Nonlinear wave equations in infinite waveguides

Peter H. Lesky and Reinhard Racke

Abstract: We present sharp decay rates as time tends to infinity for solutions to linear Klein-Gordon and
wave equations in domains with infinite boundaries like infinite waveguides, as well as the global well-
posedness and the asymptotics for small data for the solutions to the associated nonlinear initial-boundary

value problems.

1 Introduction

We consider fully nonlinear Klein-Gordon equations
uy — Au+ mu = f(u, us, Vu, Vug, V>u), (1.1)

for a function u = u(t,z), t € R, z € Q C R", m > 0 being a constant, as well as wave equations
where m = 0, with initial conditions

u(t =0) =ug, u(t=0)=u, (1.2)
and Dirichlet type boundary conditions
u(t,-) =0 on 9. (1.3)

The domain €2 has an infinite smooth boundary, hence is neither bounded nor an exterior domain
(domain with bounded complement), but represents infinite cylinders (waveguides) or domains
like strips in R? or domains between two parallel planes in R*. More generally, Q is assumed to
satisfy

Q=R x B, BcR"! bounded, (1.4)

where 1 <[ < n — 1. Typical examples are:
n = 2, [ = 1: Infinite strip, see Figure 1.1,
n = 3, | = 2: Domain between two planes, see Figure 1.2,
n = 3, | = 1: Infinite cylinder, see Figure 1.3.
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The aim of the paper is to prove sharp LP-L4-decay rates for the associated linearized problem
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(f =0 or f at most depending on ¢ and z), and to present a global existence theorem for small
data to the initial-boundary value problem (1.1)-(1.3).

There has been done a lot of work on the Cauchy problem, i.e. for 2 = R", see for example
[7, 8, 12, 21, 22], or [20] for a partial survey, also the case of exterior domains has been dealt
with, see for example [6, 23]. It seems that the case of infinite waveguides as given in (1.4) has
not yet been treated, neither for the question of decay rates to the linearized problem nor for
the question of global existence of solutions to the nonlinear problem.

The results that we are going to prove show an interesting phenomenon concerning the
spreading of waves under presence of a boundary as given above. For example, the decay of
solutions to the linear wave equation (m = 0, f = f(¢,z)) in whole of R?® (Cauchy problem) is
the same as for the region between two planes in R?, while it is weaker for infinite cylinders.
More generally, a trapping of rays through the infinite boundaries affects the decay rates only
if the dimension of the bounded part B is large enough.

As well known for Klein-Gordon or wave equations in exterior domains, in particular for
the Cauchy problem, the decay rates for solutions to the linearized problem determine where
to prove a general global existence theorem for small data for the nonlinear system, cp. [20] for
a survey and a method for the Cauchy problem, or [23] for wave equations in general exterior
domains.

For the linear Cauchy problem, 2 = R", there are different ways to get LP-L%-decay rates
for the solutions, for example using representation formulae like the Kirchhoff formula in R3,
or using the Fourier transform, see e.g. [18, 28, 20]. Already for the linear problem in exterior
domains, these methods are not applicable, instead, the following ingredients were needed in
[23] to get the decay of solutions: information on the linear Cauchy problem, the so-called local
energy decay of solutions, and combinations with cut-off functions that allow to take advantage
of the knowledge on the Cauchy problem.

From these short descriptions, it is obvious that one has to argue differently in our situation
because there is an infinite boundary where the techniques of comparison to the Cauchy problem
lead to difficulties as well as the methods to obtain the local energy decay, cp. [27]. We shall
use a partial eigenfunction expansion in the bounded direction and information on the growth
of eigenvalues of elliptic operators in general domains.

Another difficulty arises in the discussion of right-hand sides f = f(¢,z) # 0 in contrast to
the situation of the Cauchy problem, and in contrast to the situation in exterior domains. There
are boundary conditions to be respected, but also cut-off techniques do not seem to work. Here,
a transformation working with the inverse of the Laplacian will lead to success.

For the fully nonlinear system we shall then be able to follow the strategy for exterior domains
as given in [23].

Remarks: 1. We remark that for the Cauchy problem it was possible to exploit the in-
variances of the wave operator to obtain further types of decay estimates which in turn lead
to improved results for the nonlinear system, cp. [9, 10, 11]. Also for exterior domains with
star-shaped complement there were recently extensions of these results, see [6], not including
the infinite boundaries considered here.

2. Our results can be extended to the case of wave operators with —A being replaced by a



more general elliptic operator having variable coefficients
A = —0i(aij(z))0;
for example in the case that a;; admits a decomposition like
aij(z) = aij(z',2") = aj;(a") + ajj(2"),

where 2/ € R, 2" € R* . Of course, further properties of the coefficients are needed to assure
the applicability of the method, in particular the corresponding results on the Cauchy problem
are needed. We do not pursue this here.

The paper is organized as follows: In Section 2 we shall provide the essential notation,
estimates on elliptic operators that we need and information on the linear Cauchy problem.
The decay estimates for the linearized case with f = 0 are presented in Section 3, together
with a comment on Neumann boundary conditions, while in Section 4 the corresponding case
with general f = f(t,z) is discussed. In Section 5, the optimality of the decay rates given for
the linearized situation is proved. Finally, in Section 6, the result on global existence of small,
smooth solutions to the fully nonlinear system is presented.

2 Elliptic estimates and the linear Cauchy problem
Let Q C R, n > 2 fixed, be of the type
Q=R xB, BcCR"! bounded,

where 1 <[ <mn —1 is fixed, and 0B is assumed to be smooth.
For z € Q) we write
z=(z',2") witha' e R, 2"€B,

analogously

n l n
_ 2 _ 2 _ 2 R
A= Z_ 05, A= Z_ 0, A= .72 9, 0= oz’
7j=1 7j=1 j=l+1

Let
A:D(A) C I2(Q) - L*(Q),

D(4) =W @) NWy?(), Ap:= —Ag,

where we use standard notations for Sobolev spaces (cp. [1]), similarly
A" :D(A) c LA(R) - L*(R),

D(A) :==W>?(R), A'p:=-Ap,

A" D(A") c I*(B) —» L*(B),

D(A") :=W2>2(B)n W, %(B), A"p:=—-A"¢p.



The operators A, A’, A” are selfadjoint, A” is positive definite with compact inverse, having a
complete orthogonal set (w;);en of eigenfunctions corresponding to positive eigenvalues (A;) en
being arranged such that

0<)\1§)\2§...§)\j—)00, as j — oo.
The spectrum of A’ resp. A is purely continuous and consists of
o(A') =[0,00), o(A) = [A1,00),

cp. e.g. [14].
For A; € {A, A’, A"} we have

lell3yr.2 = (Arp, @)1z + [0l (2.1)

where || - |[y1,> denotes the norm in W' 2(Q) (resp. in Wh2(R!), W1 2(B)) and (,-) > denotes
the inner product in L2(Q) (resp. in L?(R'), L?(B)) with associated norm || - || 2.
For ¢ € D(A'/?) we have

1
loll < s 14|

and from (2.1) we conclude
lells,2 < cll Aol

where ¢ will denote (various) positive constants in this paper. By elliptic regularity theory we
get for ¢ € D(A7/?), j €N,

lelljz < e() A7 (2.2)

In LP-spaces with p > 1 we have

Lemma 2.1 (LP-regularity) Let j € N, ¢ € D(A), p > 1, ¢ € LP(), Ap € WHP(Q). Then it
holds
lellwats ) < cllA@llwi.v(ay,

where c¢ is a positive constant at most depending on j and p.

PROOF: The assertion is proved for bounded 2 in [26, Theorem 9.1]. In our case €2 has bounded
cross-section. Hence Poincaré’s estimate holds:

lellwor) < clVellwor@y — for ¢ € WHP(Q).

By this the proof of [26, Theorem 9.1] extends to our case.
Q.E.D.

Corollary 2.2 Let j €N, ¢ € D(A7), p> 1 and ¢, Ag, ..., Alp € LP(Q). Then we have

lellweini) < cl Al Lo(),

¢ at most depending on j and p.



Lemma 2.3 The eigenvalues (X;); of A" satisfy

2

)\j > ija
where ¢ > 0 is independent of j (but depends on B).

PRrooF: This kind of estimate goes back to early work of Weyl, we use [2, Theorem 14.6] yielding
N()\):c/\nT_l+0<)\nT_l), as A\ — oo,

where N () denotes the number of eigenvalues A; satisfying A\; < A, and ¢ = ¢(B) > 0.
Hence we obtain

n—1

N(A) <cAz for A > ).

Since

N(Aj) >3

this proves the assertion.

Q.E.D.

We shall need the decay estimates for the solutions to Klein-Gordon equations in R! with explicit
description on the dependence on the mass term.

Lemma 2.4 (Decay for Klein-Gordon in R') Let

K= [5] ema{ien i<,

and let M > My >0, vy € WELY(R!), v; € WEKi-LI(R]).

1 , .
Then the unique solution v € () CI([0,00), WL=52(R!)) to
=0

v — (A =My = 0  in[0,00) X K,
U(Oa ) = Yo, ’Ut(o, ) = mn Rl

satisfies for t > —k

S

c =2
lo@)llzoowty < 75 (MY loollwa sty + M [foallwrs 1))
c > 0 being a constant depending at most on M.

PROOF:
The unique existence is standard, and it is sufficient to prove the estimate for vg,v1 € C§° (RY).
Let

t z!

o(t, z’ :-—v(—,—) for t > 0, ' e R.
( ) \/M \/M
Then v satisfies

oy — (A" = 1)5 =0,



xl

1 z'
T)O,:c':v( )z:f), v(0,7') = — v (—)z:ﬁ.
( ) 0 \/M 0 t( ) \/M 1 \/M 1
By well-known estimates for Klein-Gordon equations, cp. e.g. ([20, (11.169)] or [28]), we have
for ¢ > 1:

~ (& - -
50,29 < o (1ol oy + [l -5e0) - (23
A substitution ¢’ = j—IM, de' = (VM)ldy', yields

150l 1 gty = MY [0l 1 sy

and, since
B0 (2') = — (”:') 1<j<l
Do(z') = —= 1| ——= | , <j<l,
Y0 \/M 0 \/M J
we obtain
[Follyy .1 gty < MY [lvo]lypacy.1 gy, (2.4)
. -1
||7)1||WK1—171(Rl) <cM— ”UIHWKl,l(Rl)a (2.5)

where ¢ = ¢(M)p). Combining (2.3)—(2.5) we get

o(t, )| = [5(vMt, VM)
c -1
e (MY log 1.1ty + M (1[0 ay)

(VM 1)1/2
Q.E.D.

Remark: The consideration of the optimality in Section 5 below will show that the estimate in
Lemma 2.4 is optimal with respect to the decay rate (power in ¢) and to the power in M.

Corollary 2.5 In addition to the assumptions in Lemma 2.4 let vo € WKITLYRY), v €

Ki,1(ml _1 .
WHLHR'). Then we have for t > =

IN
|

c =2
||V,'U(t)||L°°(Rl) 172 Ml/4||U0||WK1+1,1(Rl) + M ”UlHWKl’l(Rl))v

53

c 42 1
IOl < g (M5 loollwrass e + M [orllwrase)

where ¢ > 0 depends at most on M.

PROOF:
(i) wj == 0jv, j € {1,...,1}, satisfies the same Klein-Gordon equation as v, now with initial
data
w;(0) = 0jvg, w;(0) = Ojv1.
o
Applying Lemma 2.4 yields the first claimed estimate for V'v = :
o



(ii) wq := v; also satisfies the same differential equation, but with initial data
wo(0) = w1, wo,:(0) = (A" — M)wp.

Hence Lemma 2.4 implies

c =2
|w0(ta$,)| < o5 Ml/4||vl||WK1,1Rl + M ||(A,_M)'UO||WK1—1 )
/2 (RY)
< £

1 =2 42
7 (M ol + M ool sy + M ool -1.1 o)

proving the second claimed estimate.

8 .E.D.

3 Linear LP-[9-estimates for zero forces

In this section we study the linearized equations

uy — Au+mu =0 in [0, 00) X £, (3.1)
u=20 in [0, 00) x 09, (3.2)
'U’(Oa ) = Uo, ut(Oa ) =u in (2, (33)

where m > 0 is a constant. The L'-L*®-decay of solutions to (3.1)—(3.3) is described as follows:

Theorem 3.1 Let

Ky = [ﬁ] +["_—l]+3’ Ky [l+3] +[n—l+1]’

2 2 2 2
and
ug € D(AK?/?) nwhetKet1. (), (3.4)
uy € D(AF2=D/2) qyKeti—11(Q), (3.5)

Then the unique solution u to (3.1)—(3.8) satisfies
c
||(u(t),ut(t),Vu(t))HLoo(Q) < m <||u0||WK2+K3+1:1(Q) + ||“1||WK2+K371,1(Q)) )
where the positive constant ¢ depends at most on m.
Remarks:

1. Of course, ¢ also may depend on the fized n and B.

2. In Section 5 we shall demonstrate that these decay rates are sharp.



3. For the case of the wave equation, i.e. for m = 0, one notices an interesting behavior for
the case | = n — 1, where the decay is the same as that for the Cauchy problem — no
loss in the rate of decay. This holds e.g. for the infinite strip in R? (n = 2,1 = 1; see
Figure 1.1 on page 1) or the region between two parallel planes in R? (n = 3,1 = 2, see
Figure 1.2). In general, the decay becomes weaker as the number of bounded dimensions
increases (while n is fixed).

ProOF of Theorem 3.1:

Case1l: 0<t<1:

Let K4 := [2]+2. Observe that ug € D(A%4/2), u; € D(AK4=/2) since Ky < Ko. Let (Py)xer
denote the spectral family of A, then

o0

u(t) = )[cos(v)\—k mt)dPyug +/sm\/)\—+ mi) dPyu;.

Therefore we get for t > 0, x € )

lut,z)| + [Vu(t,z)| < cllut, ez < clAS?u(t, )2
o 1/2
< / N cos? (/A m t)dl| Pyuo| 3 o
A1
1/2
)\ s1n (VX + mt)d||Pyui |2
< C<||AK4/2U()|| 2( +A(K4 1)/2u1||L2(Q))
< ¢ (lluollwra 2y + llutllwrar.2(qy )

< c(lluollwnen sy + lutllwnen 1)) -

the latter since n + 2 — K4 > 2 > 0. In particular it follows for 0 <t <1, x € Q:

n
2

Ju(t, z)| + |Vu(t, z)| < yﬂomﬂwwmmerﬂwwmmD- (3.6)

(1+¢
Analogously, we get for 0 <t <1, z € Q:

C
|W@JNS(f:ﬁﬁomﬂwwmmyHWNwwmmﬂ- (3.7)
Case 2: t>1:

For j € N let

Uj (ta iL',) = <u(ta (Ela ')7 wj)LQ(B)
where (w;); still denotes the eigenfunctions of A” in L?(B).
If

vj0(z') = (uo(a',-), wi)r2(my, wj1(2") == (ua (', ), ws) 2y



and
M :=m+ /\j

then v; satisfies
vj — (A= M)v; =0 in[0,00| x K,

'UJ'(Oa ) = Uy,0, Uj,t((), ) =51 in Rl,

and we shall be able to use the information on the decay for solutions to Klein-Gordon equations

given in Lemma 2.4.

Let ;
n—
oom [ 42

141
and V" = : . Then we conclude, using (2.2),

On

|u(t7 xlax”)|2 + |V"u(t, ‘Tla $,I)|2 < C”u(taxla ')||?/VK5:2(B)
< C||(A”)K5/2U(t, .Z',, )H%Q(B)’

hence we obtain, using Lemma 2.4,
o0

e Aoy (t, ")
j—1

tlZz\Kf’ ((m + 2)"2 (o ("), ), w3) L2y Iy s 1 ety
7j=1

fu(t, o', a")[* + [V"u(t, o', a")

VAN

IA

+m A+ A0) T () w2y s 1.1 )

C
t_l Z >\K5+l/2 || <U’0a UIj)L2 (B) ||%/VK171(R1)

VAN

+/\ ul,wj)L2(B)||WK1—1,1(R1).

Observing

1
(uo,wj)r2(g)y = ,\Kz/z<(A")K2/2uo,wg')L2(B),
j

1 —
<u1’wj>L2(B) = W<(AH)(K2 1)/2u17wj>L2(B)7

we conclude

|u(t)(t’ xl’x”)|2 + |V"u(t,x,m',m")|2 < Z )\Kz K5 Ko Ks—1/2 <||<(A”)K2/2uoawj)Lz(B)”%/VKl’l(Rl)
j=1

A0 g ) [y 3y ). (3.8)

9



By Lemma 2.3 we know
/\Jf(z—K5—l/2 > cj(KrKrl/z)ﬁ,

and, since

2
(Ky — K5 —1/2)—— > 1

n—1

o0
by the choice of Ko, K5, the series ). )\,{277}(5,,/2 converges. Moreover,
J=1%

A" g, 05) o< 1A 2]

IA

IN

[wollw 2. 2()

bl

< HuOHWKz-;-[”*é"'l],l(B)
similarly

[((A")F2D 2y ) o | < lall ey sty -

Hence we obtain from (3.8), observing the definition of K3, that
c
lu(t,z’, ") + (V"u(t,z', z")| < 772 (||U0||WK2+K3,1(Q) + ||U1||WK2+K3—2,1(Q)) . (3.9)
Analogously we get
V'u(t, @', z")P < dl|(A") DV (e, 2l |

00
= CZ )‘]I'(s_l‘vl<u(ta :L'Ia ')’wj>L2(B)|2

j=1
< t_clg)\fsl ((m + X)) (o, wj) () Iy sea 1.1y

+ (m+ /\j)(l_2)/2”<ulawj>L2(B)||%/VK1,1(R1))
< (lwollfyrasra gy + hualymasa-na(qy) - (3.10)

Finally,

a2, 2" <t ', ) oo
¢ 2 2
< 7 <||u0||WK2+K3+1,1(Q) + ||U1||WK2+K3—1,1(Q)> . (3.11)
Combining (3.7), (3.9)-(3.11) completes the proof.
Q.E.D.

Having proved the main estimate on L'-L*®°-delay, we now provide the usual L?-L?-estimate and

the consequences by interpolation.

10



Theorem 3.2 Letug € D(A), uy € D(AY?). Then the unique solution u to (3.1)-(3.3) satisfies
fort>0

()11, 200 + lue@llzzqey < e (luolldn oy + w220y

where ¢ depends at most on m (and B).

PROOF: The classical energy identity, obtained from (3.1)—(3.3) by multiplication of (3.1) with
U, gives

e (Ol (gy + IV G2y + mlul®) 2y = w22y + 1 Vuol220y + mlluolia).
which proves the assertion using Poincaré’s estimate

[u@)] < el Vu@)]l.

Q.E.D.

By interpolation we shall conclude the desired LP—L4-decay:

Theorem 3.3 Let the assumptions of Theorem 3.1 be satisfied, let u be the unique solution to
(3.1)-(3.3), and let 2 < qg< oo, 1/p+1/q=1.

(i) If ugp =0, then u satisfies for t > 0:
c

| (u(#), we(t), Vu(®)l Le@) < 3
1+

/2 Hul“WNpaP(Q)a

where
_{ ( —%)(K2+K3—1) if q€{2,00}

Np = [(1 — %)(KQ + Kg)] ’Lf 2< q < 00,

and ¢ depends at most on q and m.
(ii) If additionally
uy € D(AK2D/2) nwket+Ks 1) (3.12)

then u satisfies for t > 0:

C
[l (w(t), wt(t), Vu(t)| ey < —21/2||(u07u17vu1)||WNp,p(Q)7
(1+4)1d)
where
o _ [ A=3(K:+Ks) if g€ {200},
Pl A- Y (K + K3) +1 if 2<g< o,

and c depends at most on g and m.

11



PRrOOF: Using Theorem 3.1 and Theorem 3.2 the assertion follows by interpolation, cp. [4].
Q.E.D.

We remark that we can also treat other boundary conditions replacing (3.2), e.g. Neumann
boundary conditions

ou )
e 0 in [0,00) x OS2, (3.13)

where v = v(z) denotes the exterior normal in z € 9Q. There are, of course, eigenfunctions
of —A", say wq corresponding to the eigenvalue Ay = 0. Looking at the proof of Theorem 3.1
above, it is obvious that

vo(t,z') == (u(t, o, Jwo) £2(B)

only satisfies a wave equation, not a Klein-Gordon equation:
’U()’tt(t, :I,‘I) - AI’U() (t,:c') =0

and hence only provides a decay in L* of order =5 (instead of t~%/?). Indeed, if & = @(t,z')
is a solution to
g — A% = 0 in [0,00) x R,
4(0,7") = ¢(z') inR,
@(0,2") = (') mE,
with ¢, # 0, then
u(t, o', x") == a(t, z")wo(z")

solves the linear wave equation ((3.1) with m = 0) in Q and satisfies the Neumann boundary
-1

conditions (3.13), together with nonvanishing data. The decay in L* is only of order ¢t~ 2z . On

the other hand, if the initial data uy and u; in (3.3) are orthogonal to the eigenfunctions wy,

(ug(a', ), wo) = 0 = (uy(z',-), wp), z eR,

then the better decay of order t=%/2 follows again.

4 Linear LP—[L%-estimates, general case
Now we study the general linearized case

up — Au+mu = f in [0,00) X Q, (4.1)
u=20 in [0,00) X €,

u(0,-) =up,  u(0,-) =wr  inQ,

where f = f(t, ).

One could think of using a variation of constants formula (Duhamel’s principle) to express the
solution to the nonhomogeneous problem (4.1)-(4.3) with the help of solutions to the homoge-
neous problem (3.1)—(3.3). But this would require a set of boundary conditions for f = f(t,-)
for fixed t (cp. the conditions on wug,u; in Theorem 3.1) which are in general not satisfied in

12



particular for the application to the nonlinear problem (1.1)—(1.3) (cp. [19] for special nonlin-
earities). To overcome this difficulty we use the following idea.
Let B:= A+ m on D(B) := D(A) and

uy + Bu = f,

u(0) = ug, ut(0) = uy.

Then
v i= Bilutt

satisfies
vy +Bv=B lfy=:g

’U(O) = B_lutt(O), ’Ut(O) = B_luttt(O).

that is, v satisfies the same wave or Klein-Gordon equation but with a right-hand side g that
belongs to D(B), hence satisfies boundary conditions. This way, a higher regularity of f (in t)
is needed and replaces the in general missing boundary conditions. The estimate for u will then
be obtained from

u=A'f —w.

For this purpose let T' € (0,00] and K € Ny be arbitrary, but fixed. We look at the solution u
to

un(t) + But) = f(t), t>0, (4.4)
u(t) € D(B), t>0,

’U,(O) = Uo, ’U,t(O) = ur,
2K+2

we [ CU([0,T], WH+2=32(q)). (4.7)
j=2K

Let

= ‘

> (A —m)kfla=2=2k)(0) + (A — m)%uo, j > 2 even,

=0

Uj = (48)
j%_l ) j—1

> (A —=m)kfU=2-26)(0) + (A —m) =T w1, j >3 odd,

k=0

[N

bl

SN

m
where j = 2,3,...,2K + 2 and f(™ := (%) f, meN.
Then it holds )
d\J :
(%) u(0) = dJu(0) = u;, j=0,1,...,2K +2.
Observing that B! exists since o(B) = [A\; + m, 00) with A; > 0, m > 0, we have

Theorem 4.1 Let f € C?5X([0,T], L?()). Then u is the solution to (4.4)-(4.7) if and only if
K1

vi=u+ Z (=B)~U+D (24) (4.9)

=0

13



s the solution to

vy + Bv = (—B) K fRK) ¢ >, (4.10)
v(t) € D(B), t>0, (4.11)
v(0) = (—B) Kugr, 4(0) = (—B) Kuggy, (4.12)
v € (2] 7 ([0, T), W2 52(Q)). (4.13)
j=0

PROOF:

(i) Let v solve (4.10)—(4.13), and let u implicitly be defined by (4.9). Then we get

K-1
(& + Byo— Y (d + B)(—~B) "0+
j=0

(d% + B)u

=

—1 K—1
= (=B) KyCK) _ (=B)~U+1) p(23+2) 4 Z (=B)~7 f(9)
0 j=0

<.
Il

=/
K-1

u(0) = v(0) = Y (=B)"UHD (o)

— (_B)—K (Z(_B)kf(2K—2—2k)(0) + (—B)KU())

- _1(_3)—(j+1)f(2j)(0)
j=0

and analogously
ut(O) = Ui.

Hence u satisfies (4.4)—(4.7).

(ii) Let u solve (4.4)—(4.7). Let
o := (=B) Kd?u.

Then
(@2 +B)o = —(B) Xd*(d? + B)u
= (_B)_Kf(ZK)a

and it follows that @ solves (4.10) —(4.13). According to step (i), a solution @ to (4.4)—(4.7)
is defined by (4.9), which equals u by uniqueness, hence 7 = v.

Q.E.D.

Before stating the general result on the LP—L%-decay, we formulate the compatibility conditions
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for the data. We say that (uo,u1, f) satisfies the compatibility condition of order 2K if the u;,
defined for £ > 2 in (4.8), satisfy

uj € Wy 2(Q) N W2K+2-0:2(Q) n W2K+2-0.1(Q), j=0,1,...,2K +1, } (4.14)

UK +2 € LQ(Q).

Theorem 4.2 Let
K2+K3—1 1 n [+1
K>—"=%2 "2 ~__|{|Z I _
=T 2([2]+[2]+" l)’

2K
f e ) C7(0,T), W?H=22(Q) n WK 1(Q)) n C*K+(0, T, L* (%),
3=0
and (ug,u1, f) satisfy the compatibility conditions (4.14) of order 2K. Let 2 < q < oo and
1/p+1/q = 1. Then the unique solution u to (4.1)-(4.3) satisfies

(), ut(8), V(i) Lo (o)

2K—-1
C .
< T (H(anul,VUO)HW?KHm(Q) + ) ||f(‘7)(0)||w21<—z‘m(n))
1+t =0
L 2K—1
1 )
—i—c/ — ||f(2K)(T)||Lp(Q)dT+c Z ||f(J)(t)||W2K_1_j,p(Q),
0 (1+t—7')(175)2 3=0

where the constant ¢ > 0 depends at most on m.
ProOOF:

(i) According to Theorem 4.1, the function v defined by (4.9) solves (4.10)—(4.13). Observe

that
us € Wo () NW>2(Q) = D(B), wuaxi1 € Wy *(Q) = D(B'/?),
and
vy = (—B)_KUQK c D(BK+1) C W2K+2’2(Q),
vy = (=B) Kugg, € D(BETH2) c W2EFL2(Q),
g(t) = (-B)"KfCK) 1) e D(B¥) c w252(Q), t > 0.

Observing that we can replace, for p > 1, the condition (3.12) in Theorem 3.3 by
u € D(AE2=1/2) q wiep(Q),
we conclude for the solution 9 to
by +Bo=0, 5(0)=uvo, ¥(0)=uv
from Theorem 3.3 (ii) that
16508, VoD o0y < —— 00,01, Vo) 5, 1 (1.15)
1+ a)?

15



holds.
The solution ? to

is given by

where v” solves, for fixed 0 < 7 <'t,
vy +Bv" =0, v(0)=0, v.(0)=g(r).

Using Theorem 3.3 (i) we conclude

t
1
1), :(2), Vo)l o) < c/ 7 9l (0 - (4.16)
o 1+t "

Since v = ¥ + ¥, we get from (4.15), (4.16)

C
)0 VoOllir@) € —— 100,01, V00) sy ey
@+
p 1
ief gy syt (417)
0 1+t—7)077

(ii) Since p > 1 we can use Corollary 2.2 to conclude, using N, < Ky + K3 — 1 = 2K,
lg(m) ey < ell £ o (0)-
(V)
Also we have Np < 2K +1 and get
[ (o, v1, Vvo) |y 5. ey < ellluzk llw2p(a) + luzk+1llwre@))-
wir-P(Q)

Hence (4.17) turns into

C
1Co(), ve(t), Vo)llzage) < l (||U2K||W2,p(n) + ||u2K+1||W1,P(Q))
1+t )?
t
1
+ c/ N ||f(2K)(T)||LP(Q)d7'- (4.18)
0 (1—I—t—7')(1_3 ?

(iii) By (4.9) we have

[(u(t), ue(t), Vu(t)llLa@) < (0(t),ve(t), Vo(t)llLe o)
K—1
+ 3 (1B fE @) || oy + 1B fEED (@) o
j=0
HIVB=UHD D (1) 1o ). (4.19)
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Since n < 2K we conclude

1B~ D (@) lyra) < BT FCD @)y a1

< dllf D (@) llwar—2i-1.(0) (4.20)
and, analogously,
IB=UHD D @)]| oy < ellf BTV @) llwar-25-2 p(0)- (4.21)
Combining (4.19)—(4.21) we obtain
2K—1

[(w(t), ui (2), Vult)|| o) < [(v(t),v1(t), Vo))l Lae) + Z IF DO llworc-1-.p. (4:22)

(iv) Finally, from the definition (4.14), we conclude

luak w2y < Z 1£27(0) [l wr2rc—2. 52y + l|wollw2rc+2.0(52), (4.23)

luzk1ll < ZHf(ZJ D(0)lyyer-ci-v.0() + [uollwosnngy.  (4.24)

Combining (4.18), (4.22)-(4.24) the assertion of the Theorem follows.
Q.E.D.

5 Optimality

The following example will show that the decay rates proved in the previous sections are optimal.
We look for a solution to the linear problem

u(t,z) — Au(t,z) + mu(t,z) = 0 in [0,00) X Q,
u(t,z) = 0 in [0, 00) x 09, (5.1)
w(0,2) = wuo(z), u(0,2) = wi(z) inQ,

m = const. > which has, as ¢ — 00, exactly the -deca; +)°]. PBor this purpose let
( > 0) which has, as ¢ , ly the L>®-d yo((i)l)F his purpose 1
(wj)jen denote again the orthormal system of eigenfunctions to the eigenvalues A; of —A” in B.
Then we shall prove

Theorem 5.1 Let m = const. > 0, vg € C(R) and

uo () wo(z', ") = vo(z") wi(z") for z € Q,

up = 0.
Then we have for the solution u to (5.1)

A\ +m /432 giVAi+mt 1
U(t,.’L’I,.’L'”) — ( 1 (27T))l/2 7 /Rl ’U()(iL',) dz' wy (CC”) + O(W) ast — oo (52)

for any fized x = («',2") € Q.
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The proof of this theorem will use the following representation of solutions to Klein-Gordon
equations in R':

Theorem 5.2 Let vy € CP(R'), M = const. > 0, and let v € C?([0,00) x R') be the solution to

v (t,z') — Alw(t,z') + Mo(t,z') = 0 in[0,00) x R,

0(0,2) = vo(z'), w(0,#) = 0 inR. (5.3)

Then we have

. MU4Ai/2 VML o 1
v(t,z') = e /Rl'uo(ac)dx +O(W) ast — oo (5.4)

for any fized ' € RE.

PROOF of Theorem 5.1: Let
u(t,z) = u(t,z',z") = v(t,z")wi(z") for z € Q.

u is the solution to (5.1) with the given data if and only if v is the solution to (5.3) with
M :=m+ A\. Now we get (5.1) from (5.4).

Q.E.D.

Remark: The proof of the optimality of the well-known decay rates for solutions to Klein-
Gordon or wave equations seems to be not explicitly stated in the literature. In a paper of
Sideris, for example, the optimality for the wave equation is contained in the considerations
on the blow-up there, see Lemma 6 and the remarks at the end in [25]. Although the result
on the optimality for solutions to Klein-Gordon equations is folklore, we present a proof here,
simultaneously giving a representation and an asymptotic expansion.

PROOF of Theorem 5.2: Let {Py} denote the spectral family of the selfadjoint Operator —A’
in L?(R!). For the spectral family {Py} of the selfadjoint operator —A’ + M in L%(R'), we have
Py = Py_u,

P, =0 for A\ < M

and
dPywo  dPy\_umuyp (/)
dx dX
1 L2 vo(y') ! ! !
= W|/\_M|4 /le(]%_lﬂx—y\\/z\—M)dy for A\ > M
(see e.g. [15], Ji_; = Bessel function).
2
The solution to (5.3) is given by
o0 dP
v(t, ') = / cos(\/Xt) A0 (") d\  fort>0, 2’ e K. (5.5)
M dX
For fixed z' € R we write
dP)\U() L
00 ) = (- 35T (5:5)



with

Ji_i(|z' =o' |VX— M)
o) = o [ uol) ey 6.7
2(27r)l/2 R (= )\_M)%—l
It should be observed that
- JL_l(z) © —1)J .
PP = o B G SR (5.8)
z2 j=0 29772 j!P(§+]>

is an entire function (see [17]). In particular, ¢ is analytic on (—o0, 00), and we have

11 N
M) = S35 ) | uoe) dy (5.9)

The claim (5.4) now follows from (5.5), (5.6), (5.9) and the following two lemmata.
Q.E.D.

Lemma 5.3 Let g € C{°(R!). For fized x € Q and arbitrary j,k € N it holds

&Py f
d\I

(x) = O(z\fk) as A — oo. (5.10)

Lemma 5.4 Let l € N, L := [H'TQ] = max{j € N:j < H'TQ} Moreover, let M > 0 and
@ € CL([M,00)) with p(M) # 0, such that the function ® defined by

(N = A= M)T 7 p(\)  for A € [M, o)
satisfies _
' ®
dN
with fized € > 0. Then it follows

) = O()\‘l“"m) asA—= o0  Vje{0,1,...,L}

ivVMt
A -y ar\? a2 e 1

M

as t — o0.

PROOF of Lemma 5.3: The series expansion (5.8) implies
A (|’ =y WA=M) = (= M) Ji(ja’ ~ o/ VA=),

hence (cp. (5.7) and (5.8))

o = s [ IO A( - yIVE=IT) ay

_AII ~
- W/le(y’) (e -y WA= M) dy
1 1 ~
T X— M 2(2n)/2 /R,(Alf)(y') Jl(|-’ﬂ' - y'IM) dy,
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and, with (5.6),

dPf 1 dP\(A'f)
A~ A—M dx
Iteration yields
dPyf (=1)F  dPy(Af)
= for k € N. 5.12
D O—MF _ ax or ke (512)

According to [17, p. 139] we have

Ji 4 (8) 1
T _ 311 —
PASINS ‘ 6%"'1 ‘ = O<5(1+3)/2) as { — oo.
Using the holomorphy of J; the boundedness of J; on [0, 00) follows. Therefore, we obtain from
(5.6) and (5.7)

dy’

‘dPA(A’kf) A )

o @)

l C
< p-mppt S |
— (>\ )2 2(27T)l/2 Rl

for z' € R, k € N, since f has compact support. With (5.12) the validity of (5.10) is proved for
the case j = 1. For j > 2 we differentiate (5.12) with respect to A:
CRf _ (DMK dR(AES)  (CDF ER(AR)

_ f
D2 - ax - MF or k&N

and similarly for higher derivatives %i. Moreover, from (5.8),
d

L (= M)s (e WA= ) = 5 = M)'F (e -y VA ).

Here one should notice that those terms (5.8) are defined to be zero for which the argument of
the Gamma function is a negative integer. Hence (5.10) follows also for the case j > 2 with the
same arguments as in the case j = 1.

Q.E.D.
PROOF of Lemma 5.4: By partial integration we get

/ VAP dN = / ei:/f;t\/X@(/\)d/\

- BaanRagy [ (aviem + 2o ey

for A > M.
1. The case [ = 2: One hase ® = ¢ and, with (5.13),

/Ooei\/xtgo(/\)d/\ = §eimt\/z\71<p(M)+1/ooeiﬁt (2\/X<p’(/\)+—<p(>\)>d/\
2 P2 &
= MV + (<3 AN o)

i ® VAt " !
+t eV A A" (N) 4+ 69" (X)) dA
M
= %ei”Mtva(M)—l—O(tiZ) as t — oo.

This proves (5.11) for [ = 2.
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2. The case [ = 1: Applying (5.13) yields

o . 1
Ii(t) := / VNP dA = 0(—) as t — oo. (5.14)
M+1 3
We write
M+1 M+1 VAt
VAB(A) A = ° dA
[ e i ﬁ o3
M+1
_ d)\-l—/ VAT BN N (5.15)
\/\/X
with
A) — (M 1 1
Y = %H’(M) UM >
- -M oV VA - VM
and 1 5
. — ! . I 12 Y
limyp(d) = 0, lmvA—My(A) exists(= 5 o' (M) — g5 p(M)).
Therefore we conclude using (5.13) (with 1 replacing ®)
M+1
/ VA (A dA = 0(%) as t — 0o (5.16)
M

With 1= (\/X -~ \/M) tand § := /M + 1 — /M we obtain

M+1 elVAL ) 5t ot 9 1
—d)\ = elmt/ ——(—+\/M)d#
/M /\/X— VM 0o Vu/tt\t

_ iVt (ﬂjg(t) + i@,(t)) ,

\/17, t3/2
where
5() e
t) = 2/ d
2 o VI M
o] eiu o) eiu
= 2/ du — 2 du
0 VE 5t A1
= \/27r(1+i)+0(\%> as t — oo
(cp- [3]) and
ot 2 . ot 1 ot ein
— in — Zein _Z
J3(t) : 2/0 e /udu eV o 1o \/_ O(\/f) as t — oo.

This proves
M+1 iVt : )
/ e D — V2r (14+1)vVM o /T[t_l_o(%)

WaA-ve

and, in combination with (5.13), (5.14) and (5.15), the claim (5.11) for [ = 1.

as t — oo.
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3. For the case | > 3 we use induction with respect to [ (in two steps each time): (5.13),
observing ®(M) = 0, yields

VA = l Ooei‘[ ! @
/M VALB(N) dA — t/M At (2\/X<I>(/\)+ ﬁ) d).
Now we have
BN = 2\/XQ>’()\)+% — (A= M)F23(N),

where ¢ € CL~([M,0)), (M) = 2/M
ma 5.4) and

/N
N~

— 1) ©(M) (cp. the assumptions in Lem-

T .
%(,\) = O(AH*J/Z) as A\ = o0, j=0,1,...,L— 1.

The induction hypothesis (I replaced by [ — 2) yields

/ VAL B ()) dr
M
i 12 -2)/2 gy VAP 1
- - (P<—2 ) (2vm) i o P +0(
. l l/2 .l/2 eiﬁt 1
- I‘(§> (2var) " i a7 (M) + O(FH)/Q)
as t — oo.
Q.E.D.

6 Nonlinear equations

We turn to the fully nonlinear system (1.1)—(1.3), i.e. we look for solutions and for the asymptotic
behavior of solutions u to

Ut — Au+mu = f(ua U, V’U’a V’Ut, V2U) in [0’ OO) x €2 (61)
u=0 in [0, 00) x 09, (6.2)
u(0, -) = uyp, ut(0,-) = uq in €, (6.3)

where m > 0 again.

In [23] nonlinear wave equations (m = 0) were studied in exterior domains Q, i.e. R* \ Q is
bounded, which are non-trapping.

Remark: In [23] more general nonlinearities were considered like fi(t,z,us, Vu, Vug, V2u) +
fa(t, z), but not involving w. This type could also be dealt with here but is just replaced by f
as in (6.1) for simplicity. The methods from [23] also apply to the case m > 0. In our case we
can also treat f = f(u,...) depending on u because of Poincaré’s estimate.

The strategy in [23] consists in

(i) having a local existence theorem available from [24],
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(ii) proving LP-L%-estimates for the linearized system,

(iii) proving a priori estimates for the local solution exploiting (ii).

Part (ii) strongly uses the local energy decay property for non-trapping domains which is not
available in our case. But we have already proved the general LP—L9-decay result Theorem 4.2
(which replaces the corresponding [23, Theorem 4.1]), and we can proceed as in [23]. Therefore
we start formulating the theorem on global existence of solutions for small data which also
provides information on the asymptotic behavior as ¢ — oc, and only give an idea of the proof,
referring to [23] for details. Let f be smooth and satisfy

fw)y=0(w[**)  as W] -0, (6.4)
where
3 ifl=1,
a=qa(l):=< 2 if2<1<4, (6.5)
1 ifl>5.

Remark: The case | = 1, corresponding to n — 1 in [23], hence to n = 2 there, is not treated in
[23].

Let
8 ifl=1,
qg(l) :=2a(l)+2=¢ 6 if2<1<4, (6.6)
4 if [ >5.
with associated Holder exponent
8/7 ifl=1,
p(l) =< 6/5 if2<1<4, (6.7)
4/3 ifl>5.
Finally, let
3/8 ifl=1,
2/3 ifl=2
) 1 ’
d(l) := (‘;‘)(J)r So=41 =3, (6.8)
“ 4/3 ifl=4,
/4 ifl=5.

The number d(l) is the decay rate of the LI®-norm ||u(t)|| ) for the linearized problem,
a = afl) is determined by the condition

1 1 l
{14+ = — 6.9
o ( + a) < 2 ( )
and then g resp. p by
1 1 1 1
~—4+—-=1 and g-l-—z—, (6.10)
q p g 2 p

see [20, pp 92, 93] for the general method and motivation behind.
The compatibility condition (4.14) carries over to one for (ug,ui,f), where f(™(0) is now
successively expressed in terms of ug,u; by using the differential equation (6.1) (cp also [23]).
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Theorem 6.1 Assume (6.4). Then there are K = K(I) € N and € = €(I,Q) > 0 such that if
ug € W2E2(Q)nW2E-Lr)(Q), u; € WQQK_I’2(Q) NW2KE=220)(Q) and (ug,u1, f) satisfies the
compatibility condition (4.14) of order 2K, and

||uO||W2K,2(Q) + ||U()||W2K—1,p(l)(g) + ||u1||W2K—1,2(Q) + ||'U/1||W2K—2,p(l)(Q) <e¢g,

2K , _

then there exists a unique solution v € (| C? ([O, oo),WZK*J’Q(Q)) C C%([0,00) x Q) to (6.1)-
j=0

(6.3) satisfying

sup (1| (u(t), we(t), Vult) 2y + (1+ )% u(t), w @), Val)ll o) < e,

where the constant c10 depends at most on 1,2, m.
The PROOF consists of two steps (see [23] for details).

1. Considering a local solution in time for 0 < ¢ < T for some T' > 0 in W™ 2(Q)-spaces.
This local existence can be taken from [24] or [13, 16].

2. Proving uniform a priori estimates for the local solution using the linear decay described in
Theorem 4.2: variation of constants formula, differentiating the equation in ¢ to preserve
boundary conditions, using the elliptic estimates for —A, cp. [23] for the enormous technical
details.
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