because the coefficient extractor enforces the upper range. Observe that

\[\binom{kx-1}{k-1} = \text{res}_w \frac{1}{w^k (1+w)^{kx-1}}.
\]

Next introduce \(w/(1+w)^x = v\) and let the inverse be \(w = f(v)\) so that \(f(v)/(1+f(v))^x = v\) and the binomial coefficient becomes

\[\text{res}_v \frac{1}{v^k (1+f(v))} f'(v).
\]

Substitute into our sum to get

\[\frac{2}{nx} \zeta(n) (1+z)^{nx} \sum_{k \geq 1} \frac{z^k}{(1+z)^{kx}} \frac{1}{k} \binom{v^{k-1}}{k} \frac{1}{1+f(v)} f'(v)
\]

Integrating the functional term in \(v\) yields

\[-\log \frac{1}{1+f(v)}.
\]

Note that owing to \(f(0) = 0\) we did not pick up a constant. Substitute once more to obtain

\[-\frac{2}{nx} \zeta(n) (1+z)^{nx} \log \frac{1}{1+z}.
\]

We get without the scalar and using that \(x\) is a positive integer

\[\sum_{q=0}^{n-1} \binom{nx}{q} (-1)^{n-q} \frac{1}{n-q}.
\]
Second phase

Recall from section 76.89 that with \(1 \leq k \leq n\)
\[
\binom{n}{k}^{-1} = \left[z^n\right] \log \frac{1}{1 - z} (-1)^{n-k}(1 - z)^{n-k}.
\]

We let \(n\) be \(nx - q\) and \(k\) be \(n - q\) and obtain
\[
\left[z^{nx}\right] \log \frac{1}{1 - z} \sum_{q=0}^{n-1} \binom{n}{q} (-1)^{nx-q} \binom{n}{n-q} (1 - z)^{nx-nz^q}.
\]

Next observe that
\[
\binom{n}{q} \frac{(nx)!}{q! (n-q)! (nx-n)!} = \binom{n}{q} \binom{n}{n}
\]
Working with the remainder of the sum,
\[
\sum_{q=0}^{n-1} \binom{n}{q} (-1)^{nx-q} z^q = (-1)^{nx-n} z^n + (-1)^{nx} (1 - z)^n.
\]

Just to recapitulate, we are now left with two pieces, the first being
\[
\frac{2}{nx} \binom{n}{n} [z^{nx-n}] (-1)^{nx-n} \log \frac{1}{1 - z} (1 - z)^{nx-n}
\]
and
\[
-\frac{2}{nx} \binom{n}{n} [z^{nx}] (-1)^{nx} \log \frac{1}{1 - z} (1 - z)^{nx}.
\]

We are therefore tasked with
\[
\text{res} \frac{1}{z^{m+1}} \log \frac{1}{1 + z} (1 + z)^m.
\]

We use the standard substitution \(z/(1 + z) = w\) so that \(z = w/(1 - w)\) and \(dz = 1/(1 - w)^2\ dw\) to get
\[
\text{res} \frac{1}{w^{m+1}} \log \frac{1}{1 + w/(1 - w)} (1 - w) \frac{1}{(1 - w)^2}
\]
\[
= \text{res} \frac{1}{w^{m+1}} \frac{1}{1 - w} \log(1 - w) = -H_m.
\]

Collecting everything we have so far we get
\[
-\frac{2}{n^2} \binom{n}{n} (H_{nx} - H_{nx-n}).
\]

The top term from the first harmonic number is canceled and we have at last
We want to manipulate this to obtain a rational function in $x$ with the variable $x$ not in the summation limits so we write for the harmonic numbers

$$\sum_{k=nx-n+1}^{nx-1} \frac{1}{k} = \sum_{k=-n+1}^{-1} \frac{1}{nx+k}$$

and we get

$$\frac{2}{nx} \binom{nx}{n} \sum_{k=1}^{n-1} \frac{1}{nx-k} = \frac{nx}{n} \sum_{k=1}^{n} \frac{1}{nx-n+k}$$

as claimed.

This problem is from page 41 eqn. 3.147 of H.W. Gould’s *Combinatorial Identities* [Gou72]. It was credited to Van der Corput.

**76.100** MSE 4316307: Logarithm, binomial coefficient and harmonic numbers

We seek to show that

$$[z^n] \frac{1}{(1-z)^{n+1}} \log \frac{1}{1-z} = \binom{n+\alpha}{n} (H_{n+\alpha} - H_{\alpha}).$$

with $\alpha$ a non-negative integer.

Recall from section 76.89 that with $1 \leq k \leq n$

$$\frac{1}{k} \binom{n}{k}^{-1} [z^n] \log \frac{1}{1-z} (-1)^{n-k}(1-z)^{n-k}.$$  

We get for the LHS from first principles that it is (apply identity setting $n$ to $n+\alpha$)

$$\sum_{q=1}^{n} \binom{n-q+\alpha}{n-q} \frac{1}{q}$$

$$= [z^{n+\alpha}] \log \frac{1}{1-z} \sum_{q=1}^{n} \binom{n+\alpha}{q} \binom{n-q+\alpha}{\alpha} (-1)^{\alpha-q}(1-z)^{n+\alpha-q}.$$ 

Note that for $q = 0$ we get

$$\binom{n+\alpha}{\alpha} \frac{1}{1-z} (-1)^{n+\alpha}(1-z)^{n+\alpha}.$$
This will be our first piece. We include it in our sum at this time. Next observe that

\[
\binom{n+\alpha}{q} \binom{n-q+\alpha}{\alpha} = \frac{(n+\alpha)!}{q! \times \alpha! \times (n-q)!} = \binom{n+\alpha}{q}.
\]

We have for the augmented sum without the binomial scalar in front

\[
[z^{n+\alpha}] \log \frac{1}{1-z} \sum_{q=0}^{n} \binom{n}{q} (z-1)^{n+\alpha-q} = [z^{n+\alpha}] \log \frac{1}{1-z}(z-1)^{n+\alpha} \left[ 1 + \frac{1}{z-1} \right]^{n} = [z^{n+\alpha}] \log \frac{1}{1-z}(z-1)^{\alpha}z^{n} = [z^{\alpha}] \log \frac{1}{1-z}(z-1)^{\alpha}.
\]

This is the second piece. Now to evaluate these two pieces we evidently require

\[
\operatorname{res}_{z} \frac{1}{z^{m+1}} \log \frac{1}{1-z}(-1)^{m}(1-z)^{m}.
\]

This was evaluated e.g. in section 76.99 and found to be $-H_{m}$. Hence our first piece is $-\binom{n+\alpha}{\alpha} H_{n+\alpha}$ while the second is $-\binom{n+\alpha}{\alpha} H_{\alpha}$. Subtract the first from the second to obtain our claim,

\[
\binom{n+\alpha}{n} (H_{n+\alpha} - H_{\alpha}).
\]

This was \url{math.stackexchange.com} problem 4316307.

\section*{76.101 An identity credited to Chung}

We seek to show that

\[
\sum_{k=1}^{n} \frac{1}{k} \binom{kx-2}{k-1} \binom{nx-kx}{n-k} = \frac{1}{x} \binom{nx}{n}.
\]

As we get a polynomial in $x$ on both sides we may prove it for $x$ a positive integer and it then holds for all i.e. complex $x$. Observe how the binomial coefficient cancels the rational term.

We have from first principles for the LHS

\[
[z^{n}](1+z)^{nx} \sum_{k \geq 1} \frac{1}{k} \binom{kx-2}{k-1} \frac{z^{k}}{(1+z)^{kx}}.
\]

Here we have extended the sum to infinity because the coefficient extractor enforces the upper range. Observe that
\[
\binom{kx-2}{k-1} = \text{res}_w \frac{1}{w^k(1 + w)^{kx-2}}.
\]

Next introduce \(w/(1 + w)^x = v\) and let the inverse be \(w = f(v)\) so that \(f(v)/(1 + f(v))^x = v\) and the binomial coefficient becomes
\[
\text{res}_v \frac{1}{v^k (1 + f(v))^2} f'(v).
\]
Substitute into our sum to get
\[
[z^n](1 + z)^{nx} \sum_{k \geq 1} \frac{z^k}{(1 + z)^{kx}} \frac{1}{k} [v^{k-1}] \frac{1}{(1 + f(v))^2} f'(v)
\]

Integrating the functional term in \(v\) yields
\[
1 - \frac{1}{1 + f(v)}.
\]
We have picked up a constant minus one which we have canceled. Continuing,
\[
[z^n](1 + z)^{nx} \left( 1 - \frac{1}{1 + z} \right) = [z^{n-1}](1 + z)^{nx-1} = \binom{nx - 1}{n - 1} = \frac{1}{x} \binom{nx}{n}.
\]

This problem is from page 41 eqn. 3.148 of H.W.Gould’s Combinatorial Identities [Gou72]. It was credited to Chung.

**76.102 A Catalan number convolution**

In seeking to evaluate where the sum is zero when \(n < 2\)
\[
\sum_{k=1}^{\lfloor n/2 \rfloor} 2^{n-2k} \binom{n-2}{n-2k} \frac{1}{k} \left( \frac{2k}{k-1} \right)
\]
we recognize the Catalan number and obtain
\[
\sum_{k=1}^{\lfloor n/2 \rfloor} 2^{n-2k} \binom{n-2}{n-2k} [z^k] \frac{1 - \sqrt{1 - 4z}}{2}
\]
\[
= [w^n](1 + w)^{n-2} \sum_{k=1}^{\lfloor n/2 \rfloor} 2^{n-2k} w^{2k} [z^k] \frac{1 - \sqrt{1 - 4z}}{2}.
\]
We get a zero contribution when \(k = 0\) from the coefficient extractor in \(z\) as well as when \(2k > n\) from the coefficient extractor in \(w\) so we may extend the sum to

400
\[
2^n[w^n](1 + w)^{n-2} \sum_{k \geq 0} 2^{-2k} w^{2k}[z^k] \frac{1 - \sqrt{1 - 4z}}{2} \\
= 2^n[w^n](1 + w)^{n-2} \frac{1 - \sqrt{1 - w^2}}{2}.
\]

This is
\[
2^n \text{res}_w \frac{1}{w^{n+1}} (1 + w)^{n-2} \frac{1 - \sqrt{1 - w^2}}{2}.
\]

Now we put \(w/(1 + w) = v\) so that \(w = v/(1 - v)\) and \(dw = 1/(1 - v)^2\ dv\) to get
\[
2^n \text{res}_v \frac{1}{v^{n+1}} (1 - v)^3 \frac{1 - \sqrt{1 - v^2}/(1 - v)^2}{2} \frac{1}{(1 - v)^2} \\
= 2^n[v^n] 1 - v - \sqrt{1 - 2v} = [v^n] 1 - 2v - \sqrt{1 - 4v} \\
= [v^{n-1}] \frac{1 - 2v - \sqrt{1 - 4v}}{2v} = [v^{n-1}](1 + 1 - \sqrt{1 - 4v})/2v.
\]

This is the Catalan number \(C_{n-1}\) when \(n \geq 2\) and when \(n = 1\) we get \(-1 + C_0 = 0\).

This was math.stackexchange.com problem 4317353.

### 76.103 Odd index binomial coefficients

We seek to show that
\[
\sum_{k=0}^{n-1} \binom{2x}{2k+1} \binom{x - k - 1}{n - k - 1} = \frac{n}{x + n} 2^{2n} \binom{x + n}{2n}
\]
and
\[
\sum_{k=0}^{n} \binom{2x}{2k+1} \binom{x - k - 1}{n - k} = \frac{x + n}{2n + 1} 2^{2n+1} \binom{x + n - 1}{2n}.
\]

As these are polynomials in \(x\) on the LHS and the RHS we may prove them for positive \(x \geq n\) and we then have the results for all i.e. complex \(x\).

**First identity**

We get for the LHS
\[
[z^{x-n}] \frac{1}{(1 - z)^n} \sum_{k \geq 0} \frac{2x}{2k + 1} (1 - z)^k.
\]
Here we have extended to infinity because the remaining binomial coefficient enforces \( x \geq k + 1/2 \) so that with \( k \geq n \) the term \( [z^{x-n}](1 - z)^{k-n} \) is zero. Continuing,

\[
[z^{x-n}]{\frac{1}{(1 - z)^n}} \frac{1}{\sqrt{1 - z}} \sum_{k \geq 0} \left( \frac{2x}{2k + 1} \right) (1 - z)^{k+1/2} = [z^{x-n}]{\frac{1}{(1 - z)^n}} \frac{1}{\sqrt{1 - z}} \sum_{k \geq 0} \left( \frac{2x}{k} \right) (1 - z)^{k/2} \frac{1 - (-1)^k}{2}
\]

\[
= \frac{1}{2} \text{res}_z \frac{1}{z^{x-n+1}} \frac{1}{(1 - z)^n} \frac{1}{\sqrt{1 - z}} \left[(1 + \sqrt{1 - z})^{2x} - (1 - \sqrt{1 - z})^{2x}\right].
\]

Now put \( 1 - \sqrt{1 - z} = u \) so that \( z = u(2 - u) \) and \( dz = 2(1 - u) \, du \) to get

\[
\text{res}_u \frac{1}{u^{x-n+1}} \frac{1}{(2 - u)^{x-n+1}} \frac{1}{(1 - u)^{2n+1}} [(2 - u)^{2x} - u^{2x}] (1 - u).
\]

The second term in the square bracket cancels the pole at zero and hence we are left with

\[
\text{res}_u \frac{1}{u^{x-n+1}} \frac{1}{(1 - u)^{2n}} (2 - u)^{x+n-1}.
\]

This is

\[
\sum_{k=0}^{x-n} \binom{2n + k - 1}{2n - 1} \binom{x + n - 1}{x - n - k} (-1)^{x-n-k} 2^{2n-1+k}.
\]

Observe that

\[
\binom{2n + k - 1}{2n - 1} \binom{x + n - 1}{x - n - k} = \frac{(x + n - 1)!}{(2n - 1)! \times k! \times (x - n - k)!} = \binom{x + n - 1}{2n - 1} \binom{x - n}{k}
\]

Substitute into the sum to get

\[
(-1)^{x-n} 2^{2n-1} \binom{x + n - 1}{2n - 1} \sum_{k=0}^{x-n} \binom{x - n}{k} (-1)^k 2^k = 2^{2n-1} \binom{x + n - 1}{2n - 1}
\]

\[
= 2^{2n-1} \frac{2n}{x + n} \binom{x + n}{2n} = 2^{2n} \frac{n}{x + n} \binom{x + n}{2n}.
\]

This is the claim.
Second identity

This is obviously very similar to the first. Here we prove it for \( x \geq n + 1 \). We find

\[
[z^{x-n-1}] \frac{1}{(1-z)^{n+1}} \sum_{k \geq 0} \binom{2x}{2k+1} (1 - z)^k.
\]

The binomial coefficient once more enforces \( x \geq k+1/2 \) so that with \( k \geq n+1 \) the term \([z^{x-n-1}](1 + z)^{k-n-1}\) is zero. Repeating the previous computation we obtain

\[
\text{res}_{u} \frac{1}{u^{x-n}} \frac{1}{(1-u)^{2n+2}} (2 - u)^{x+n}.
\]

This is

\[
\sum_{k=0}^{x-n-1} \binom{2n+k+1}{2n+1} \binom{x+n}{x-n-1-k} (-1)^{x-n-1-k} 2^{2n+1+k}.
\]

We once more observe that

\[
\binom{2n+k+1}{2n+1} \binom{x+n}{x-n-1-k} = \frac{(x+n)!}{(2n+1)! \times k! \times (x-n-1-k)!} = \binom{x+n}{2n+1} \binom{x-n-1}{k}.
\]

Substitute into the sum to get

\[
(-1)^{x-n-1} 2^{2n+1} \binom{x+n}{2n+1} \sum_{k=0}^{x-n-1} \binom{x-n-1}{k} (-1)^k 2^k = 2^{2n+1} \binom{x+n}{2n+1} \binom{x+n-1}{2n}.
\]

We have the claim.

This problem is from page 42 eqns. 3.157 and 3.158 of H.W.Gould’s Combinatorial Identities [Gou72].

76.104 A sum of inverse binomial coefficients

We seek to show that

\[
\sum_{k=1}^{a-b} \frac{(a-b-k)!}{(a+1-k)!} = \frac{1}{b} \left[ \frac{1}{a!} - \frac{(a-b)!}{a!} \right]
\]

Recall from section 76.89 the following identity which was proved there: with \( 1 \leq k \leq n \)
\[
\binom{n}{k}^{-1} = k[z^n] \log \frac{1}{1 - z} (-1)^{n-k} (1 - z)^{n-k}.
\]

We thus have with positive integers \(a, b\) where \(a - b \geq 1\) that

\[
\sum_{k=1}^{a-b} \frac{(a-b-k)!}{(a+1-k)!} = \sum_{k=0}^{a-b-1} \frac{k!}{(b+1+k)!} = \frac{1}{(b+1)!} \sum_{k=0}^{a-b-1} \binom{b+1+k}{k}^{-1}
\]

\[
= \frac{1}{(b+1)!} + \frac{1}{(b+1)!} \sum_{k=1}^{a-b-1} \binom{b+1+k}{k}^{-1}
\]

\[
= \frac{1}{(b+1)!} + \frac{1}{(b+1)!} \sum_{k=1}^{a-b-1} k[z^{b+1+k}] \log \frac{1}{1 - z} (-1)^{b+1} (1 - z)^{b+1}.
\]

We may lower \(k\) to zero because there is zero contribution and get for the sum term

\[
\sum_{k=0}^{a-b-1} k[z^{b+1+k}] \log \frac{1}{1 - z} (-1)^{b+1} (1 - z)^{b+1}
\]

\[
= \sum_{k=b+1}^{a} (k - (b+1))[z^k] \log \frac{1}{1 - z} (-1)^{b+1} (1 - z)^{b+1}.
\]

Two pieces

We thus require two pieces, the first is

\[
[w^m] \frac{1}{1 - w} \sum_{k \geq 0} w^k k[z^k] \log \frac{1}{1 - z} (-1)^{b+1} (1 - z)^{b+1}.
\]

This is

\[
[w^{m-1}] \frac{1}{1 - w} \left( \log \frac{1}{1 - z} (z - 1)^{b+1} \right)'_{z=w}
\]

\[
= [w^{m-1}] \frac{1}{1 - w} \left( -(z - 1)^b + (b+1) \log \frac{1}{1 - z} (z - 1)^b \right)_{z=w}
\]

\[
= [w^{m-1}] \left( ((w - 1)^{b-1} - (b+1) \log \frac{1}{1 - w} (w - 1)^{b-1}) \right).
\]

The second main piece is

\[
-(b+1)[w^m] \frac{1}{1 - w} \sum_{k \geq 0} w^k [z^k] \log \frac{1}{1 - z} (-1)^{b+1} (1 - z)^{b+1}
\]

\[
= (b+1)[w^m] \log \frac{1}{1 - w} (w - 1)^b.
\]
Evaluating the pieces at $m = a$ and $m = b$

Evaluating at $m = a$ and $m = b$ we get for the first one

$$-\frac{b+1}{a-b}\left(\frac{a-1}{a-b}\right)^{-1}$$

and the second one

$$1 - (b+1) [w^{b-1}] \log \frac{1}{1-w} (w-1)^{b-1}.$$  

Evaluate the second piece again at $m = a$ and $m = b$ we find

$$\frac{b+1}{a-b}\left(\frac{a}{a-b}\right)^{-1}$$

and

$$(b+1) [w^b] \log \frac{1}{1-w} (w-1)^b.$$

We evidently require

$$(-1)^b \text{res}_w \frac{1}{w^{b+1}} (1-w)^b \log \frac{1}{1-w}$$

This was also evaluated at the cited section and found to be $-H_b$.

Collecting everything

We obtain at last for the sum component

$$-\frac{b+1}{a-b}\left(\frac{a-1}{a-b}\right)^{-1} - 1 - (b+1)H_{b-1} + \frac{b+1}{a-b}\left(\frac{a}{a-b}\right)^{-1} + (b+1)H_b$$

$$= \frac{1}{b} - \frac{b+1}{a-b}\left(\frac{a}{b}\right)^{-1} + \frac{b+1}{a-b}\left(\frac{a}{b}\right)^{-1} = \frac{1}{b} + \frac{b+1}{a-b}\left(\frac{a}{b}\right)^{-1} \frac{b-a}{b}.$$  

We get for the complete sum

$$\frac{1}{(b+1)!} + \frac{1}{b \times (b+1)!} - \frac{(a-b)!}{b \times a!},$$

which is the claim.

This was math.stackexchange.com problem 4325592.
Inverted sum index

We seek to show that

$$\sum_{k=a}^{n} (-1)^k \binom{k}{a} \left( \frac{n+k}{2k} \right)^{2k} \frac{2n+1}{2k+1} = (-1)^n \binom{n+a}{2a} 2^{2a}.$$ 

We will henceforth assume $n \geq a$. First observe that

$$\binom{n}{k} \left( \frac{2n+1}{2k+1} \right)^{2k} \frac{2n+1}{2k+1} = 2 \binom{n}{k} \left( \frac{2n+1}{2k+1} \right)^{2k} \frac{2n+1}{2k+1} = 2 \binom{n}{k} \left( \frac{n+k}{n-k} \right)^{2k} \frac{n+k}{n-k}.$$ 

We thus have two pieces, the first is

$$2 \sum_{k=a}^{n} (-1)^k \binom{k}{a} 2^{2k} \left( \frac{n+k}{2k+1} \right)^{2k} \frac{2n+1}{2k+1} = 2 \sum_{k=a}^{n} (-1)^k \binom{k}{a} 2^{2k} \left( \frac{n+k}{n-k} \right)^{2k} \frac{n+k}{n-k}.$$ 

Here we may extend to infinity because of the coefficient extractor for the second binomial coefficient:

$$(-1)^{2a+1} \left( \frac{a}{z^n-a} \right) (1+z)^{n+a+1} \sum_{k \geq 0} (-1)^k \binom{k+a}{a} 2^{2k} z^k (1+z)^k$$

$$= (-1)^{2a+1} \left( \frac{a}{z^n-a} \right) (1+z)^{n+a+1} \frac{1}{(1+4z(1+z))^{a+1}}$$

$$= (-1)^{2a+1} \left( \frac{a}{z^n-a} \right) (1+z)^{n+a+1} \frac{1}{(1+2z)^{2a+2}}.$$ 

We get for the second piece

$$\sum_{k=a}^{n} (-1)^k \binom{k}{a} 2^{2k} \left( \frac{n+k}{n-k} \right)^{2k} \frac{n+k}{n-k} = (-1)^a 2^{2a} \sum_{k=0}^{n-a} (-1)^k \binom{k+a}{a} 2^{2k} \left( \frac{n+a+k}{n-a-k} \right)^{2k} \frac{n+a+k}{n-a-k}.$$ 

We extend to infinity same as before

$$(-1)^{2a+1} \left( \frac{a}{z^n-a} \right) (1+z)^{n+a+1} \sum_{k \geq 0} (-1)^k \binom{k+a}{a} 2^{2k} z^k (1+z)^k$$

$$= (-1)^{2a+1} \left( \frac{a}{z^n-a} \right) (1+z)^{n+a+1} \frac{1}{(1+4z(1+z))^{a+1}}$$

$$= (-1)^{2a+1} \left( \frac{a}{z^n-a} \right) (1+z)^{n+a+1} \frac{1}{(1+2z)^{2a+2}}.$$
Subtract the second from the first to get

\[( -1)^a 2^{2a} \left\{ \frac{1}{(1 + z)^{2a+1}} \right\}. \]

This is

\[ (-1)^a 2^{2a} \sum_{k=0}^{n-a} \binom{n+a}{k} (-1)^{n-a-k} 2^{n-a-k} \binom{n+a-k}{2a}. \]

Note that

\[ \binom{n+a}{k} \binom{n+a-k}{2a} = \frac{(n+a)!}{k! \times (2a)! \times (n-a-k)!} = \binom{n+a}{2a} \binom{n-a}{k}, \]

which gives for the sum

\[ (-1)^n 2^{n+a} \binom{n+a}{2a} \sum_{k=0}^{n-a} \binom{n-a}{k} (-1)^{-k} 2^{-k} \]

\[ = (-1)^n 2^{n+a} \binom{n+a}{2a} \frac{1}{2^{n-a}} = (-1)^n 2^{2a} \binom{n+a}{2a}. \]

This is the claim.

This problem is from page 43 eqn. 3.161 of H.W.Gould's *Combinatorial Identities* [Gou72].

**76.106 MSE 4351714: A Catalan number recurrence**

We seek to show that with regular Catalan numbers

\[ \sum_{j=1}^{n+1} \binom{n+j}{2j-1} (-1)^{n+j} C_{n+j-1} = 0. \]

The LHS is setting \( j \) to \( n + 1 - j \)

\[ \sum_{j=0}^{n} \binom{2n+1-j}{2n-2j+1} (-1)^{j+1} C_{2n-j}. \]

This is (discarding the sign because we are trying to verify that the sum is zero):

\[ [z^{2n}] \frac{1 - \sqrt{1 - 4z}}{2z} w^{2n+1} (1 + w)^{2n+1} \sum_{j \geq 0} (-1)^j \frac{w^{2j}}{(1 + w)^j} z^j. \]

Here we have extended the sum to infinity because of the coefficient extractor in \( w \) and obtain

407
\[\left[ z^{2n} \right] \frac{1 - \sqrt{1 - 4z}}{2z} \left[ w^{2n+1} \right] (1 + w)^{2n+1} \frac{1}{1 + w^2 z/(1 + w)} = \left[ z^{2n} \right] \frac{1 - \sqrt{1 - 4z}}{2z} \left[ w^{2n+1} \right] (1 + w)^{2n+2} \frac{1}{1 + w + w^2 z}.\]

The contribution from \( z \) is

\[ \text{res}_z \frac{1 - \sqrt{1 - 4z}}{2z} \frac{1}{1 + w + w^2 z}. \]

Now put \( 1 - \sqrt{1 - 4z} = v \) so that \( z = v(2 - v)/4 \) and \( dz = (1 - v)/2 \, dv \) to get

\[ \text{res}_v \frac{4^{2n+1}}{v^{2n+1}(2 - v)^{2n+1}} \frac{v}{(2 - v)/2} \frac{(1 - v)/2}{1 + w + w^2 v(2 - v)/4} = \text{res}_v \frac{4^{2n+1}}{v^{2n+1}(1 - v/2)^{2n+2}} \frac{1 - v}{1 + w + w^2 v(2 - v)/4} = 2^{2n} \text{res}_v \frac{1}{v^{2n+1}(1 - v/2)^{2n+2}} \frac{1 - v}{1 + w + w^2 v(2 - v)/4}. \]

Observe that

\[ \frac{1 - v}{1 + w + w^2 v(2 - v)/4} = -\frac{v}{2 + vw} + \frac{2 - v}{2(1 + w) - vw}. \]

The contribution from the first term is

\[ 2^{2n} \text{res}_v \frac{1}{v^{2n+1}(1 - v/2)^{2n+2}} \left( -\frac{1}{2} v \right) \left[ w^{2n+1} \right] (1 + w)^{2n+2} \sum_{q=0}^{2n+1} (-1)^q \frac{1}{2^q} v^q w^q \]

\[ = -2^{2n-1} \text{res}_v \frac{1}{v^{2n}(1 - v/2)^{2n+2}} \sum_{q=0}^{2n+1} \left( \frac{2n + 2}{2n + 1 - q} \right) (-1)^q \frac{1}{2^q} v^q \]

\[ = -2^{2n-1} \sum_{q=0}^{2n} \left( \frac{2n + 2}{q + 1} \right) (-1)^q \frac{1}{2^q} \left( \frac{2n - 1 - q + 2n + 1}{2n + 1} \right)^q \frac{1}{2^{2n+1-1-q}} \]

\[ = -\sum_{q=0}^{2n} \left( \frac{2n + 2}{q + 1} \right) (-1)^q \left( \frac{4n - q}{2n + 1} \right)^q. \]

The contribution from the second term is

\[ 2^{2n} \text{res}_v \frac{1}{v^{2n+1}(1 - v/2)^{2n+2}} \left( 1 - \frac{1}{2} v \right) \left[ w^{2n+1} \right] (1 + w)^{2n+2} \sum_{q=0}^{2n+1} \frac{1}{2^q} v^q \frac{w^q}{(1 + w)^q}. \]
= 2^{2n} \sum_{q=0}^{2n+1} \frac{1}{(2n+1-v/2)^{2n+1}} \sum_{q=0}^{2n+1} \frac{(2n+1-q)\frac{1}{2^v}}{2^{2n-q}}

= 2^{2n} \sum_{q=0}^{2n} \frac{1}{2^q} \left(\frac{2n-q+2n}{2n}\right) \frac{1}{2^{2n-q}} = \sum_{q=0}^{2n} \left(\frac{4n-q}{2n}\right).

We thus have to show that

\[ \sum_{q=0}^{m} \binom{m+2}{q+1} (-1)^q \binom{2m-q}{m+1} = \sum_{q=0}^{m} \binom{2m-q}{m}. \]

The LHS is

\[ \sum_{q=1}^{m+1} \binom{m+2}{q} (-1)^{q-1} \binom{2m+1-q}{m+1} \]

\[ = \binom{2m+1}{m} - [z^{m+1}](1+z)^{2m+1} \sum_{q=0}^{m+2} \binom{m+2}{q} (-1)^q \binom{1+z}{q}^q \]

\[ = \binom{2m+1}{m} - [z^{m+1}](1+z)^{2m+1} \left(1 - \frac{1}{1+z}\right)^{m+2} \]

\[ = \binom{2m+1}{m} - [z^{m+1}](1+z)^{m-1}z^{m+2} = \binom{2m+1}{m}. \]

The RHS is

\[ \sum_{q=0}^{m} \binom{2m-q}{m-q} = [z^m](1+z)^{2m} \sum_{q=0}^{z} \frac{z^q}{(1+z)^q} \]

\[ = [z^m](1+z)^{2m} \frac{1}{1-z/(1+z)} = [z^m](1+z)^{2m+1} = \binom{2m+1}{m}. \]

This concludes the argument.

This was math.stackexchange.com problem 4351714.

76.107 An identity by Graham and Riordan

We seek to show that

\[ \sum_{k=0}^{n} \frac{2k+1}{n+k+1} \binom{x-k-1}{n-k} \binom{x+k}{n+k} = \binom{x}{n}^2. \]

As both sides are polynomials of degree 2n in x we prove it for x a positive integer such that x > n and we then have it for all i.e. complex x. This sum is the difference of
\[
\sum_{k=0}^{n} \binom{x - k - 1}{n-k} \left( \frac{x+k}{n+k} \right)
\]

and
\[
\sum_{k=0}^{n} \frac{n-k}{n+k+1} \binom{x - k - 1}{n-k} \left( \frac{x+k}{n+k} \right).
\]

**First piece**

We get
\[
\sum_{k=0}^{n} \left( x - k - 1 \right) \left( \frac{x+k}{n+k} \right)
\]

\[
= \sum_{k=0}^{n} \frac{z^k}{(1+z)^k} \left( \frac{x+k}{x-n} \right).
\]

Here we may extend the sum to infinity because the coefficient extractor enforces the upper limit. Continuing,
\[
[z^n](1+z)^{-1} \left[ z^{x-n} \right] (1+w)^x \sum_{k=0}^{z^n} \frac{z^k}{(1+z)^k} (1+w)^k
\]

\[
= [z^n](1+z)^{-1} \left[ z^{x-n} \right] (1+w)^x \frac{1}{1-z(1+w)/(1+z)}
\]

\[
= [z^n](1+z)^{x-1} \left[ z^{x-n} \right] (1+w)^x \frac{1}{1-wz}.
\]

**Second piece**

This is very similar to the first. We find
\[
\sum_{k=0}^{n-1} \frac{(x-n)(x - k - 1)}{n-k-1} \left( \frac{x+k}{n+k+1} \right) \frac{1}{x-n}
\]

\[
= \sum_{k=0}^{n-1} \frac{(x-k-1)}{n-k-1} \left( \frac{x+k}{n+k+1} \right)
\]

\[
= [z^{n-1}](1+z)^{x-1} \sum_{k=0}^{n-1} \frac{z^k}{(1+z)^k} \left( \frac{x+k}{x-n-1} \right).
\]

Once more we extend the sum to infinity because the coefficient extractor enforces the upper limit. Continuing,
\( [z^{n-1}] (1 + z)^{x-1} [w^{x-n-1}] (1 + w)^x \sum_{k \geq 0} \frac{z^k}{(1 + z)^k} (1 + w)^k \)

\[ = [z^{n-1}] (1 + z)^x [w^{x-n-1}] (1 + w)^x \frac{1}{1 - z(1 + w)/(1 + z)} \]

\[ = [z^{n-1}] (1 + z)^x [w^{x-n-1}] (1 + w)^x \frac{1}{1 - wz}. \]

**Collecting everything**

Observe that the second piece may be written as

\[ [z^n] (1 + z)^x [w^{x-n}] (1 + w)^x \frac{wz}{1 - wz}. \]

Subtract the second piece from the first to get

\[ [z^n] (1 + z)^x [w^{x-n}] (1 + w)^x = \binom{x}{n} \binom{x}{x-n} = \binom{x}{n}^2 \]

as claimed.

This problem is from page 44 eqn. 3.168 of H.W. Gould’s *Combinatorial Identities* [Gou72].

**76.108 Square root term**

We seek to prove that

\[ \sum_{k=0}^{[n/2]} \binom{n+1}{2k+1} \binom{x+k}{n} = \binom{2x}{n} \]

and

\[ \sum_{k=0}^{[(n+1)/2]} \binom{n+1}{2k} \binom{x+k}{n} = \binom{2x+1}{n}. \]

As these are both polynomials in \( x \) of degree \( n \) we prove it for \( x \geq n \) a positive integer and then have it for all i.e. complex \( x \).

**First formula**

We get for the LHS

\[ [z^n] (1 + z)^x \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1 - (-1)^k}{2} (1 + z)^{(k-1)/2} \]

411
\[ [z^n](1 + z)^x \frac{1}{\sqrt{1 + z}} \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1 - (-1)^k}{2} (1 + z)^{k/2}. \]

The first piece here is
\[ \frac{1}{2} [z^n](1 + z)^x \frac{1}{\sqrt{1 + z}} (1 + \sqrt{1 + z})^{n+1} \]
\[ = \frac{1}{2} \text{res} \frac{1}{z^{n+1}(1 + z)^x} \frac{1}{\sqrt{1 + z}} (-1)^{n+1} z^{n+1}. \]

Now we put \( 1 - \sqrt{1 + z} = w \) so that \( z = w(w - 2) \) and \( dz = 2(w - 1) \, dw \) to obtain
\[ \frac{1}{2} \text{res} \frac{1}{w^{n+1}} (-1)^n (1 - w)^{2x} = \binom{2x}{n}. \]

It remains to show that the second piece is zero and we get
\[ \frac{1}{2} \text{res} \frac{1}{z^{n+1}} (1 + z)^x \frac{1}{\sqrt{1 + z}} \sqrt{1 - \sqrt{1 + z})^{n+1}. \]

With the same substitution as before we have
\[ \frac{1}{2} \text{res} \frac{1}{w^{n+1}(w - 2)^{n+1}} (1 - w)^{2x} \frac{1}{2} \frac{1}{1 - w} (w - 1)^{w+1} 2(w - 1) \]
\[ = - \text{res} \frac{1}{w^{n+1}} (1 - w)^{2x} = 0. \]

Second formula

This is very similar to the first. We get
\[ [z^n](1 + z)^x \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1 + (-1)^k}{2} (1 + z)^{k/2}. \]

The first piece is
\[ \frac{1}{2} \text{res} \frac{1}{z^{n+1}(1 + z)^x} (1 + \sqrt{1 + z})^{n+1} \]
\[ = \frac{1}{2} \text{res} \frac{1}{z^{n+1}(1 + z)^x} (-1)^{n+1} z^{n+1} \]
\[ (1 - \sqrt{1 + z})^{n+1}. \]

Repeat the substitution to get
\[ \frac{1}{2} \text{res} \frac{1}{w^{n+1}(w - 2)^{n+1}} (1 - w)^{2x} (-1)^n \frac{1}{w^{n+1}} 2(w - 1) \]
= \res_{w} \frac{1}{w^{n+1}} (-1)^n (1 - w)^{2x+1} = \binom{2x + 1}{n}.

To conclude show that the second piece is zero as in

\frac{1}{2} \res_{z} \frac{1}{z^{n+1}} (1 + z)^x (1 - \sqrt{1 + z})^{n+1}

which becomes

\frac{1}{2} \res_{w} \frac{1}{w^{n+1}(w - 2)^{n+1}}(1 - w)^{2x} w^{n+1} 2(w - 1)

= - \res_{w} \frac{1}{(w - 2)^{n+1}} (1 - w)^{2x+1} = 0.

This problem is from page 44 eqns. 3.169 and 3.170 of H.W. Gould’s *Combinatorial Identities* [Gou72].

76.109 Identity by Machover and Gould

We seek to prove that

\sum_{k=0}^{n} \binom{x}{2k} \binom{x - 2k}{n-k} 2^{2k} = \binom{2x}{2n}

and

\sum_{k=0}^{n} \binom{x+1}{2k+1} \binom{x - 2k}{n-k} 2^{2k+1} = \binom{2x + 2}{2n + 1}.

As these are both polynomials in \(x\) of degree \(2n\) and \(2n + 1\) we prove it for \(x \geq 2n\) a positive integer and then have it for all i.e. complex \(x\).

**First formula**

We get for the LHS

\[ [z^n](1 + z)^x \sum_{k \geq 0} \binom{x}{2k} \frac{z^k}{(1 + z)^{2k}} 2^{2k}. \]

Here we have extended the sum to infinity because the coefficient extractor enforces the upper limit. Continuing,

\[ [z^n](1 + z)^x \sum_{k \geq 0} \binom{x}{k} \frac{2^k \sqrt{z}^k}{(1 + z)^k} \frac{1 + (-1)^k}{2}. \]

The first piece is

\[ \frac{1}{2} [z^n](1 + z)^x \left( 1 + \frac{2\sqrt{z}}{1 + z} \right)^x = \frac{1}{2} [z^n](1 + 2\sqrt{z} + z)^x \]

413
\[ = \frac{1}{2} [z^n](1 + \sqrt{z})^{2x}. \]

Incorporating the second piece we have
\[
\frac{1}{2} [z^n](1 + \sqrt{z})^{2x} + \frac{1}{2} [z^n](1 - \sqrt{z})^{2x} = \frac{1}{2} \binom{2x}{2n} + \frac{1}{2} \binom{2x}{2n} (-1)^{2n} = \binom{2x}{2n}.
\]

This is the claim.

**Second formula**

We get for the LHS
\[
[z^n](1 + z)^x \sum_{k \geq 0} \binom{x + 1}{2k + 1} \frac{z^k}{(1 + z)^{2k+1}}.
\]

This was the same extension to infinity of the sum. Continuing,
\[
[z^n](1 + z)^x \sum_{k \geq 0} \binom{x + 1}{k} \frac{2^k \sqrt{z}^{k-1} (1 - (-1)^k)}{(1 + z)^{k-1}}.
\]

The first piece is
\[
\frac{1}{2} [z^n](1 + z)^{x+1} \frac{1}{\sqrt{z}} \left(1 + \frac{2\sqrt{z}}{1 + z}\right)^{x+1} = \frac{1}{2} [z^n] \frac{1}{\sqrt{z}} \left(1 + 2\sqrt{z} + z\right)^{x+1}
\]

\[
= \frac{1}{2} [z^n] \frac{1}{\sqrt{z}} (1 + \sqrt{z})^{2x+2}.
\]

Incorporate the second piece to get
\[
\frac{1}{2} [z^n] \frac{1}{\sqrt{z}} (1 + \sqrt{z})^{2x+2} - \frac{1}{2} [z^n] \frac{1}{\sqrt{z}} (1 - \sqrt{z})^{2x+2}
\]

\[
= \frac{1}{2} \left( \frac{2x + 2}{2n + 1} \right) - \frac{1}{2} \left( \frac{2x + 2}{2n + 1} \right) (-1)^{2n+1} = \binom{2x + 2}{2n + 1}.
\]

Once more we have the claim.

This problem is from page 44 eqns. 3.175 and 3.176 of H.W.Gould’s *Combinatorial Identities* [Gou72].
76.110 Moriarty identity by H.T.Davis et al.

We seek to prove that with \( n \geq p \)

\[
\sum_{k=0}^{n-p} \binom{2n+1}{2p+2k+1} \binom{p+k}{k} = \binom{2n-p}{p} 2^{2n-2p} \]

and

\[
\sum_{k=0}^{n-p} \binom{2n}{2p+2k} \binom{p+k}{k} = \frac{n}{2n-p} \binom{2n-p}{p} 2^{2n-2p}.
\]

**First formula**

We get for the LHS

\[
\sum_{k=0}^{n-p} \binom{2n+1}{2n-2p-2k} \binom{p+k}{k} = [z^{2n-2p}] (1 + z)^{2n+1} \sum_{k \geq 0} \binom{p+k}{k} z^{2k}.
\]

Here we have extended the sum to infinity because the coefficient extractor enforces the range. Continuing,

\[
[z^{2n-2p}] (1 + z)^{2n+1} \frac{1}{(1 - z)^{p+1}} = [z^{2n-2p}] (1 + z)^{2n-p} \frac{1}{(1 - z)^{p+1}}.
\]

This is

\[
\text{Res}_z \frac{1}{z^{2n-2p+1}} (1 + z)^{2n-p} \frac{1}{(1 - z)^{p+1}}.
\]

Now put \( z/(1 + z) = w \) so that \( z = w/(1 - w) \) and \( dz = 1/(1 - w)^2 \) \( dw \) to get

\[
\text{Res}_w \frac{1}{w^{2n-2p+1}} \frac{1}{(1 - w)^{p+1}} \frac{1}{(1 - 2w)^{p+1}} \frac{1}{(1 - w)^2} = \text{Res}_w \frac{1}{w^{2n-2p+1}} \frac{1}{(1 - 2w)^{p+1}} = \binom{2n-p}{p} 2^{2n-2p}.
\]

This is the claim.
Second formula

Re-capitulating the previous computation we get

\[ \text{res} \frac{1}{z^{2n-2p+1}} (1 + z)^{2n-p-1} \frac{1}{(1 - z)^{p+1}} \]

which leads to

\[ \text{res} \frac{1}{w^{2n-2p+1}} \frac{1 - w}{(1 - 2w)^{p+1}} = \binom{2n-p}{p} 2^{2n-2p} - \binom{2n-p-1}{p} 2^{2n-2p-1} \]

\[ = \binom{2n-p}{p} 2^{2n-2p} \left[ 1 - \frac{1}{2} \frac{2n-2p}{2n-p} \right] = \binom{2n-p}{p} 2^{2n-2p} \frac{n}{2n-p} \]

gain as claimed.

This problem is from page 44 eqns. 3.177 and 3.178 of H.W. Gould’s *Combinatorial Identities* [Gou72].

76.111 Inverse Moriarty identity by Marcia Ascher

We seek to prove that with \( n \geq 2r \)

\[ \sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} \binom{k}{r} 2^{n-2k} = (-1)^r \binom{n+1}{2r+1} \]

and

\[ \sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \frac{n}{n-k} \binom{n-k}{k} \binom{k}{r} 2^{n-2k-1} = (-1)^r \binom{n}{2r}. \]

First formula

We have for the LHS

\[ \sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{n-2k} \binom{k}{r} 2^{n-2k} \]

\[ = [z^n](1 + z)^n \sum_{k \geq r} (-1)^k \frac{z^{2k}}{(1 + z)^k} \binom{k}{r} 2^{n-2k}. \]

Here we have extended the sum to infinity because the coefficient extractor enforces the upper range. Continuing,

\[ (-1)^r 2^{n-2r} [z^{n-2r}](1 + z)^{n-r} \sum_{k \geq 0} (-1)^k \frac{z^{2k}}{(1 + z)^k} \binom{k}{r} 2^{n-2k} \]

416
\[= (-1)^r 2^{n-2r} [z^{n-2r}] (1 + z)^{n-r} \frac{1}{(1 + z^2/4/(1 + z))^{r+1}}\]

\[= (-1)^r 2^{n+2} [z^{n-2r}] (1 + z)^{n+1} \frac{1}{(4 + 4z + z^2)^{r+1}}.\]

This is

\[(-1)^r 2^{n+2} \operatorname{res}_z \frac{1}{z^{n+1-2r}} (1 + z)^{n+1} \frac{1}{(2 + z)^{2r+2}}.\]

Now we put \(z/(1 + z) = w\) so that \(z = w/(1 - w)\) and \(dz = 1/(1 - w)^2 \, dw\) to obtain

\[(-1)^r 2^{n+2} \operatorname{res}_w \frac{1}{w^{n+1-2r}} \left(1 - w \right)^{2r+2} \frac{1}{(2 + w/(1 - w))^{2r+2} (1 - w)^2}\]

\[= (-1)^r 2^{n+2} \operatorname{res}_w \frac{1}{w^{n+1-2r}} (2 - w)^{2r+2} (1 - w)^2\]

\[= (-1)^r 2^{n-2r} \left(n - 2r + 2r + 1\right) \frac{1}{2^{n-2r}} = (-1)^r \left(\frac{n + 1}{2r + 1}\right).\]

This is the claim.

**Second formula**

The LHS is the sum of

\[
\sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} \binom{k}{r} 2^{n-2k-1}
\]

and

\[
\sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \frac{k}{n-k} \binom{n-k}{k} \binom{k}{r} 2^{n-2k-1}.
\]

The first one was evaluated in the previous section and yields

\[
\frac{1}{2} (-1)^r \left(\frac{n + 1}{2r + 1}\right).
\]

For the second one we get

\[
\sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k-1}{k-1} \binom{k}{r} 2^{n-2k-1} = \sum_{k=r}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k-1}{n-2k} \binom{k}{r} 2^{n-2k-1}.
\]

417
Recapitulating the previous computation this becomes

\[ (-1)^r 2^{n+1} \sum_{z} \frac{1}{z^{n+1-2r}} \frac{1}{(1+z)^n} \frac{1}{(2+z)^{2r+2}}. \]

Continuing,

\[ (-1)^r 2^{n-1-2r} \sum_{w} \frac{1}{w^{n+1-2r}} \frac{1}{(1-w/2)^{2r+2}} \]
\[ = (-1)^r 2^{n-1-2r} \binom{n-2r}{2r+1} \frac{1}{2^{n-2r}} \]
\[ - (-1)^r 2^{n-1-2r} \binom{n-2r-1+2r+1}{2r+1} \frac{1}{2^{n-2r-1}} \]
\[ = \frac{1}{2} (-1)^r \binom{n+1}{2r+1} - (-1)^r \binom{n}{2r+1}. \]

Collecting the three binomial coefficients now yields

\[ (-1)^r \binom{n+1}{2r+1} - (-1)^r \binom{n}{2r+1} = (-1)^r \binom{n}{2r}. \]

Once more we have the claim.

This problem is from page 45 eqns. 3.179 and 3.180 of H.W. Gould’s *Combinatorial Identities* [Gou72].

### 76.112 Moriarty identity by Egorychev

Suppose we seek to evaluate

\[ S_{n,m} = \sum_{k=m}^{n} (-1)^{k} 2^{2k} \binom{k}{m} \frac{n}{n+k} \binom{n+k}{2k}. \]

We have

\[ \frac{n}{n+k} \binom{n+k}{2k} = \binom{n+k}{2k} - \frac{1}{2} \binom{n+k-1}{2k-1}. \]

Therefore we get for the first component

\[ \sum_{k=m}^{n} (-1)^{k} 2^{2k} \binom{k}{m} \binom{n+k}{n-k} \]
\[ = [z^n] (1+z)^n \sum_{k \geq m} (-1)^{k} 2^{2k} \binom{k}{m} z^k (1+z)^k. \]

Here we have extended the sum to infinity because the coefficient extractor enforces the upper limit of the range. Continuing,
\[ z^{n-m}(1+z)^{n+m}(-1)^m 2^{2m} \sum_{k \geq 0} (-1)^k 2^{2k} \binom{k+m}{m} z^k (1+z)^k \]
\[ = (-1)^m 2^{2m} \frac{z^{n-m}}{(1+z)^{n+m}} \frac{1}{(1+4z(1+z))^{m+1}} \]
\[ = (-1)^m 2^{2m} \text{res}_z \frac{1}{z^{n-m+1}(1+z)^{n+m}} \frac{1}{(1+2z)^{2m+2}}. \]

Now we put \( z/(1+z) = w \) so that \( z = w/(1-w) \) and \( dz = 1/(1-w)^2 \; dw \) to get
\[ (-1)^m 2^{2m} \text{res}_w \frac{1}{w^{n-m+1}} \frac{1}{(1-w)^{2m-1}} \frac{1}{(1+w)^{2m+2}} \frac{1}{(1-w)^2} \]
\[ = (-1)^m 2^{2m} \text{res}_w \frac{1}{w^{n-m+1}} \frac{1-w}{(1+w)^{2m+2}}. \]

Repeating the above calculation we get for the second component
\[ -\frac{1}{2} (-1)^m 2^{2m} \text{res}_w \frac{1}{w^{n-m+1}} \frac{(1-w)^2}{(1+w)^{2m+2}}. \]

Observing
\[ (1-w) - \frac{1}{2} (1-w)^2 = (1+w) - \frac{1}{2} (1+w)^2 \]
we thus obtain
\[ (-1)^n 2^{2m} \left[ \frac{(n+m)}{n-m} - \frac{1}{2} \frac{(n+m-1)}{n-m} \right] = (-1)^n 2^{2m} \binom{n+m}{n-m} \left[ 1 - \frac{1}{2} \frac{2m}{n+m} \right] \]
\[ = (-1)^n 2^{2m} \frac{n}{n+m} \binom{n+m}{2m}. \]

This was page 11 from [Ego84].

76.113 MSE 4462359: Two binomial coefficients

Suppose for we seek to verify that
\[ \sum_{q=0}^{m} \frac{(-1)^{q-1}}{q+1} \binom{k+q}{k} \binom{k}{q} = \frac{(-1)^{m+1}}{k+1} \binom{k-1}{m} \binom{k+1+m}{k} \]
where \( 1 \leq m < k \). This is (Iverson bracket)
\[ [z^m] \frac{1}{1-z} \sum_{q \geq 0} z^q (-1)^{q-1} \frac{1}{q+1} \binom{k+q}{k} \binom{k}{q} \]
\[
\begin{align*}
&= \frac{1}{k+1} [z^m] \frac{1}{1-z} \sum_{q \geq 0} z^q (-1)^{q-1} \binom{k+q}{q} \binom{k+1}{q+1} \\
&= \frac{1}{k+1} [z^m] \frac{1}{1-z} [w^k](1+w)^{k+1} \sum_{q \geq 0} z^q (-1)^{q-1} \binom{k+q}{q} w^q \\
&= \frac{1}{k+1} [z^m] \frac{1}{1-z} [w^k](1+w)^{k+1} \frac{1}{(1+wz)^{k+1}}.
\end{align*}
\]

The contribution from \( w \) is

\[
\text{res} \frac{1}{w} \frac{1}{w^{k+1}} \frac{1}{(1+w)^{k+1}}.
\]

We put \( w/(1+w) = v \) so that \( w = v/(1-v) \) and \( dw = 1/(1-v)^2 \, dv \) to get

\[
\text{res} \frac{1}{v} \frac{1}{v^{k+1}} \frac{1}{(1+zv/(1-v))^{k+1}} \frac{1}{(1-v)^2} = \text{res} \frac{1}{v} \frac{1}{v^{k+1}} \frac{(1-v)^{-k-1}}{(1-v(1-z))^{k+1}}.
\]

This is

\[
\sum_{q=0}^{k-1} (-1)^q \binom{k-1}{q} \binom{2k-q}{k-q} (1-z)^{k-q}.
\]

Applying the coefficient extractor in \( z \) we find

\[
\frac{(-1)^{m-1}}{k+1} \sum_{q=0}^{k-1} (-1)^q \binom{k-1}{q} \binom{2k-q}{k-q} \binom{k-1-q}{m}.
\]

Observe that

\[
\binom{k-1}{q} \binom{k-1-q}{m} = \frac{(k-1)!}{q! \times m! \times (k-1-q-m)!} = \binom{k-1}{m} \binom{k-1-m}{q}.
\]

This will correctly evaluate to zero when \( k-1-m < q \). Continuing we find

\[
\frac{(-1)^{m-1}}{k+1} \binom{k-1}{m} \sum_{q=0}^{k-1} (-1)^q \binom{2k-q}{k-q} \binom{k-1-q}{q}.
\]

Working with the sum we see that we may lower to \( q = k-1-m \) due to the third binomial coefficient and the condition \( 1 \leq m < k \). We thus obtain

\[
\sum_{q=0}^{k-1-m} (-1)^q \binom{2k-q}{k-q} \binom{k-1-m}{q}.
\]
\[ [z^k](1 + z)^{2k} \sum_{q=0}^{k-1-m} (-1)^q \frac{z^q}{(1 + z)^q} \left( k - 1 - m \right) \]
\[ = [z^k](1 + z)^{2k} \left[ 1 - \frac{z}{1 + z} \right]^{k-1-m} = [z^k](1 + z)^{k+1+m} = \binom{k+1+m}{k}. \]

Collecting everything we finally have
\[ \frac{(-1)^{m+1}}{k+1} \binom{k-1}{m} \binom{k+1+m}{k}. \]

This was [math.stackexchange.com problem 4462359](https://math.stackexchange.com/questions/4462359).

### 76.114 Polynomial identity

We seek to prove that with \( f(x) = \sum_{q=0}^{n} a_q x^q \) a polynomial of degree at most \( n \) we have
\[ \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{f(x-k)}{k} = H_n f(x) - f'(x). \]

Substituting into the LHS we find
\[ \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{1}{k} \sum_{q=0}^{n} a_q (x-k)^q \]
\[ = \sum_{q=0}^{n} a_q \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{1}{k} (x-k)^q \]
\[ = \sum_{q=0}^{n} a_q \sum_{k=0}^{n-1} (-1)^{n-k-1} \binom{n}{k} \frac{1}{n-k} (x-n+k)^q \]
\[ = [z^n] \log \frac{1}{1 - z} \sum_{q=0}^{n} a_q \sum_{k=0}^{n-1} (-1)^{n-k-1} \binom{n}{k} z^k (x-n+k)^q. \]

We may raise \( k \) to \( n \) due to the coefficient extractor and the fact that
\[ \log \frac{1}{1-z} = z + \cdots. \]
Continuing with the sum term,
\[ \sum_{q=0}^{n} a_q q^q \exp((x-n)w) \sum_{k=0}^{n} (-1)^{n-k-1} \binom{n}{k} z^k \exp(kw) \]
\[ = - \sum_{q=0}^{n} a_q q^q \exp((x-n)w) (z \exp(w) - 1)^n \]
\[ = - \sum_{q=0}^{n} a_q q^q \exp(xw) (z - \exp(-w))^n \]

421
\[
\sum_{q=0}^{n} a_q q^q! [w^q] \exp(xw) \sum_{p=0}^{n} \binom{n}{p} (1 - \exp(-w))^{n-p} (z - 1)^p.
\]

**First piece**

Now for \( p = n \) we get

\[-[z^n] \log \frac{1}{1 - z} (z - 1)^n \sum_{q=0}^{n} a_q x^q = -f(x)[z^n] \log \frac{1}{1 - z} (z - 1)^n.\]

The contribution from \( z \) is

\[- \text{res} \frac{1}{z^{n+1}} \log \frac{1}{1 - z} (z - 1)^n.\]

Now put \( z/(z - 1) = v \) so that \( z = v/(v - 1) \) and \( dz = -1/(v - 1)^2 \) \( dv \) to get

\[\text{res} \frac{1}{v^{n+1}} \log(1 - v) \frac{1}{v - 1} = \text{res} \frac{1}{v^{n+1}} \log \frac{1}{1 - v} = H_n.\]

We have recovered the first term \( f(x)H_n \).

**Second piece**

Recall from section 76.89 that with \( 1 \leq k \leq n \)

\[\frac{1}{k} \binom{n}{k}^{-1} = [z^n] \log \frac{1}{1 - z} (z - 1)^{n-k}.\]

Here we put \( k := n-p \) to obtain including the logarithm in front

\[- \sum_{q=0}^{n} a_q q^q! [w^q] \exp(xw) \sum_{p=0}^{n-1} \frac{(1 - \exp(-w))^{n-p}}{n-p} \]

\[= - \sum_{q=0}^{n} a_q q^q! [w^q] \exp(xw) \sum_{p=1}^{n} \frac{(1 - \exp(-w))^p}{p}.\]

Now we can certainly extend \( p \) to infinity because \((1 - \exp(-w))^p = w^p + \cdots\)

so there is no contribution when \( p > n \). We get

\[- \sum_{q=0}^{n} a_q q^q! [w^q] \exp(xw) \log \frac{1}{1 - (1 - \exp(-w))}\]

\[= - \sum_{q=0}^{n} a_q q^q! [w^{q-1}] \exp(xw)\]
\[= -\sum_{q=1}^{n} a_q q! x^{q-1} \frac{1}{(q-1)!} = -\sum_{q=1}^{n} a_q q x^{q-1} = -f'(x).\]

We have recovered the second term \(-f'(x)\). This formula will produce e.g. the identity

\[\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{1}{k} \binom{x-k}{n} = \left(\frac{x}{n}\right) \left\{ H_n - \sum_{k=0}^{n-1} \frac{1}{x-k} \right\}.\]

Note that here both sides are polynomials in \(x\).

This problem is from page 82 eqn. Z.7 of H.W. Gould’s *Combinatorial Identities* [Gou72].

**76.115 Polynomial identity II**

We seek to prove that with \(f(x) = \sum_{q=0}^{n} a_q x^q\) a polynomial of degree at most \(n\) we have

\[f(x + y) = y \left(\frac{y + n}{n}\right) \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \frac{f(x-k)}{y + k}.\]

Starting with the sum term, proving it for \(y\) a positive integer (we have the result because the LHS and RHS are polynomials in \(x\) and \(y\))

\[= [z^{n+y}] \log \frac{1}{1-z} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} z^k \sum_{q=0}^{n} a_q (x-n+k)^q\]

\[= [z^{n+y}] \log \frac{1}{1-z} \sum_{q=0}^{n} a_q q! [w^q] \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} z^k \exp((x-n+k)w)\]

\[= [z^{n+y}] \log \frac{1}{1-z} \sum_{q=0}^{n} a_q q! [w^q] \exp((x-n)w) \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} z^k \exp(kw)\]

\[= [z^{n+y}] \log \frac{1}{1-z} \sum_{q=0}^{n} a_q q! [w^q] \exp((x-n)w) (z \exp(w) - 1)^n\]

\[= [z^{n+y}] \log \frac{1}{1-z} \sum_{q=0}^{n} a_q q! [w^q] \exp(x(wz - \exp(-w)))^n\]

\[= [z^{n+y}] \log \frac{1}{1-z} \sum_{q=0}^{n} a_q q! [w^q] \exp(xw(z - \exp(-w)))^n\]

Now the contribution from \(z\) is
Recall from section 76.89 that with $1 \leq k \leq n$

$$\frac{1}{k} \binom{n}{k}^{-1} = [z^n] \log \frac{1}{1 - z} (z - 1)^{n-k}.$$ 

Here we put $n := n + y$ and $k := n + y - p$ to get (we have $k \geq 1$ because we chose $y \geq 1$)

$$\sum_{q=0}^{n} a_q q! [w^q] \exp(xw) \sum_{p=0}^{n} \binom{n}{p} \binom{n+y}{p}^{-1} \frac{(1 - \exp(-w))^{n-p}}{n+y-p} \frac{1}{n+y-p}.$$ 

Next observe that

$$\binom{n}{p} \binom{n+y-p}{p}^{-1} = \frac{n! \times (n+y-p)!}{(n-p)! \times (n+y)!} = \binom{n+y}{n}^{-1} \binom{n+y-p}{n-p}.$$ 

Restoring the binomial factor in front from the beginning, which now disappears,

$$y \sum_{q=0}^{n} a_q q! [w^q] \exp(xw) \sum_{p=0}^{n} \binom{n+y-p}{n-p} \frac{(1 - \exp(-w))^{n-p}}{n+y-p}$$

$$= y \sum_{q=0}^{n} a_q q! [w^q] \exp(xw) \sum_{p=0}^{n} \binom{y+p}{y} \frac{(1 - \exp(-w))^{p}}{y+p}$$

$$= \sum_{q=0}^{n} a_q q! [w^q] \exp(xw) \sum_{p=0}^{n} \binom{y+1+p}{y-1} \frac{1 - \exp(-w))^{p}}{y+1-p}.$$ 

Finally observe that $(1 - \exp(-w))^{p} = w^p + \cdots$ so we may extend $p$ beyond $n$ with no contribution due to the coefficient extractor in $w$ to get

$$\sum_{q=0}^{n} a_q q! [w^q] \exp(xw) \frac{1}{(1 - (1 - \exp(-w)))^y}$$

$$= \sum_{q=0}^{n} a_q q! [w^q] \exp(xw) \exp(yw) = \sum_{q=0}^{n} a_q q! [w^q] \exp((x+y)w) = f(x+y)$$

and we have the claim.

This problem is from page 82 eqn. Z.5 of H.W.Gould’s Combinatorial Identities [Gou72].
76.116 Worpitzky-Nielsen series

We seek to prove that with \( f(x) = \sum_{q=0}^{n} a_q x^q \) a polynomial of degree at most \( n \) we have for \( m \geq n \)

\[
f(x + y) = (-1)^m \sum_{k=0}^{m+1} \binom{x + k - 1}{m} \sum_{j=0}^{k} (-1)^j \binom{m + 1}{j} f(j - k + y).
\]

With both sides polynomials in \( x \) and \( y \) it will suffice to prove this for \( x \) and \( y \) positive integers. We get for the RHS

\[
(-1)^m \sum_{k=0}^{m+1} \binom{x + k - 1}{m} \sum_{j=0}^{k} (-1)^j \binom{m + 1}{j} \sum_{q=0}^{n} a_q (j - k + y)^q
\]

\[
= (-1)^m \sum_{q=0}^{n} a_q q! [w^q] \sum_{k=0}^{m+1} \binom{x + k - 1}{m} \sum_{j=0}^{k} (-1)^j \binom{m + 1}{j} \exp((j - k + y)w)
\]

\[
= (-1)^m \sum_{q=0}^{n} a_q q! [w^q] \exp(yw) \sum_{k=0}^{m+1} \binom{x + k - 1}{m} \sum_{j=0}^{k} (-1)^j \binom{m + 1}{k-j} \exp(-jw).
\]

Continuing with the innermost sum,

\[
[z^k](1 + z)^{m+1} \sum_{j=0}^{k} (-1)^{k-j} z^j \exp(-jw) = (-1)^k [z^k] \frac{(1 + z)^{m+1}}{1 + z \exp(-w)}.
\]

Here we have extended \( j \) to infinity due to the coefficient extractor in front. With the second binomial coefficient (which comes before the first) we find

\[
\sum_{k=0}^{m+1} \binom{x + m - k}{m} (-1)^{m+1-k} [z^{m+1-k}] \frac{(1 + z)^{m+1}}{1 + z \exp(-w)} \sum_{k=0}^{m+1} \binom{x + m - k}{k} \frac{(-1)^k}{(1 + v)^k} z^k.
\]

Here the coefficient extractor in \( z \) is applied a second time to enforce the upper limit of the sum so we may raise to infinity to get (we will restore the factor \((-1)^{m+1}\) in the next phase)

\[
[z^{m+1}] \frac{(1 + z)^{m+1}}{1 + z \exp(-w)} [v^m] (1 + v)^x \sum_{k=0}^{m+1} \frac{(-1)^k}{(1 + v)^k} z^k.
\]

425
\[ \frac{(1 + z)^m}{1 + z \exp(-w)} \sum_{j=0}^{m} \frac{(-1)^j}{(1 + z)^j} \left( x + m + 1 \right) \]

\[ = \sum_{j=0}^{m} \left( x + m + 1 \right) \left( m - j \right) \left( m + 1 - k \right) \exp(-(m + 1 - k)w). \]

We merge in the factor \((-1)^{m+1}\) and note that with \(m - j \geq 0\) and \(k \geq 0\) we have \(\binom{m-j}{k} = 0\) when \(k > m - j\) which yields

\[ \exp(-(m + 1)w) \sum_{j=0}^{m} \left( x + m + 1 \right) \left( m - j \right) \left( m + 1 - k \right) \exp(kw) \]

\[ = \exp(-(m + 1)w) \sum_{j=0}^{m} \left( x + m + 1 \right) \left( 1 - \exp(w) \right)^{m-j}. \]

We at last compute the coefficient on \(a_q\) which is given by

\[ q! \left[ u^q \right] \exp(yw) \exp(-(m + 1)w) \sum_{j=0}^{m} \left( x + m + 1 \right) \left( 1 - \exp(w) \right)^{j}. \]

Now with \(q \leq n \leq m\) we may extend \(j\) to \(x + m + 1\) beyond \(m\) because there is no contribution due to \((\exp(w) - 1)^j = w^j + \cdots\), getting

\[ \sum_{q=0}^{n} a_q q! \left[ u^q \right] \exp(yw) \exp(-(m + 1)w) \exp((x + m + 1)w) \]

\[ = \sum_{q=0}^{n} a_q q! \left[ u^q \right] \exp((x + y)w) = \sum_{q=0}^{n} a_q (x + y)^q = f(x + y) \]

and we have the claim. Note that the formula will prove e.g.

\[ \binom{x + y}{n} = (-1)^m \sum_{k=0}^{m+1} \binom{x + k - 1}{m} \sum_{j=0}^{k} (-1)^j \binom{m + 1}{j} \binom{j - k + y}{n}. \]

This problem is from page 82 eqn. Z.4 of H.W.Gould’s *Combinatorial Identities* [Gou72].

76.117 MSE 4517120: A sum of inverse binomial coefficients

We seek to show that for \(m > 1\)
\[ S_{m,n} = \sum_{k=0}^{n} \binom{m+k}{m}^{-1} = \frac{m}{m-1} \left[ 1 - \left( \frac{m+n}{m-1} \right)^{-1} \right]. \]

We have for the LHS using an Iverson bracket:

\[ [w^n] \frac{1}{1-w} \sum_{k \geq 0} \binom{m+k}{m}^{-1} w^k. \]

Recall the following identity from [76.89] with \( 1 \leq k \leq n \)

\[ \binom{n}{k}^{-1} = k[z^n] \log \frac{1}{1-z} (z-1)^{n-k}. \]

We get with \( m \geq 1 \) as per requirement on \( k \)

\[ m \text{ res}_z \frac{1}{z^{m+1}} \log \frac{1}{1-z} [w^n] \frac{1}{1-w} \sum_{k \geq 0} w^k z^{-k}(z-1)^k \]

\[ = m \text{ res}_z \frac{1}{z^{m+1}} \log \frac{1}{1-z} [w^n] \frac{1}{1-w} \frac{1}{1-w(z-1)/z} \]

\[ = m \text{ res}_z \frac{1}{z^m} \log \frac{1}{1-z} \text{ res}_w \frac{1}{w^{n+1}} \frac{1}{1-w} \frac{1}{1-w z/(z-1)}. \]

Now residues sum to zero and the residue at infinity in \( w \) is zero by inspection, so we may evaluate by taking minus the residue at \( w = 1 \) and minus the residue at \( w = z/(z-1) \). For \( w = 1 \) start by writing

\[ -m \text{ res}_z \frac{1}{z^m} \log \frac{1}{1-z} \text{ res}_w \frac{1}{w^{n+1}} \frac{1}{1-w} \frac{1}{z-w(z-1)}. \]

The residue then leaves

\[ -m \text{ res}_z \frac{1}{z^m} \log \frac{1}{1-z} = -m \frac{1}{m-1}. \]

On flipping the sign we get \( m/(m-1) \) which is the first term so we are on the right track. Note that when \( m = 1 \) this term will produce zero. For the residue at \( w = z/(1-z) \) we write

\[ -m \text{ res}_z \frac{1}{z^m z-1} \log \frac{1}{1-z} \text{ res}_w \frac{1}{w^{n+1}} \frac{1}{1-w z/(z-1)}. \]

Doing the evaluation of the residue yields

\[ -m \text{ res}_z \frac{1}{z^{m+n+1}} \log \frac{1}{1-z} \frac{(z-1)^{n+1}}{z^{n+1} z/(z-1)} \]

\[ = m \text{ res}_z \frac{1}{z^{m+n+1}} \log \frac{1}{1-z} (z-1)^{n+1} \]

427
\[ m[z^{m+n}] \log \frac{1}{1 - z} (z - 1)^{n+1}. \]

Using the cited formula a second time we put \( n := m + n \) and \( k := m - 1 \) to get

\[ m \frac{1}{m-1} \left( \frac{m+n}{m-1} \right)^{-1} \cdot \]

On flipping the sign we get the second term as required and we have the claim.

**Remark.** In the above we have \( m > 1 \). We get for \( m = 1 \)

\[ [z^{n+1}] \log \frac{1}{1 - z} (z - 1)^{n+1} = \text{res} \frac{1}{z^{n+2}} \log \frac{1}{1 - z} (z - 1)^{n+1}. \]

Now we put \( z/(z - 1) = v \) so that \( z = v/(v - 1) \) and \( dz = -1/(v - 1)^2 \, dv \) to get

\[ - \text{res}_v \frac{1}{v^{n+2}} \log \frac{1}{1 - v/(v - 1)} (v - 1) \frac{1}{(1 - v)^2} \]

\[ = \text{res}_v \frac{1}{v^{n+2}} \frac{1}{1 - v} \log(1 - v). \]

On flipping the sign we obtain

\[ \text{res}_v \frac{1}{v^{n+2}} \frac{1}{1 - v} \log \frac{1}{1 - v} = H_{n+1}, \]

again as claimed. This particular value follows by inspection, of course.

This was [math.stackexchange.com problem 4517120](https://math.stackexchange.com/questions/4517120).

### 76.118 MSE 4520057: Symmetric Bernoulli number identity

We are trying to prove the statement about Bernoulli numbers

\[ (-1)^n \sum_{g=0}^{m} \frac{B_{n+g+1}}{n+g+1} \binom{m}{g} + (-1)^m \sum_{g=0}^{n} \frac{B_{m+g+1}}{m+g+1} \binom{n}{g} = -\frac{1}{n+m+1} \left( \frac{n+m}{m} \right)^{-1} \]

We prove this for \( n \geq m \), it then follows by symmetry for \( m \geq n \). Using

\[ B_n = (-1)^n \sum_{k=0}^{n} \binom{n}{k} B_k \]

we get for the first piece

\[ \sum_{g=0}^{m} \frac{1}{n+g+1} \binom{m}{g} (-1)^{g+1} \sum_{k=0}^{n+g+1} \binom{n+g+1}{k} B_k. \]

428
Extracting $k = 0$ we get

$$\sum_{g=0}^{m} \frac{1}{n+g+1} \binom{m}{g} (-1)^{g+1} = \sum_{g=0}^{m} \frac{1}{n+m-g+1} \binom{m}{g} (-1)^{m-g+1}$$

$$= [z^{n+m+1}] \log \frac{1}{1-z} \sum_{g=0}^{m} z^g \binom{m}{g} (-1)^{m-g+1}$$

$$= (-1)^{m+1} [z^{n+m+1}] \log \frac{1}{1-z} (1-z)^m = -[z^{n+m+1}] \log \frac{1}{1-z} (z-1)^m.$$

Recall from (76.89) that with $1 \leq k \leq n$

$$\binom{n}{k}^{-1} = k[z^n] \log \frac{1}{1-z} (z-1)^{n-k}.$$

We put $n := n + m + 1$ and $k := n + 1$ to get

$$- \frac{1}{n+1} \binom{n+m+1}{n+1}^{-1} = - \frac{1}{n+m+1} \binom{n+m}{n}^{-1}.$$

This also could have been obtained by summing residues of a suitable function. Good, we have the RHS. Now we get for the remainder

$$\sum_{g=0}^{m} \frac{1}{n+g+1} \binom{m}{g} (-1)^{g+1} \sum_{k=1}^{n+g+1} \binom{n+g+1}{k} B_k$$

$$= \sum_{g=0}^{m} \binom{m}{g} (-1)^{g+1} \sum_{k=1}^{n+g} \binom{n+g}{k-1} \frac{B_k}{k}$$

$$= \sum_{g=0}^{m} \binom{m}{g} (-1)^{g+1} \sum_{k=0}^{n+g} \binom{n+g}{k} \frac{B_{k+1}}{k+1}.$$

We get two components, the first is,

$$\sum_{g=0}^{m} \binom{m}{g} (-1)^{g+1} \sum_{k=0}^{m-1} \binom{n+g}{k} \frac{B_{k+1}}{k+1}$$

$$= \sum_{k=0}^{m-1} \frac{B_{k+1}}{k+1} \sum_{g=0}^{m} \binom{m}{g} (-1)^{g+1} \binom{n+g}{k}.$$

The inner sum is

$$[z^k](1+z)^n \sum_{g=0}^{m} \binom{m}{g} (-1)^{g+1} (1+z)^g = -[z^k](1+z)^n(-1)^m z^m = 0$$
since \( k < m \). That leaves

\[
\sum_{g=0}^{m} \binom{m}{g} (-1)^{g+1} \sum_{k=m}^{n+g} \binom{n+g}{k} B_{k+1}^{m+1} = \sum_{g=0}^{m} \binom{m}{g} (-1)^{g+1} \sum_{k=0}^{n-m+g} \frac{n+g}{m+k} B_{m+k+1}^{m+1} = \sum_{k=0}^{n} \frac{B_{m+k+1}}{m+k+1} \sum_{g=k+m-n}^{m} \frac{m}{g} (-1)^{g+1} \binom{n+g}{m+k}.
\]

Now when \( n + g < m + k \) or \( g < m - n + k \) the second binomial coefficient is zero, so we may lower \( g \) to zero (observe that the first binomial coefficient is zero when \( g < 0 \) so we also may raise to zero when \( k + m - n < 0 \):

\[
\sum_{k=0}^{n} \frac{B_{m+k+1}}{m+k+1} \sum_{g=k+m-n}^{m} \frac{m}{g} (-1)^{g+1} \binom{n+g}{m+k}.
\]

The inner sum is

\[
[z^{m+k}](1 + z)^n \sum_{g=0}^{m} \binom{m}{g} (-1)^{g+1}(1 + z)^g = -[z^{m+k}](1 + z)^n(-1)^m z^m
\]

\[
= -(-1)^m [z^k](1 + z)^n = -(-1)^m \binom{n}{k}.
\]

We have obtained

\[
-(-1)^m \sum_{k=0}^{n} \frac{B_{m+k+1}}{m+k+1} \binom{n}{k},
\]

which is minus the second piece and concludes the argument.  

**Addendum.** Obviously what we have proved here is with \( b_n = (-1)^n \sum_{k=0}^{n} \binom{n}{k} a_k \) then

\[
(-1)^n \sum_{g=0}^{m} \frac{b_{n+g+1}}{n + g + 1} \binom{m}{g} + (-1)^m \sum_{g=0}^{n} \frac{a_{m+g+1}}{m + g + 1} \binom{n}{g} = - \frac{a_0}{n + m + 1} \binom{n + m}{m}^{-1}.
\]

We get for an ordinary binomial transform \( b_n = \sum_{k=0}^{n} \binom{n}{k} a_k \) the relation

\[
\sum_{g=0}^{m} (-1)^{g+1} \frac{b_{n+g+1}}{n + g + 1} \binom{m}{g} + (-1)^m \sum_{g=0}^{n} \frac{a_{m+g+1}}{m + g + 1} \binom{n}{g} = - \frac{a_0}{n + m + 1} \binom{n + m}{m}^{-1}.
\]

This was math.stackexchange.com problem 4520057.
76.119  Polynomial identity III

We seek to prove that with \( f(x) = \sum_{q=0}^{n} a_q x^q \) a polynomial of degree at most \( n \) we have

\[
\sum_{k=0}^{n} (-1)^k \binom{2n}{n + k} \frac{f(y + k^2)}{x^2 - k^2} = (-1)^n \frac{f(x^2 + y)}{2x(x - n)} \left( \frac{x + n}{2n} \right)^{-1} + \frac{1}{2} \binom{2n}{n} \frac{f(y)}{x^2}.
\]

Consider

\[
g(z) = (-1)^n (2n)! f(z^2 + y) \frac{1}{z - x} \prod_{q=-n}^{n} \frac{1}{z - q}.
\]

The residues of \( g(z) \) sum to zero and the residue at infinity is zero because we have degree \( 2n \) in the numerator and degree \( 2n + 2 \) in the denominator. Here we have that \( x \) is an integer with \( |x| > n \) which is necessary for the original LHS and RHS to be defined. We have polynomials in \( x \) and \( y \) upon multiplication by

\[
x(x - n) \left( \frac{x + n}{2n} \right)
\]

so that the identity then holds for all \( x, y \) including complex. We get for the residue at \( z = x \)

\[
(-1)^n \frac{f(x^2 + y)}{x - n} \left( \frac{x + n}{2n} \right)^{-1}.
\]

The residue at \( z = 0 \) yields

\[
-(2n)! f(y) \frac{1}{z} \prod_{q=-n}^{n} \frac{1}{z - q} = -\left( \frac{2n}{n} \right) \frac{f(y)}{x}.
\]

The residues at \( |z| = k \) with \( 1 \leq k \leq n \) will produce

\[
(-1)^n (2n)! f(y + k^2) \frac{1}{k - x} \prod_{q=-n}^{k-1} \frac{1}{k - q} \prod_{q=k+1}^{n} \frac{1}{k - q}
\]

\[
= (-1)^n (2n)! f(y + k^2) \frac{1}{k - x} (n + k)! \frac{(n - k)!}{(n - k)!} = (-1)^n (2n)! f(y + k^2) \frac{1}{k - x}.
\]

Adding these last we get

\[
\sum_{k=1}^{n} (-1)^k \binom{2n}{n - k} \frac{f(y + k^2)}{k - x} + \sum_{k=-n}^{-1} (-1)^k \binom{2n}{n - k} \frac{f(y + k^2)}{k - x}
\]

431
\[
\begin{align*}
&= \sum_{k=1}^{n} (-1)^k \binom{2n}{n-k} f(y+k^2) + \sum_{k=1}^{n} (-1)^k \binom{2n}{n+k} f(y+k^2) \\
&= \sum_{k=1}^{n} (-1)^k \binom{2n}{n-k} \frac{2xf(y+k^2)}{k^2-x^2} \\
&= \left( \frac{2n}{n} \right) \frac{2xf(y)}{x^2} + \sum_{k=0}^{n} (-1)^k \binom{2n}{n-k} \frac{2xf(y+k^2)}{k^2-x^2}.
\end{align*}
\]  

Collecting everything and dividing by 2x we have

\[
0 = \left( \frac{2n}{n} \right) \frac{f(y)}{x^2} + \sum_{k=0}^{n} (-1)^k \binom{2n}{n-k} \frac{2f(y+k^2)}{k^2-x^2} \\
+ (-1)^n \frac{f(x^2+y)}{2x(x-n)} \left( \frac{x+n}{2n} \right)^{-1} - \frac{1}{2} \binom{2n}{n} \frac{f(y)}{x^2}.
\]

Upon rearranging we have the claim. Note that this will produce e.g. the identity

\[
\sum_{k=0}^{n} (-1)^k \binom{2n}{n+k} \left( \frac{y+k^2}{n} \right) \frac{1}{x^2-k^2} = (-1)^n \frac{x^2+y}{2x(x-n)} \left( \frac{x+n}{2n} \right)^{-1} + \frac{1}{2} \binom{2n}{n} \left( \frac{y}{x^2} \right).
\]

This problem is from page 83 eqn. Z.10 of H.W. Gould's *Combinatorial Identities* [Gou72].

**76.120 Polynomial identity IV**

We seek to prove that with \( f(x) = \sum_{q=0}^{n+r-1} a_q x^q \) a polynomial of degree at most \( n + r - 1 \) we have where \( n, r \geq 1 \)

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{k+r}{k} f(y-k) = - \sum_{k=1}^{r} (-1)^k \binom{r}{k} \binom{k+n}{k}^{-1} f(y+k).
\]

Note that

\[
\binom{x+r}{r}^{-1} = r! \prod_{m=1}^{r} \frac{1}{x+m} = r! \sum_{m=1}^{r} \frac{1}{x+m} \text{Res}_{x=-m} \prod_{\ell=1}^{r} \frac{1}{x+\ell}
\]

\[
= r! \sum_{m=1}^{r} \frac{1}{x+m} \prod_{\ell=m+1}^{r} \frac{1}{x+\ell}
\]

\[
= r! \sum_{m=1}^{r} \frac{1}{x+m} \frac{(-1)^{m-1}}{(m-1)!} \frac{1}{(r-m)!} = r \sum_{m=1}^{r} \frac{1}{x+m} (-1)^{m-1} \binom{r-1}{m-1}.
\]

432
We get for the LHS
\[ r \sum_{m=1}^{r} (-1)^{m-1} \binom{r - 1}{m - 1} \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{1}{k + m} f(y - k). \]

We have for the inner sum
\[ \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \frac{1}{n - k + m} f(y - n + k) \]
\[ = [z^{n+m}] \log \frac{1}{1 - z} \sum_{k=0}^{n} (-1)^{n-k} z^{k} \binom{n}{k} f(y - n + k) \]
\[ = \sum_{q=0}^{n+r-1} a_{q} q! [w^{q}] \exp((y - n)w) [z^{n+m}] \log \frac{1}{1 - z} \sum_{k=0}^{n} (-1)^{n-k} z^{k} \binom{n}{k} \exp(kw) \]
\[ = \sum_{q=0}^{n+r-1} a_{q} q! [w^{q}] \exp((y - n)w) [z^{n+m}] \log \frac{1}{1 - z} \left( z \exp(w) - 1 \right)^{n} \]

We get for the coefficient extractor in \( z \)
\[ [z^{n+m}] \log \frac{1}{1 - z} \left( z \exp(w) - 1 \right)^{n} \]
\[ = [z^{n+m}] \log \frac{1}{1 - z} \sum_{\ell=0}^{n} \binom{n}{\ell} \exp(w - 1)^{\ell} (z - 1)^{n-\ell} \]

Recall from section 76.89 that with \( 1 \leq k \leq n \)
\[ \frac{1}{k} \binom{n}{k}^{-1} = [z^{n}] \log \frac{1}{1 - z} (z - 1)^{n-k} \]
so this becomes
\[ \sum_{\ell=0}^{n} \binom{n}{\ell} \left( \exp(w) - 1 \right)^{\ell} \frac{1}{m} \binom{n + m - \ell}{m}^{-1} \]

Let us recapitulate what we have so far:
\[ \sum_{m=1}^{r} (-1)^{m-1} \binom{r - 1}{m - 1} \sum_{q=0}^{n+r-1} a_{q} q! [w^{q}] \exp((y - n)w) \]
\[ \times \sum_{\ell=0}^{n} \binom{n}{\ell} \left( \exp(w) - 1 \right)^{\ell} \frac{1}{m} \binom{n + m - \ell}{m}^{-1} \]

Next observe that
\[
\binom{n}{\ell} \binom{n+m-\ell}{m}^{-1} = \frac{n! \times m!}{\ell! \times (n+m-\ell)!} = \binom{n+m}{\ell} \binom{n+m}{m}^{-1}.
\]

We get
\[
\sum_{m=1}^{r} (-1)^{m-1} \binom{r}{m} \binom{n+m}{m}^{-1} a_q q! \sum_{q=0}^{n+r-1} [w^q] \exp((y-n)w)
\times \sum_{\ell=0}^{n} \binom{n+m}{\ell} (\exp(w) - 1)^{\ell}.
\]

Extending \(\ell\) to \(n+m\) we obtain \(\exp((n+m)w)\) for the innermost sum which will produce
\[
\sum_{m=1}^{r} (-1)^{m-1} \binom{r}{m} \binom{n+m}{m}^{-1} f(y+m)
\]
which is the claim. It remains to show that there is a zero contribution from
\[
\sum_{\ell=n+1}^{n+m} \binom{n+m}{\ell} (\exp(w) - 1)^{\ell} = \sum_{\ell=1}^{m} \binom{n+m}{n+\ell} (\exp(w) - 1)^{n+\ell}.
\]
We get
\[
\sum_{m=1}^{r} (-1)^{m-1} \binom{r}{m} \binom{n+m}{m}^{-1} \sum_{\ell=1}^{m} \binom{n+m}{n+\ell} (\exp(w) - 1)^{n+\ell}.
\]
This is
\[
-(\exp(w) - 1)^n + \sum_{m=1}^{r} (-1)^{m-1} \binom{r}{m} \binom{n+m}{m}^{-1} \sum_{\ell=0}^{m} \binom{n+m}{n+\ell} (\exp(w) - 1)^{n+\ell}.
\]
We also have
\[
\binom{r}{m} \binom{n+m}{m}^{-1} = \frac{r! \times n!}{(r-m)! \times (n+m)!} = \binom{r+n}{n}^{-1} \binom{r+n}{r-m}.
\]
Therefore we get
\[
-(\exp(w) - 1)^n + \binom{r+n}{n}^{-1} \sum_{m=1}^{r} (-1)^{m-1} \binom{r+n}{r-m} \sum_{\ell=0}^{m} \binom{n+m}{m-\ell} (\exp(w) - 1)^{n+\ell}.
\]
Including \(m = 0\) we have

\[434\]
\[ \left( \frac{r + n}{n} \right)^{-1} \sum_{m=0}^{r} (-1)^{m-1} \left( \frac{r + n}{r - m} \right) \sum_{\ell=0}^{m} \left( \frac{n + m}{m - \ell} \right) (\exp(w) - 1)^{n+\ell} \]

\[ = \left( \frac{r + n}{n} \right)^{-1} (\exp(w) - 1)^{n} \sum_{m=0}^{r} (-1)^{m-1} \left( \frac{r + n}{r - m} \right) \sum_{\ell=0}^{m} \left( \frac{n + m}{m - \ell} \right) (\exp(w) - 1)^{\ell}. \]

Working with the sum we find

\[ \sum_{m=0}^{r} (-1)^{m-1} \left( \frac{r + n}{r - m} \right) \sum_{\ell=0}^{m} \left( \frac{n + m}{m - \ell} \right) (\exp(w) - 1)^{\ell} \]

\[ = \sum_{m=0}^{r} (-1)^{m-1} \left( \frac{r + n}{r - m} \right) \text{res} \frac{1}{z^{m+1}} (1 + z)^{n+m} \frac{1}{1 - z(\exp(w) - 1)}. \]

Now put \( z/(1 + z) = v \) so that \( z = v/(1 - v) \) and \( dz = 1/(1 - v)^2 \) \( dv \) to get for the residue

\[ \text{res} \frac{1}{v^{m+1}} \frac{1}{(1 - v)^{n+1}} \frac{1}{1 - v(\exp(w) - 1)/(1 - v) (1 - v)^2} \]

\[ = \text{res} \frac{1}{v^{m+1}} \frac{1}{(1 - v)^{n}} \frac{1}{1 - v \exp(w)}. \]

Substituting into the sum we have

\[ -[u^r](1 + u)^{r+n} \sum_{m=0}^{\infty} (-1)^{m} u^{m}[v^{m}] \frac{1}{(1 - v)^{n}} \frac{1}{1 - v \exp(w)} \]

\[ = -[u^r](1 + u)^{r} \frac{1}{1 + u \exp(w)} = - \sum_{p=0}^{r} \binom{r}{p} (-1)^{r-p} \exp((r - p)w) \]

\[ = -(1 - \exp(w))^{r} = (-1)^{r+1}(\exp(w) - 1)^{r}. \]

We have computed for the remainder term that it is

\[ (-1)^{r+1} \left( \frac{r + n}{n} \right)^{-1} (\exp(w) - 1)^{n+r}. \]

Note however that \( (\exp(w) - 1)^{n+r} = w^{n+r} \ldots \) yet the coefficient extractor \([w^q]\) has \( q \leq n + r - 1 \) as per the initial conditions. Hence it returns zero and the remainder term vanishes as claimed, concluding the proof.

Observe that with this identity we can prove special cases like

\[ \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \binom{k + r}{k}^{-1} \binom{y - k}{n} = - \sum_{k=1}^{n} (-1)^{k} \binom{r}{k} \binom{k + n}{k}^{-1} \binom{y + k}{n}. \]

This problem is from page 85 eqn. Z.16 of H.W.Gould’s Combinatorial Identities [Gou72].

435
We seek to show that
\[ \sum_{q=0}^{\lfloor n/2 \rfloor} (n - 2q)^n \binom{n}{q} (-1)^q = 2^{n-1}n!. \]

Observe that
\[ (n - 2q)^n \binom{n}{q} (-1)^q = \frac{1}{2} \left[ (n - 2q)^n \binom{n}{q} (-1)^q + (2q - n)^n \binom{n}{n - q} (-1)^{n-q} \right]. \]

Hence we get for our sum
\[ \frac{1}{2} \sum_{q=0}^{\lfloor n/2 \rfloor} (n - 2q)^n \binom{n}{q} (-1)^q + \frac{1}{2} \sum_{q=0}^{\lfloor n/2 \rfloor} (2q - n)^n \binom{n}{n - q} (-1)^{n-q} \]
\[ = \frac{1}{2} \sum_{q=0}^{\lfloor n/2 \rfloor} (n - 2q)^n \binom{n}{q} (-1)^q + \frac{1}{2} \sum_{q=n-\lfloor n/2 \rfloor}^{n} (n - 2q)^n \binom{n}{q} (-1)^q \]
\[ = \frac{1}{2} \sum_{q=0}^{n} (n - 2q)^n \binom{n}{q} (-1)^q. \]

Introducing a coefficient extractor,
\[ \frac{1}{2} \sum_{q=0}^{n} \binom{n}{q} (-1)^q n! [z^n] \exp((n - 2q)z) \]
\[ = \frac{1}{2} n! [z^n] \exp(nz) \sum_{q=0}^{n} \binom{n}{q} (-1)^q \exp((-2q)z) \]
\[ = \frac{1}{2} n! [z^n] \exp(nz)(1 - \exp(-2z))^n. \]

Note however that \((1 - \exp(-2z))^n = (2z - 2z^2 \pm \cdots)^n\) so the only contribution to the coefficient extractor \([z^n]\) is from the first term of the series so that \([z^n] \exp(nz)(2z - 2z^2 \pm \cdots)^n = 2^n\) and we finally have
\[ 2^{n-1}n! \]
as claimed.
Alternative computation

We might try to use an Iverson bracket \([2q \leq n]\) in attempting to evaluate

\[
S_n = \sum_{q=0}^{\lfloor n/2 \rfloor} (n - 2q)^n \binom{n}{q} (-1)^q.
\]

We obtain

\[
[v^n] \frac{1}{1-v} \sum_{q \geq 0} v^{2q} (n - 2q)^n \binom{n}{q} (-1)^q
\]

Using a coefficient extractor,

\[
n! [z^n] \exp(nz) \operatorname{res}_v \frac{1}{v^{n+1}} \frac{1}{1-v} \sum_{q \geq 0} v^{2q} \exp(-2qz) \binom{n}{q} (-1)^q
\]

\[
= n! [z^n] \exp(nz) \operatorname{res}_v \frac{1}{v^n} \frac{1}{1-v} (1 - v^2 \exp(-2z))^n.
\]

Now residues sum to zero and the residue at one yields

\[-n! [z^n] \exp(nz) (1 - \exp(-2z))^n.
\]

We have that since \((1 - \exp(-2z))^n = (2z - 2z^2 \pm \cdots)^n = 2^nz^n + \cdots\) so this evaluates to \(-2^n n!\). We find for the residue at infinity

\[
-n! [z^n] \exp(nz) \operatorname{res}_v \frac{1}{v^2} v^{n+1} \frac{1}{1-1/v} (1 - \exp(-2z)/v^2)^n
\]

\[
= n! [z^n] \exp(nz) \operatorname{res}_v \frac{1}{v^n} \frac{1}{1-v} (v^2 - \exp(-2z))^n
\]

\[
= n! [z^n] \exp(nz) \operatorname{res}_v \frac{1}{v^n} \frac{1}{1-v} \sum_{q=0}^{n} \binom{n}{q} (-1)^{n-q} \exp(-2(n-q)z) v^{2q}
\]

\[
= \operatorname{res}_v \frac{1}{v^n} \frac{1}{1-v} \sum_{q=0}^{n} \binom{n}{q} (-1)^{n-q} (2q - n)^n v^{2q}
\]

\[
= \sum_{q=0}^{n} \binom{n}{q} (-1)^q (n - 2q)^n [2q \leq n - 1].
\]

Now when \(n\) is odd this gives the upper limit \([n/2]\) and when \(n\) is even \([n/2] - 1\) however in the latter case we may raise to \([n/2]\) because the added term is zero in the sum per \((n - 2q)^n = 0\). We have obtained

\[
\sum_{q=0}^{[n/2]} \binom{n}{q} (-1)^q (n - 2q)^n = S_n.
\]

Collecting everything we have shown that \(S_n - 2^n n! + S_n = 0\) or \(S_n = 2^{n-1} n!\).

This was math.stackexchange.com problem 4540192.

437
References


