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1 Introduction

This addendum to my MSc. Thesis treats a problem that was posted on es.ciencia.matematicas on Mar. 11, 2009, by
Francisco de Leén-Sotelo y Esteban. The problem statement goes like this:

Para n entero positivo tomamos los nimeros n+1,n+2,n+3,...,2n.5i a cada uno de
estos nimeros de la lista le calculamos su mayor divisor impar y los sumamos jque
valor se obtiene? Generalizar.

The answer to this problem can be calculated by elementary means. Let

Sn = Z gk,
k=1
where g, is the largest odd divisor of k then the problem asks for Ss, — .S, and it is not difficult to see that
527), - Sn = n2-

(This is explained in the original thread, which is listed among the external links.)
Now the sum S, is a prime candidate for Mellin summation, since

k
W = Soatiy where wvy(k) = max {m ‘ 2m|k} .

(If this is not obvious there is a detailed explanation in the thread.) We will evaluate Sa,, — S,, by Mellin summation in
three steps:

e Find a closed form of the Dirichlet series for g.

Apply the Mellin-Perron formula for simple sums (m = 1) to S,,.

Compute S, — S,.
e Use generalized Mellin summation to evaluate a remainder integral.

References to my thesis will be provided throughout.
2 Closed form of the Dirichlet series
This computation extends section 2.7.1, page 76 of the thesis.
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This implies that
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and finally
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3 Application of Mellin-Perron for simple sums

Considering that the poles of ¢(s) are at s = 0, s = 2™% (k ¢ Z\ {0}) and s = 2, the form of the Mellin-Perron formula

log 2
to use is the one from section 2.9.2, page 85, namely:

S =it [ e
qk*2Qn I . q S’

1<k<n —i0o
where we take ¢ = 3.
Introduce s 9s g . ik
n — n )
= — = -1)— d = keZ .

w(s) = q(e)" = 7<= D and = 75 (ke 2\ {0)
Shifting the contour to the left, we obtain
1 3+ioo d ) oo p
3ei . 0" =Resfw(s) s =2 + Res[u(s); s = 0] + Z\{} Res [w(s); 5 = pi] + 5 /_;_m (s

The values of the residues are

Res[w(s); s=2] = %
11 /(1)
Res[w(s); s=0] = ~3 +13 logy(n) — Tog 2
1 n’
Res [w(s); s = pr] = _10g2<(pk — )7
This yields the following expression for S,,:
1 n? 1 1 ¢'(1) 1 nPe 1 [TET ds
Sp == —— -+ =1 - - -1)— 4+ — s—.
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Note that the sum in py is a Fourier series in log, n, because nf = elog2n2mik,



4 Computation of S, — 5,

By simple substitution, we find
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Now we have g2, = g, 75 logy(2n) — & logy(n) = 75 and (2n)Ps — nPk = 2°PkpPk — Pk =0, so this simplifies to
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We are done if we can show that the integral has the value f%.

5 Generalized Mellin summation applied to the remainder integral

First note that
( ) ((2n)° =n®) = q(s)(2° = 1)n® = (2° = 2)((s = )n®
Let w(s) = (2° —2)((s — 1) . Shifting the integral to the right, we find that
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for the remainder integral.

The integral that has appeared can be evaluated using generalized Mellin summation (harmonic sums) as described
in section 2.10, page 87 of the thesis. We will show that the integral is an inverse Mellin transform and equal to a
simple sum that we can compute. We take F(x) = >, Apf(ure) and choose the parameters such that the inverse Mellin
transform of the Mellin transform of F(z) is given by the integral that we want to evaluate, and hence equal to F(z).

Take x = #, with n,r € N. Furthermore take py = k and A\, = k, k € N. Finally, take f(z) = Ho(x), with Hy being

the Heaviside step function that is one on [0,1) and zero elsewhere.
We thus have
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and the Mellin transform of F(z) is

Applying Mellin inversion, we find
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This means that

1 3+ico d 1 1
i) 20251 — 1)¢(s — 1)nS§ —2 (2(2n —n—5(n— 1)n) = n2.
For the remainder integral, this yields
1 - .
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as desired.
The conclusion is that indeed
SQn - Sn = n27

which we set out to prove.

6 Concluding remark (omitting the Fourier series)

It is worth noting that this computation can be simplified quite a bit if we drop the Fourier series, i.e. only shift the

first integral to ¢ = % instead of ¢ = —%. Then there is only one pole to take into account, the one at s = 2. This gives
1 n? 1 +atico ds
Sn=2qn+ —+— q(s)n°—.
"2t 3 2 +i—ico s

Computing the difference, we have

1 +1+ioco ds 1 +5+ico ds
Sop — Sy =n%+ — 2n)° —n®) = =n?+ — 2% — 2)¢(s — 1)n°—.
) Wt ), M@ ) T=nte g [ @ 2]

Shifting this last integral to ¢ = 3, we find

2 2 1 See s s ds 2 2 2 2
Sop — Sp=n°—n*+ — (2° = 2)¢(s — 1)n°— =n" —n® 4+ n® =n”.
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7 External links

e Marko Riedel
http://pnp.mathematik.uni-stuttgart.de /iadm/Riedel /index.html Applications of the Mellin-Perron Formula in Num-
ber Theory.

e Francisco de Ledén-Sotelo y Esteban

http://groups.google.com/group/es. ciencia.matematicas/browse_thread /thread/a49404f68e6bda64# Gran Non Di-
VISOT.



