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1 Introduction

This addendum to my MSc. thesis treats the following problem: find the complete asymptotic expansion of the following
two finite sums:

Z\/T and Z\/T

There are two parts to this document: ﬁrst, we apply generalized Mellin summation to compute the asymptotics of
these sums and second, we show how to compute the Mellin transforms involved.
References to my thesis will be provided throughout.

2 Generalized Mellin summation

We will be using generalized Mellin summation (harmonic sums) as described in section 2.10, page 87 of the thesis.
The functions f1(x) and fa(z) are given by
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where n is a positive integer and Hj is the Heaviside-like step function that is 1 on the interval [0, 1) and zero elsewhere.
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We take Fio(x) = Zkzl A f12(prx) with g, = k and A\, = 1 so that

D=3 k) = Y Ho (£) Vi - zw*—

k>1 k>1

and
k 1 1
=) [f2(k) =) Ho () ——= )
,; ;21 n k(n—k) ;«/k(n—k)
and the Mellin transforms of Fy 5(z) are
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Applying Mellin inversion now yields
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Setting z = 1, we find
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2.1 Computing the asymptotic expansions

To keep things simple, we introduce G 2(s):
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The poles are contributed by ((s) at s = 1 with residue 1 and I'(s) at s = —m,m > 0 with residue
It follows that
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Res[G1(s); s = —15/2]

Again with with m > 0, we have
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This gives the following table of values for Ga(s):
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Collecting all these values together, we get the following two asymptotic expansions:
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3 Details of the Mellin transform computation

Recall that the two Mellin transforms were
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Let x = ng so that dx =ndq :
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Collecting terms, we find
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4 Generalization to (almost) arbitrary exponents

Now suppose we want to find the asymptotic expansion of
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We use the function f(z), which is given by
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4.1 Computation of the Mellin transform

Recall that the Mellin transforms of f(x) is
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4.2 Computing the asymptotic expansion

We take F'(x) =)~ A f(uka) with pg =k and Ay = 1 so that
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Applying Mellin inversion now yields

Setting x = 1, we find
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To keep things simple, we introduce G(s):
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Note that we can use the following identity to simplify the leading term:
[(2z) = (2r)" Y2227 120(2)0(2 + 1/2).
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5 External links

e Marko Riedel http://pnp.mathematik.uni-stuttgart.de/iadm/Riedel /index.html Applications of the Mellin-Perron
Formula in Number Theory.

e Baeza-Yates Handbook of Algorithms and Data Structures



