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Abstract

Let Q = R x D, D C R? bounded. Suppose that € is filled with a homogeneous and
isotropic elastic medium, which is fixed at the boundary, and that a time-harmonic force
f(x)e ™ acts in Q, where f has bounded support. The resulting elastic motion and its
behaviour as t — oo is studied. Depending on the choice of w and f, two different types of
time-asymptotic occur: Either the motion is unbounded as t — oo at almost every x €
(resonance case), or the principle of limiting amplitude holds. The resonance is shown to
occur for countable many frequencies of incitation. Even two-dimensional elastic motion
in a domain = Rx (0,1) is considered; here the same phenomena happen. These results
are proved using an explicit representation of the motion, which is obtained combinig
spectral- and Fourier-transform. The method is presented in a general setting, so that it

is applicable also to other translation-invariant wave equations.



1 Introduction

Let © C R? be filled with a homogeneous and isotropic elastic medium, which is
fixed at the boundary 0. Suppose that a time-harmonic force F(x)e ! (with
F:Q — R?) acts in 2. Denote by s(¢, ) € R? the resulting motion of a point z € Q

at time ¢t > 0. Then s is solution of (see e.g. [1] or [13])

pAs(t,z) + (A + p) grad div s(t, z)
+oF(t,z)e ™ = 00?s(t,x) fort>0, v €Q,
s(t,z) = 0 fort > 0, z € 09,
s(0,z) = so(z), Os(0,z) = s1(x) for z € Q,

/
where o > 0 (density of mass) and g > 0, 3\ + 2y > 0 (Lamé-constants). More
general, we study in a domain Q@ C R™ the solution u : [0,00) X Q — R" of the

initial-boundary-value problem

O2u(t,z) — (A + cograddiv)u(t,z) = f(z)e @ fort >0, v €,
u(t,z) = 0 fort >0, z € 092, (1.2)
u(0,2) = wo(z), u(0,z) = wui(x) for z € Q,

where ¢g > —1 is supposed. The last condition ¢y > —1 is needed to guarantee
the coerciveness of the spatial operator. It is satisfied in all physically relevant

situations, since ¢cg = 1 + % Let € be given by
Q=Rx D, DcCR"" bounded. (1.3)

In the case n = 3, if D is connected, then €2 is an infinite tube with cross-section D.
If n=2and D = (a,b) with —0co < a < b < o0, then 2 is a layer.

We are interested in the asymptotic behaviour as ¢ — oo of u solving (1.2).
In order to give a brief description of the results, we suppose that 0D € C*®. It
will be proved that there exists a set wws C R of resonance frequencies, which is
countable and has no finite accumulation point. If the frequency w of incitation

coincides with a resonance frequency, then resonance occurs: There exist N € N,



iy ...,ay 1 € (0,1)and fi,..., fy,u, € C’(ﬁ), such that

N-1
e W% fi(x) + e Int - fy(z) + e u,(z) + o(1) (1.4)
j=1

as t — 0o, where the precise definition of the meaning of o(1) is given in Theorem 5.2.
The functions fi, ..., fy depend on f and can be computed together with the values
of aq,...,anx 1 € (0,1) solving a parameter-dependent eigenvalue problem in D.
This will be done for a special example of D in a subsequent paper. The present
article shows, that at least one of fi,..., fy does not vanish, if f is chosen suitable,
and that the corresponding exponent ; is element of [, 1).

If w € [0,00) \ wres, then u satisfies the principle of limiting amplitude
u(t,r) = e “tu,(z) + o(1) as t — oo, (1.5)
where u,, € C*(Q2) solves

(—A — cograd div — w?)u,(z) = f(z) inQ,
u(z) = 0 on 05

(1.6)

These results are obtained using a method, which was developed in [12] and
used in [8]. It is based on an explicit representation of the spectral family of the
spatial operator in (1.2), which is computed using Fourier-transform with repect to
the unbounded variable. This article presents the method in a more general setting,
so that it can be applied to other wave equations being translation invariant.

In order to be more precise, let H be a Hilbert-space given by
‘H = Lo(R,H), H = separable Hilbert-space (1.7)

(e.g. H = Ly(D)", H = Lo(2)™). The Fourier-transform with respect to the first
variable is defined by

F=FQId:H=LR)®H —H (® = tensor product), (1.8)



with F' @ Ly(R) — Ly(R) and Id : H — H denoting respectively usual Fourier-

transform and identity. Let A be an operator in H, given by

52
A = F—lo/R A(&)dEo F, (1.9)

where {A(&)}ecr denotes a family of self-adjoint operators in H (for the notation
see section XIIL.16 of [14]). Roughly spoken, (1.9) means that A(£) defines the

Fourier-transform of A by
(FoAoF1f)(&) = A(6) f(&) for almost every £ € R

if f€ D(FoAdoF1) C Ly(R, H). The operator family is supposed to satisfy the

following assumptions:
(A1) For every fixed £ € R, A(€) is self-adjoint and positive in H.

(A2) For every fixed £ € R A(£) has an orthonormal system of eigenfunctions
{v;(€)}jen being complete in H. The corresponding eigenvalues are denoted
by A;(£), where every eigenvalue eventually has to be counted multiple times

according to his multiplicity, which is supposed to be finite.
(A3) For every fixed j € N, A;(¢) and v;(£) depend analytically on &.

(A4) For every A € R, the set {(j,£) € Nx R : \;(§) = A} is empty or finite, and
for every fixed j € N, A\;(§) = 400 as & = +o0.

Then A is self-adjoint in H (see [14], sec. XIII.16).

Section 2 studies the spectral family of \A. The spectrum o(.A) of A consists of
one infinite interval and is purely absolutely continuous. We say that A € o(A) is a
resonance point, if and only if

dAj

308 ENXR:A=X(0) A 72

(&) =0. (1.10)

The set of all resonance points is countable and has no finite accumulation point. The

spectral family { Py} er of A will be shown to have a Holder-continuous derivative
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with respect to A (in a certain sense) at every A € R being no resonance point. If
Ao € R is a resonance point, then the derivative with respect to A of the spectral
family has a singularity of type |A — A\¢| ® with @ € (0,1). For a more precise
statement see (2.15).
Section 3 studies the solution of the initial value problem
u € C?([0,00),H), u(t) € D(A) fort>0.
u"(t) + Au(t) = fe ™ fort>0, (1.11)
u(0) = wuy, u'(0) = wu,

where u' denotes the derivative of u. The solution u is given by spectral integrals.
Theorem 3.2 shows the connection between the long-time behaviour of u and the
properties of the spectral family {P,f} at A = w? and at A = 0. If w? is a resonance
point and if f is chosen suitable, then u shows resonance. If w? is no resonance
point and if the behaviour of the spectral family near A = 0 is not too bad, then the
principle of limiting amplitude holds.

Section 4 studies spectral properties of the elastic spatial operator. It is shown
that the theory developed in Sections 2 and 3 can be applied to problem (1.2). In
section 5, the long-time behaviour of the solution u of (1.2) is computed. Application
of the general theory yields estimates with respect to some weighted norms. Using
elliptic regularity theory, pointwise estimates of u(t, x) as t — oo are proved.

Equation (1.1) with other (non homogeneous) boundary conditions in a domain
Q2 = R? x (0,h) is considered in the modelling of seismic waves. In this context,
L. Brevdo obtained similar resonance effects in [3], [4] and [5]. He studies the solution
using spatial Fourier-transform and Laplace-transform with respect to time. This
method was developed by R. Briggs in [6]. The theory in this book leads to the same
definition of resonance points as (1.10). The considerations there are not restricted
to self-adjoint spatial operators. But one has to pay for this generality: It has to be
distinguished between resonance points leading to convective instabilities and those
leading to absolute instabilities. The result of the present paper shows in the case of

a self-adjoint spatial operator, that at every resonance point an absolute instability



occurs.
I want to thank P. Werner and J. Giannoulis for various discussions. Thanks to

S. Miiller, who gave me a hint how to optimize the underlying Sobolev-spaces.

2 Spectral properties of A

We study the spectral family {Py\} of the self-adjoint operator A given by (1.9).
The main result in this section consists of an explicit representation of the spectral
family (see Theorem 2.3).

Suppose that the operator family {A(£)}eer satisfies Assumptions (Al) — (A4)

given on page 4. Set
Amin = min{A;(&):j €N, £ eR}. (2.1)

From (A3) and (A4), one obtains that the given set has a minimum. Furthermore,

(A1) implies that Ay, > 0. Define the set of resonance points by

) = {n(©:5eN n eer n D=0}, (22)

By (A3) and (A4), oyes(A) is countable infinite and has no finite accumulation point.
Obviously Amin € Ores(A). Write opes(A) as

Ores(A) = {01,09,...} with Ain=01<02< ..., 0j > 00as j— oco. (2.3)

In order to define local inverses of the mapping & — A;(£), let j € N be fixed. By
the analycity of \;, the set

dAj oy _
S; = {geR:d—g(fg)_o}

is finite or countable with no finite accumulation point. Hence one can write

Sj = {ng k€ ]IJ} with Pjk < Pj(k+1) if ]{I,k + 1€ ]Ij,



where I, = {1,... ,N} or I; = N or I; = Z. Define intervals I;;, by

(=00, pjk+ny] ik EL; k+1€T;,
Lik == q [pjk: piesn))  ifk,k+1€T, (2.4)

[pjk, 00) ifkel, k+1¢1;
for k € T, where I; := T;U{min{k € I;}—1} if I, is bounded from below, and I, := I
otherwise. Then {/;;} kel defines a decomposition of R having the property, that the
restriction A; : Iy — A;(Ij;) is one-to-one for every k € ﬁj. Let 7k : A\j(Ljx) = Lk
denote the inverse mapping. Note that the domain of definition of r;; consists of a

closed interval. By the analycity of A;, rjx is C*° in the interior of A;(I;;). Define
K()\) by

KA\ = {(j,k) e NxN:Xe XL} for A e R (2.5)
This set is empty, if A < Amin. Otherwise, K()) contains all pairs (j,k) € N x N
having the property, that A is in the domain of definition of ;. According to (A4),

K ()) is finite for every A > Apin- Remember that owes(A) = {01,09,...} and note

that K (A) is constant on (op, 0p11) for every p € N. For every o, € oyes(A) set

K*(o,) = {(j, k) € K(X\) with A € (0p,0p41) : %(rjk(ap)) = O}, \
K (o) = { (k) € KON with A€ (09) s (o)) =0} (02 1), ¢
K~ (oy) == 0, )

(2.6)

Ly .
N(j,k,p) = min {z >2: T o) # 0} for (j, k) € K+(0,) UK (o).
(2.7)
Lemma 2.1 1) Ifo,, 0541 € 0ves(A) and (j,k) € K(X) for A € (0p,0p41), then
ik € C®(0p, Ops1).
2) If o, € oves(A), p > 2, and if (j,k) € K(op) \ (Kt (0p) UK (0p)), then

ik € C®(0p_1,0p41). Furthermore K(oy) = K*(01).
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3) If 0, € owes(A) and (j,k) € K*(0,), then there exist constants cjrp, € R,
Cikpt 7 0 and 6 > 0 such that

dm Cikpg
Z = o |- e/NGED) (2.8)

for X € (0p,0, +0). If (j,k) € K (0,), then (2.8) holds for A € (o, — 9, 0,)

with suitable chosen constants cjgpg € R, cjgpr 70 and 6 > 0.

4) Ifop € 0ves(A) and (4,k) € Kt (0p,)UK ™~ (0,), then either (j,k+1) € K*(o,)U
K~ (0p) or (j,k—=1) € Kt(0p)UK ™ (0p). If (j, k), (4, k+1) € KT (0,) UK~ (0,),
then the coefficients in (2.8) satisfy

Cikpt = (_1)N(j,k,p)+1 Citkatpt- (2.9)

Proof: Note that ores(A) = Uj2, Ai(S;)- If (4, k) € K(A) for A € (0p, 011), then
(0p, 0pt1) is subset of the interior of A;(Z;). This implies rj, € C*(0,, 0p+1) by the
considerations made before the lemma.

If 0, € ows(A), p > 2, and if (j,k) € K(o,) \ (K*(0,) UK (0,)), then
(0p—1,0p+1) is subset of the interior of A\;(I;x) and rjp € C*(0p_1,0p4+1) follows as
before. Assume that (j, k) € K(o1). Since Aj(rjx(01)) = 01 and A;(§) > 01 = Amin
for £ € R, d§ % (r;5(c1)) has to vanish. Hence (j, k) € K*(o1). On the other hand,
K™*(01) C K(07) holds by definition.

If 0, € 0ves(A) and (j,k) € Kt (0,) U K~ (0,), then 7,,(0,) is a boundary point
of I;z. This implies that o, = A;(r;x(0,)) is a boundary point of A;(Z;), the domain
of definition of 7;,. According to [2], §21, rj; can be represented by a puiseux-series

rie(N) = 1i(0p) + Y Ejipg | A — 0| VNP
=1
for A € X\;j(Ljx) N (0, — 0,0, + 6) with suitable chosen €xy,, € R and § > 0.
Hence (2.8) holds. Since 0, = A;(rjr(op)) is a boundary point of A;(Ljx), o,
is either a boundary point of A;(Ijk—1)) or of A;(Zjk+1)). This implies that ei-
ther (j,k + 1) € K(0,) UK (0p) or (j,k —1) € K*(op) UK (0p). Sup-
pose that (j,k),(j,k+1) € K*(0,) UK (0p). Then rj,(0p) = 7jk41)(0p) and
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N(j,k,p) = N(j,k + 1,p). Relation (2.9) follows inserting the puiseux-series repre-
sentation of 7;; and 7y 1) into the Taylor expansion of A; at £ = 7jx(0,) and using

that /\j(rjk()‘)) = Afor A € /\](I]k) U Aj([j!k+1)). O

For s € R define the Banach space H; by

. 1/2
(f arlel) e ar) -
Hs = Lys(RH) := {p € Lajoc(R, H) : ||oo|s < o0}

lells

Lemma 2.2 Suppose that s, s' > % and f € Hs. Set

Ui (€)(z) = e ((Ff)(€),vi(€))y vs(€)  for&z€R, jEN (2.11)
Then 1;(€) € H_y for € € R and p; € CP*(R, H_y) with k € Ny, k < min{s, '} -1
and o := min{s—k— %,s’—k— %,1}.

Proof: If v € H, then

(FNEs vy = F{f():0)n)(€)

(see (1.8)). The mapping & — F({f(.),v)y)() is element of H*(R), since f € H,.
By Sobolev’s Lemma, H*(R) C C*%(R). Since v; depends analytically on £ by
Assumption (A3), the mapping & — ((Ff)(£),v;(§))y v;(£) is element of C**(R, H).

Note that H_y is adjoint to Hy with respect to the inner product in H. If
g € Hg, then

W(E), ) = / 6 (FF)(E), 056y (05(6), 9(2))y
= V21 ((FF)(E),v;(E))y (v:(€), (Fg)(©))y -

Hence ¢; € C**(R,H_ ) follows from the first part of the proof. O

Theorem 2.3 Let H be a Hilbert-space having the representation (1.7). Suppose
that the self-adjoint operator A is given by (1.9) and that the associated operator
family satisfies Assumptions (A1) — (A4) (see page 4). Denote by { P\} the (left-hand
continuous) spectral family of A. Then:



1) The spectrum o(A) of A is purely absolutely continuous and o(A) = [Amin, 00),
where Ain 15 defined by (2.1). In particular, A has no eigenvalues and Py =0
fOT A S )\min-

2) Lets, s > % and f € Hs be fized (for the definition of Hs see (2.10)). Then

P,\f_\/%/ Z

Amin (j ke K (1)

d’/’]k

‘ ¥ (rjn(p)) dp (2.12)

for A > Amin. (For the definition of v;, K(u) and rj see respectively (2.11),
(2.5) and the text above (2.5)). Furthermore:

(a) Consider the mapping Pf : R — H_y : A\ — Pyf. For every o,,0,11 €

Ores(A) (see (2.3)),

P.f € Cl’a((ap’ GP+1)’%—S') with o 1= min{s - %’ s — %’ 1}
(2.13)

(b) If 0, € 0res(A), set
N, = max {N(j, k,p) : (j,k) € K" (0p) UK (0p)} (2.14)

and suppose that s,s" > N, — % and f € Hs are fized. Then there exist
bounded operators Qjxp : Hs — H_y, such that

dPyf Jok
dj\ (/\) B Z Z 1 l/N(]kp) ngpl(f)

(Jk)EKF(op) 1=

—g

= O(\/\—ap\a/N> (2.15)

as A | op with o :== min {s - N, + %, s'— N, + %, 1}. The same estimate
holds as A 1 o,, if K (0,) is replaced by K~ (o0,). Furthermore,

Qjkp1 (f)(2)
1 iz 7k (0p) ra(o vi(r:(o vi(ra(o
= 5 lamle (F£)(rir(05)), 03 (ri(0)) g 03 (ri(03)) (2.16)

for x € R, where cjiy denotes the constant of the first summand in (2.8).
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Proof: Set
R ®
A= A(€) dE.
JRGL:

According to Theorem XII1.85 in [14], A is self-adjoint in . Denote the (left-hand
continuous) spectral family in of A by {f’,\},\eR. Consider a fixed A € R and set
G(t):=1ift <\, G(t) :=0if t > . Theorem XIIL.85 in [14] shows that

®

Po=ad) = [ T G(A@©) de = | PO

R

with {P/@} denoting the spectral family of A(§) for £ € R. If g € H, then

(13A g)(g) =P%%(©) = > (990 v(®

JE{FEN:N; (6)<A}

for every £ € R according to Assumption (A2). Note that A = F AF implies that
Py = F 'P,F for A\ € R. Fix f € H,, where s > L. Then

FRNHE) = (BFL)©) = > (FNEO,0(E)yvi(6)

Je{ieNN; (6)<A}
The right-hand side consists of a finite sum, has bounded support with respect to &
(see (A4)) and is a continuous mapping from R into H (see the proof of Lemma 2.2).
Set L(A) := {j € N: X;(§) < A for at least one £ € R}. By (A4), L(\) is empty or
finite for every A € R. Application of F ! onto the last equation yields that

1
P = o (©)d
V= o= /{&RMM (€ de,

JEL(N)

where 9; depends continuously on & (see Lemma 2.2). Obviously Py f = 0 if A <
Amin: 1T A > Apin andj € L()\),

{€eR: ) <A = [ Tn{€eR: N(€) <A}
kEﬁj
with I;; being defined by (2.4). Note that the sets on the right-hand side have
disjoint interiors. Furthermore, I;, N {£ € R : A;(§) < A} # 0 only for finitely many
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values of k. Substitution = rj,(u) yields that

dr;
/ o) 720 |
/ i (€) dE = Aj (L) [Amin Al i H
IipN{€ERN; () <A} ’ if (j, k) € K(A) == ng,\ K(u),
0 otherwise,

since the integrand on the right-hand side is continuous in the interior of A;(I;x)
and has integrable singularities at the boundary points of A;(;) according to (2.8).
This implies that

1
P= 7 / ;(6) de
\/ﬁ JEL(N) kel; LixN{EER:N; (€) <A}
T 2 o ) )

(G.k)EK()
Now (2.12) follows. From (2.12) together with Lemmata 2.1 and 2.2 one obtains
that (2.13) holds.
Representation (2.12) shows that o(.A) is purely absolutely continuous. For every
A € [Min, 00) \ 0res(A), there exists f € H, such that diif(/\) # 0. This together
with Py = 0 for A\ < Ay, proves that o(A) = [Apin, 00).

If the assumptions of case 2b) are satisfied, Lemma 2.2 implies that

06 = Y g () (€ = i)

= O(Jg = rin(op)™ )

73’
as & = 7ji(0,), where

d';

fHd—{fl

(rik(op)) : He = Hoyg

are bounded linear operators according to Lemma 2.2. Inserting (2.8) and the

corresponding puiseux-series representation of 7, at o, in the preceding estimate

yields (2.15) and (2.16). O
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3 Initial-value problems

We study the solution u of (1.11), where A denotes a positive self-adjoint operator
in a Hilbert-space H. The long time behaviour of u is given by Theorem 3.2 and
Corollary 3.3.

Denote by { Py} cr the (left-hand continuous) spectral family of 4. Then Py =0
if A <0. For r > 0, set

DA") = {peH: /000 A2 d(||P,\cp||2) < 00},

N (3.1)
Arp = /0 Nd(Py)  if g € DA,

Theorem 3.1 Let A be a self-adjoint positive operator in the Hilbert-space H.
Then:

1) There is at most one solution u of the initial-value problem (1.11).

2) Ifw > 0 and ug € D(A*?), u; € D(A*V72) f € D(A*=D/2) for some
k€N, k>2, then (1.11) has a solution u. Furthermore,

ARy € CI([0,00),H) (j < k),
di (A?) i ((Fu o (3.2)
Proof: If u solves (1.11) with vanishing data, then 4 (||u/(¢)||* + (Au(¢), u(t))) =0
for t > 0. This implies that u = 0.

By functional calculus, the solution of (1.11) is given by

) = [T vaendr)
+ / " cos Vit d(Pyug) + Oosmi\/?td(ml), (3.3)
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where in the case w > 0

r 1 ) ;
S (e_“"t — cos VAt + % sin \/Xt> if A e R\ {w?,0},
. . 1
Vu(t, ) = 1 L (t e Wt _ sinwt) if A = w?,
2w w
1 —iw : :
\E(l—e t—lwt) if A =0,
(3.4)
and
1
n (1 —cosx/Xt) if A e R\ {0},
Po(t, A) = 2 (3.5)
From this (3.2) follows by standard calculations. O

Note that 1), (t,w?) and v,(¢,0) are unbounded as ¢ — oc. The behaviour of u as
t — oo depends crucially on the behaviour of Py as A\ — w? and X | 0. We require,

that the operator A satisfies the following assumption:

(P1) H is continuously imbedded in some Banach-space B and there is a subset
B C H, such that for every fixed ¢ € B the mapping Pg: R+ B: A+ Pyg
is differentiable almost everywhere with derivative 422 € L;((0, M), B) for

every M > 0.

If f € B and ¢ € C([0, M]), then

| emarn = [ e SHoan (3

(M > 0), where the right-hand side has to be read as a Bochner-integral, see eg. [16].

We will make use of the following theorem:

Theorem 3.2 Suppose that A is a positive and self-adjoint operator in the Hilbert
space H and that A obeyes condition (P1) given above. Let w > 0,f € B,u, €
D(AY?) N B,uy € D(A) N B be given. Furthermore suppose that the following two

assumptions are satisfied:
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(P2) There exist N;, N,, € Ny and fl(o),... ,fo/Q (u )go),... ,(ul)&ulm € B
(with [§] = max {j e Ny : j < T} ), such that for respectively g == f and
g:=1u1

[Ng/2] (0)

. 1 dP,\g
A ﬁ Z )\1 ]/Ng d\ < Q0.

B

(P3) There exist N € Ny and fi, ..., fx € B, such that

2 N

@ dPAf .
/ Py ZM w2|1 —w| dA < oo (ifw?>0),
0 =1 5
w?+1 1 dPy\f N f;’
/wz A—w? || dX (/\)_Z;()\—aﬂ)l—j/lv A < oo
= B

Then the solution u of (1.11) given by (3.3) has the following asymptotic behaviour:

1) Ifw#0, then

tliglo |u(t) — e I (t) — L(t) — e_i“’tuwHB = 0, (3.7)
where
Ny D= D)(f - D -
L(t) = Z $1=i/N 1 ( N)(f] f(ZL; 13/1\21( )(f + f )
j=1
+nt- (ff = fa), (3-8)
T
D.(B) := T3 1) oin %W for 0<B<2, (3.9)
m
Dy(B) = T3+ 1) cos B2 for —1<pB<1, (3.10)
_ [NXf/:2 tl 2]/Nf 21 D2(1 27 ) f(o)
[Nu1/2]
+ Y N2 Dy (1 - 21 () (3.11)

=1
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"y = lim</| 7 L _app)

1 + — + -
_j:1 (1_%)517‘/]\;(]{]' _fj ) +Ine- (fy fN))
+ 2+ 13) + (G~ () (£~ f) (3.12)

(C. :=FEuler-Mascheroni 's constant, the limit has to be taken in B).

2) Ifw=0, then

Jim Ju(t) = 5 (9) = uolly = . (3.3
where
N1 _
I(t) = Y ¥NoDy(2- %) fF +Int-2f
j=1
[Ny /2 |
£ 20 N 2Dy = ) (), (3.14)
j=1
00 N-1 f+
= i —d(Py\f) — 7 Iné - fi
uo 1151(/5 S d(PAf) ;(1_%)51_”N+n fN>
+2C, fi (3.15)

(the limit has to be taken with respect to the norm in B).

Proof: Note that
o 1 _
Di(B) = / SR for 0< B <2,
% “in (3.16)
Dy(B) = / 1—+’;dﬂ for —1<f8<1.
0

Let € > 0 be given. The proof proceeds in several steps.

Step 1: Since H is supposed to be continuously imbedded in B, we can choose

16



M > w? + 1, such that

/Moo Yu(t, A) d(PAS) + /Moo cos VAt d(Pyug) + Moo Sili/\;Xt

/°° sin vV )\t
M

d(P)\’U,l)

< c

/M h Wo(t, \) d(Prf) + / h cos VAt d(Pyug) +

M

< 3(/M a|AfIE) + [~ ra( Pl + [ 1d(||Pw1||%L>)

< g2

and

< €.
B

H/Mooﬁd(ﬂf)

Step 2: By the Riemann-Lebesgue-Lemma (see eg. [9]), we have

M v M ) dP)\f
/ cos VAt d(Pyf) Re/ et W(/ﬂ) 2udp
0 0

< €

B

B
fort > T;. Here and in the following, 77,75, . .. denote suitable chosen positive

real numbers.

Step 3: By (P2), we can choose 6 > 0, such that
[Nuy /2] (ul)(o)

4 3 .
sSin \/Xt dP)\ul ()\) . Z — /ZV d\
NN dA A=/ Ny .
) [Nuy /2] (0)
1 P, ;
< [ e 3
0 \/X d)\ A_.]/ uy

B
< e

Riemann-Lebesgue “s Lemma yields as above

/M sin v/t
s VA

With (3.16), we obtain for j € {1,..., [N“l]}

2

SsinvM 1 : ® g 1
sin _ 1-2j/N, sin p 1
/0 VA ANy dr = 2t 1/0 p2 =23 Nuy d“+0<t>

. 2 1
2417%/Nur Dy(1 — o=
2 Nul)—i_ t

d(Pf)|| < e for t > T.

B

17



as t — oo. Combining all estimates of this step, we conclude that

[Nuy /2]

M sin v/t 25 0
d(Pyuy) #1=2/Nus 9Dy (1 — u) | < 3
[ S LRy (1= 35) ()

B
for t > Tj.

Step 4: From here to Step 6, the case w # 0 will be considered. Note that
1 — emi(VA-w)t _isin \/_t i sin v/t
A—w? w VA (\/X + w)

The same argument used in Step 3 shows that

ww(ta )\) — e—iwt

M i sin v\t i sin v\t
/0 - w\/X +w<\/X+w) d(P)\f)

RS 21 Dy(1 - z%z]f)

iD
Z — e

B
for ¢t > Ty.

Step 5: Assumption (P3) implies, that the limit

R A dPAf fi _
Wy = lgﬁ)l(/o S d)\-I—JZ ]{l)dl_j/N—ln(S-fN

exists in B. Choose § > 0 so small, such that

w2_(5 _
1 dP)\f fj _ _
B
and
2 . N —_
w |1 _ efl(\/xfw)t| dPyf fj
A) — — || d)\
/wz_é A — ] o M ; X — w21 I/N <€
- B

(see (P3)). Let 8 € (0,1) be fixed. Standard calculations (see e.g. [11], (6.2)—
(6.9) and the equation following (6.29)) show, that for every & > 0, there exists
§(€) > 0, such that for every ¢ € (0,9(£)) there is an T5(£,0) > 0 with

CH R (e 1 B[] eir
/ : 5 A — =+ ﬂ/ o du
w2—s (A = W)\ = w?| B (2w)f Jy  plth)

18
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and

2 .
W e iAW) i
/wz_(s Wd)\+ln5+lnt+ce - ln(2w) - 5

for t > Ts(£,9). By Riemann-Lebesgue,

w?—§ efi(\/xfw)t
/ ——— dRS)
0

A —w?

< € fOI't>T6,
B

if 6 > 0 is fixed. This, together with (3.16), proves

W — gi(VA-w)t ir\ .
[ e -+ (- mea - ) g
0

A —w?
N-1 ; . ;
o Di(1—4£) —iDy(1 — £4)
1—j/N N N) - _
+ ) L fi+Int-fyll < be
Jj=1 B
for t > T5.
Step 6: As above,
M —i(vVa— .
1 — e iVA-w)t T
/2 Wd(P/\f)—MI— (Ce—ln(Qw)—i-E) N
N-1 ; . ;
1-j/N N N/ ¢+ +
—2 (2w)=i/% fi #ht-fy| < €
Jj=1 B

for t > Ty with

M dP = y
ph = lim (/w ! '\f()\)d)\—z(l_%f;&_jﬂv —|—ln5-f;)

310 25 A—w? dA ‘=

is proved. Combining the results of Step 1 to Step 6, we obtain that (3.7)
holds.
The case w = 0 is proved in the same way by

51 *©1 - 1
/ Md)\_%zﬂ/ ﬂdu+— < (8 €(0,1)),
0 0

M

A\1+8 ,u1+2ﬂ 3 0B

6 —
/%Sﬁtcu—zlnt—lna—we < ¢
0

for t > Ty(£,9) (use (3.67) in [15]).
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Corollary 3.3 (Regularity estimates) Let all Assumptions of Theorem 3.2 be sat-
isfied. In addition, suppose that ug € D(AF), u; € D(AFY/2), f € D(A*) for a
fized k € N. Denote by u the solution of (1.11).

1) General case: If w # 0, then

lim ||A7u(t) — e w™ I1(t) — e ufj)HB =0 forj=12,...,k
t—o00

(3.17)
with 1,(t) being defined in Theorem 3.2 and

. M\
U) = i d(P
U im (/|,\ (Prf)

€l0 —LJJQ\ZE /\ — a)2
- w .
- (1— Lyer-un i+ ) +Ine-w?(fy — fﬁ))
1=1 N
irw? % .
9 (fx + fy) +w? (Ce —In(2w)) (fy — fx) (3.18)

(7 < k), where the limit has to be taken in B. If w =0, then

lim | Au(t) — A7 ||, = 0 forj=1,2,... k. (3.19)
t—o0

2) Principle of limiting Amplitude: Suppose that additionally Ny = N,, = 0 in

(P2) of Theorem 8.2 and that N =1, fi = fi (= L2 (w?)) in (P3). Then

Hm (|47 ut) —e “ud)|, = 0  forj=0,1,... k (3.20)

t—o0

with

. ) N
u? = lim 5
aLO |)\_w2|2&. A — W

(j < k). The limit in (3.21) has to be taken in B.

d(Pyf) +imw® f; (3.21)

Proof: For the first part, use the arguments of the proof of Theorem 3.2. The

additional assumption is needed only in Step 1. From Step 2 on, replace dl;f\f (\) by
AF DAL ()).

The assertion of the second part follows directly from part 1, if 7 > 1. The case
j = 0 is obtained from Theorem 3.2. Note that f;" = f; = 0ifw = 0, since P,f =0
for A <0. O
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The following theorem characterizes the limiting amplitude (3.21) by the princi-

ple of limiting absorption.

Theorem 3.4 Suppose that A is a positive and self-adjoint operator in the Hilbert
space H and that A obeyes the condition (P1) given before Theorem 3.2. Let w > 0
and f € B be given and assume that (P3) of Theorem 3.2 is satisfied with N = 1
and fi" = f{. Then uY defined by (8.21) exists in B and

ljig}\Rwuin—ug’)HB = 0. (3.22)

Proof: Conclude from (P1) and (P3) (with N =1 and f;* = f;), that the limit
ul? exists in B. Recall that

Ry = /O ST

A—w?—ir

Let € > 0 be given. Choose 6 > 0, such that

w244 1 dP,f
A)— fF ] dx
/wz_(; A—wZ—iT(d)\ ) fl)

B
w2468
1 dP,f
< A — il dA
= /5 A —w?| ‘ a WA 5
< &
and
1
——dPf)+infi — O < ¢
H/|/\w226)‘_w2 () ' B

with u” being defined by (3.21). There exists 7o > 0, such that for 7 € (0, 7)

1 1
5 d(Pf) - a(P
/A—mw—cﬂ—if (1) /Hﬂzm—w? ()

B

<« - A(Pf)

- Aewrlps A= wB)(A— w2 —ir) ML

< ¢
and

w2+ 1 X .
/w25 mfl d\ —im f, . < e

This proves (3.22). ]
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4 Spectral properties of elastic operator

Let 2 C R be given by (1.3) and set

D(A) = {pe H{(Q)": (A+ cgraddiv)p € Ly(Q)"},

(4.1)
Ap = —(A+cygraddiv)y  for ¢ € D(A),

where ¢y > —1 is supposed, the derivatives have to be taken in distributional sense

and ﬁl(Q) denotes the closure of C§°(Q2) in H'(Q). Standard calculations show that

(A, ) > min{l,1+co} (lolly = llell)  for p € D(A) (4.2)

(||-ll := norm in H*(Q)") and that A is self-adjoint in Ly(Q)".

Note that Ly(2)™ = Ly(R, Ly (D)™), since 2 is given by (1.3). In this section we
define an operator family {A(§)}eer in Lo(D), such that A can be represented by
(1.9). We show that the theory developed in section 2 can be applied to obtain a
representation of the spectral family of A.

Let the variable in D be denoted by (zo,... ,z,) and set
gradp = (Oy,...,0,)", divp = (82,...,0,), Ap:=20;+...+02.

Consider the dyadic product grad, divp defining a (n — 1) x (n — 1)-matrix. The

n X n-matrix given by

( —£2 idivp >
iégrad, gradpdivp
contains (—£2,i£0,,1£0s, . .. ,i£0,) in the first line and (—£2,i£0,,1£0s, . . . ,i£0,)T in

the first column. E.g. in the case n = 3,

—& i€,  i€0s

—£2 i€divp ) _ | o
(ifgradp gradD diVD 1662 1682 1662 63
105 1050,  1£0%
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Define the operator A(§) for £ € R by

pe) = {eeirwor:(ap+al) O N)eewor},

0 gradpdivp

A©)p = —(AD—52+co(. ¢ i ))s@ for € D(A(€)).
iégrad;,, gradp,divp
(4.3)

Let £ € R be fixed. As above,

(A©)e, 9)p = min{l,1+co} (Z|lgradpwj||%+§2|lwl|%> >0 (44

j=1
for ¢ = (¢1,---,9n) € D(A(&)) is proved. Furthermore, A(&) is self-adjoint in
Ly(D)™.

Lemma 4.1 Suppose that D has the segment property and that A(§) is defined by
(4.8). Then:

1) For every fized £ € R, A(§) has an orthonormal system of eigenfunctions
{v;(€)}jen being complete in Ly(D)". Eigenfunctions and associated eigenval-
ues {A;j(€)}jen can be chosen in a way, such that for every fired j € N the
mappings & — v;(€), £ — X;(€) are analytic on R.

2) For every £ € R, A\j(&) > 0 for j € N and \j(§) — 0o as j — 0.

3) For every j € N, there exists k € N, such that \j(&) = A\ (=&) for £ € R.

Proof: Let £ € R be fixed. Using Rellich’s selection theorem, one obtains from
(4.4) that (A(€) +1d)™" : Ly(D)™ — Lo(D)™ is compact. Furthermore this operator
is symmetric and positive. The theory of compact symmetric operators shows that
(A(€) +1d) ! has an orthonormal system {v;(£),v2(€),. ..} of eigenfunctions being
complete in Ly(D)". Denote by p;(§) the eigenvalue of (A(€) + Id) ! associated

to v;(&) (j € N). Then p;(&¢) L 0 as j — oo. The operator A(&) has the same

1—u;(€)
15 ()

eigenfunctions with associated eigenvalues \;(§) = — 00 as j — 00.
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Now let £ € R vary. In the notation of [10], {A(£)} is a self-adjoint holomorphic
operator family of type (A) with compact resolvent. According to Theorem 3.9 of
Chapter VII there, eigenvalues and eigenfunctions can be chosen in a way, such
that they depend analytically on £. Since the graphs of A = \;(£) may intersect,
enumeration has to be changed eventually. Note that this change doesnt’t touch the
property A;(§) = 0o as j — oo for fixed £ € R. Finally, A;(§) > 0 is obtained from
(4.4) and from D(A(¢)) ¢ HY(D)".

Fix jo € N and consider v;,(§) = (;L;(é)))’ where up = (Vjp2, ... ,Vjgn)!. From
A(¢) (Z;((%) = ), (&) (5;((?)) and the definition of A(¢),
_ _ul(f)) N <—U1(5))
A( €)<UD(§) = Ai(&) un(€)

follows. In particular, for every £ > 0, there exists j € N, such that A\;(—&) = A, (£).
This implies, that there is at least one j € N, such that \;(—&) = A;,(£) for more
than countable many values of & € [0,1]. Hence \;(—&) = A (&) for £ € R by

analycity of A; and A, . O

Lemma 4.2 Suppose that 0D has the segment property and let {\;(£)}jen denote
the eigenvalues of A(§) given by Lemma 4.1. Then

Amin = min{);(§):j €N, £€R} > 0. (4.5)

Furthermore, for every A > Amin, equation X\j(§) = X admits only finitely many
solutions (j,€) € N x R.

Proof: It is sufficient to consider \;(§) with € > 0 according to Item 3 of Lemma 4.1.
Note that

2Re <A(§>vj<s),d%vj<@>D = MO IO = M1 = 0 for¢er
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From this, one obtains with v;(§) = (5;((?)) and £ > 0 that

d d
d_g)\j(f) = d—g(A(f)vj(f),Uj@»D

— 9Re <A<§)vj(s>, d%vj(s)>D L2l O,

. —2&uy (&) +idivp up(§) u1(§)
(™) (),

% (los I, + co s ()13 + 20 Tm (gradp us (€), un(€)),

~leof (llgradp us (€)1 + llun(€)I3)

> —|eo| (lgrady, wi (6)||5 + 1),

v

since ||up(€)[3, < llv;(€)]|% = 1. Inequality (4.4) implies that

: _ N
1+co} (828w = min{1,1+ ¢}

2
<
lgradp ui(§)]|p < min{1,

Hence

d
MO > o - ol

min{1, 1+ co} Ai(€) =1 —|co] —c1A;(§)

follows. Application of Gronwall’s Lemma yields

13
MO = 40 =] [Coeeds = (g0 + 2 oot g
0

C1 C1
for £ > 0. (Set (&) := e'¥);(€) and integrate the resulting differential inequality.)
In order to prove Lemma 4.2, it is convenient to search for eigenvalues \;(§)

being smaller than some given A > 0. From (4.4) one obtains that

Ai(6) = (A(€)v;(€),v;(6)), = min{1, 14 ¢} |loj(E)ll}, = min{1,1+ ¢} €
(4.7)

and hence

A
min{1,1+ ¢y}

. Co.

Aj(§) > A forj €N, 62\/
If £ € [0, o], then (4.6) implies that

() > (Aj(o>+@) B

C1 1
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with suitable chosen Jy € N, since A;(0) — 0o as j — oo. Hence equation A;(£) = A
admits only solutions (j,£) € N x R with j < Jy and &€ € [0, ¢5]. By the analycity of

A;(.), both assertions of Lemma 4.2 follow. O

Lemma 4.3 Let Q) C R" be given by (1.8), where D is supposed to have the segment
property. Set H := Ly(Q)" = Lo(R, H) with H = Ly(D)™) and denote by F : H — H
the Fourier-transform (see (1.8)). Then

@ AN
FoAoF ! = / A€)dE =1 A (4.8)
R
with A and A(&) being defined by respectively (4.1) and (4.3).

Proof: For every p,1 € Ly(D)", the mapping & — (¢, (A(§) + Id)~'¢), is con-
tinuous on R by Lemma 4.1, and hence measurable. This shows that fﬂf A(€) d¢ is
defined. It is sufficient to prove Fo Ao F~! C A. This implies that FoAdoF~! = .2,
since both operators are self-adjoint. (For the case of A see Theorem XIII.85 in
[14].) Suppose that f € D(F o Ao F~'), which means that F~'f € D(A). Since
D(A) C H'(Q)", there exists a sequence {¢;} in C§°(Q)™ with

||90-7 - fﬁlf”f[l(gy; — 0 aSj — OQ.

Since F is norm-invariant and commutes with derivatives with respect to xo, ... , T,

this implies that
JUEe)© = £l d€ > 0 asj =
R
There exists a subsequence of {¢;}, again denoted by {¢;}, such that

I(Fe)(©) = FOfpyn = 0 asj—ooae onR

Note that (Ff)(£) € C5°(D)" for every ¢ € R. Hence f(£) € HY(D)" ae. for £ € R.
If o € C(Q)", then (Fo Ao Flp)(€) = A(é)p(£,.) and

(FodoF 'fp), = (fFoAoF o)y = [ (70, A@0le. )y de

. _ 2 —§2 i&divp
-/ <( Ap+é C°<iggrad,) L divD>>f(§),90(£,-)>Dd«S
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by the symmetry of Fo Ao F~! Fubini’s theorem and definition of weak derivative.

Again using Fubini’s theorem, one obtains that

(-anre—al b B Yo = (Federne € L)
i£grad,, grad,divp

a.e. for £ € R, and hence that f(§) € D(A(£)) and A(E)f(§) = (Fo Ao F1f)(&)

a.e. for £ € R. Furthermore,

/R IA©F©)I de = / (FodoF 1)@, de < oo

~

follows. This implies that f € D(A) and

(ANE) = AQ)F(€) = (FoAoF'f)(§) aefor€eR,

which concludes the proof of F o Ao F~1 C A. 0

The following corollary is obtained from Lemmata 4.1, 4.2, 4.3 and from (4.4),
(4.7):

Corollary 4.4 Suppose that D C R* ! is bounded and has the segment property.
Then:

1) The operator family {A(€)}ecr given by (4.3) satisfies Assumptions (A1) -
(A4) (see page 4).

2) All assertions of Theorem 2.3 are valid for spectrum and spectral family of the

operator A given by (4.1).

5 Elastic wave equation

We study the long-time behaviour of u solving (1.2). Lo-estimates are given by
Theorem 5.1, if u is a strong solution. Pointwise estimates of the classical solution

are presented in Theorem 5.2.
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In Section 2, Banach-spaces H; = Lo (R, H) with assiciated norm ||.||s; (s € R)
were defined (see (2.10)). In the following application, H := Lo(D)™ has to be set,
since {2 = R x D. Note that

H, = HS(Q)”, II-|Is is equivalent to ||.||o.s,
where
HEQ)™ = {pe HE(Q)": ||l@|lk,s < 0o},
1/2
- o / (5.1)
lelhoe = | [ @ 1oP) | 3 IDo() | da
f la|<k

(]C e Ny, s> 0)

Theorem 5.1 Let Q C R™ be given by (1.8) whith D having the segment property,
and let A be the elastic spatial operator defined by (4.1). Denote by u the solution
of (1.11) (with H := Ly(Q2)"™), where

w>0, u€ D(A), u €D(AY?), fe Ly(Q)" (5.2)
18 supposed.

1) Principle of limiting amplitude: If, in addition to (5.2), w? & 0res(A) (see
(2.2)) and ug, w1, f € HY(Q)™ for some s > %, then

ut) = e “u, +r(t), (5.3)
where
Ir(@)llo, s = o(1) ast — oo (5.4)
for every s > 1 and u,, = ul? is given by (3.21) (with B := H° ,(Q)").

2) Resonance case: If, in addition to (5.2), w? = 0, € 0rs(A) and ug,uy, f €
HY(Q)™ for some s > N, + 5 (see (2.14)), then resonance of order t'=1/Ne
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occurs. In particular,

N(]’k,p)—l
(4,k)EK T (0p) =1
l : l
D,(1 - N(j,k,p)) +iDp(1 - N(j,k,p)) Qjkp(f)
(2w)1=U/NGikop) Jhp!

+1Int - Qjkpnokp) (f)

N(]ykvp)_l
— o iwt Z Z tl—l/N(j,k,p) %
(j,k)EK~ (0p) =1
l . l
Di(1 = 5g7) — iD2(1 ~ 5g5)
(2w) 1 —UN k) Qi (f)
+Int - Qiupnin) () | + e uy + (1), (5.5)

where 1 satisfies (5.4) for every s' > N, + % and where at least one term of
order t'~YNUEP) with N(j, k,p) = N, does not vanish and is not cancelled out

by other terms, if f is chosen suitable. Furthermore, u, 1s given by

1
u, = lim / d(Prf)
A—ayl>e A

el0 — oy
N(jvkap)_l 1
- > > l R )ij:pl(f)
(j,k)EK+(0'p) =1 (1 - N(],k,p)) £ VILPIS

+ <157r +C, — ln(2w)> lecpN(j,k,p)(f)

N(j,k,p)*l

1
+ Z Z l UNGH )ij:pl(f)
(j,k)EK*(a'p) =1 (1 - W) £ WELEYY
im
{5 = CetIn(2w) ) Qimpniwn(f) | | (5.6)

where the limit has to be taken in H® ,(Q)" for s’ > N, + 1.
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Proof: According to Corollary 4.4, the spectral family of A and its properties are
given by (2.12), (2.13) and (2.15). Application of Corollary 3.3, Part 2 (with £ =1
and B:=H, = H'(Q)", B:=H_y = H® ,(Q)") yields (5.3) and (5.4). From Ttem 1
of Theorem 3.2, (5.5) with (5.4) and (5.6) is obtained.

It remains to prove, that resonance of order t'~/N» occurs, if f is chosen suit-
able. Note that every term on the right-hand side of (5.5) with N(j,k,p) < N, or
with [ > 1 grows slower than t~'/"»_ Thus only summands with N(j,k,p) = N,
and [ = 1 have to be studied. Choose one pair (jo,ko) € K*(0p) U K™ (0p)
such that N(jo,ko,p) = N,. Furthermore, choose f € H?(Q)" such that
((F)(Tjoko(0p))s Vio(Tjoko (0p))) , # 0 (Note that it is possible to suppose f €
Ce(S)™). Then Qjokep1(f) # 0 according to (2.16). The associated resonance-
term is not cancelled out by the other terms on the right-hand side of (5.5), which
will be shown in the following.

Consider another pair (j,k) € K*(o,) U K~ (0,) with N(j,k,p) = N,. If
Tik(0p) F Tjoko(0p), then Qjrp1(f) and Qjokep1(f) are linearly independent due
to the factor e'7i#(°») in the definition (2.16) of Qjrpi(f)- If 7jk(0p) = Tioko(0p)
and j # jo, then Qjipi(f) and Qjokep1(f) are again lineartly independent, since
{v;(7joko (1)) }jen is supposed to be an orthonormal system. It remains to consider
the case 7;,(0p) = Tjoko(0p) and j = jo. In this case, £ = ko = 1 according to
Item 4 of Lemma 2.1 and construction of rj;. Furthermore Qjkp1(f) = Qjokop1 (f)
holds (see (2.9) and (2.16)). If (4, k), (jo, ko) are contained in the same set K (o,)
(or respectively K~ (o,)), then both associated summands in (5.5) lead to the same
resonance term, so that the factor of £*=/NoQ; . . (f) is multiplied by two. If e.g.
(j, k) € K*(0,) and (jo, ko) € K~ (0,), then the factor of '=Y/NeQ; . .1 (f) is given
by

Di(1- ) +iDy(1- ) Di(l- ) —iDs(1~ ) _ Dy(1 - x-) .
(2w)1=1/N N (2w)1=1/N = 4 (2w)1=1/N # 0.
The same happens if (j, k) € K~ (0,) and (jo, ko) € KT (0p). O
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Theorem 5.2 Let Q2 and A be given by respectively (1.3) and (4.1). Suppose that
w > 0 and that

oD € CX wye D(AY), wu, e DAK Y2, fe DAKY (5.7)

for some K > 2 +2, K' > 2 4+ 1. Then Problem (1.2) has a solution u €
02([0,00) X ﬁ) It is the only solution of (1.2) satisfying
u € C*([0,00), Lo(Q)), u(t) € D(A) fort > 0. (5.8)
Furthermore the following asymptotic estimates hold:
1) Principle of limiting amplitude: If, in addition to (5.7), w? & 0.es(A) and
uo, u, f € HY(Q)"™ for some s > L, then
u(t,z) = e “u,(z)+r(tz), (5.9)
where u, € C? (ﬁ) is solution of (1.6) and, for every s' > %,
(t,z) = o(1) as t — oo, uniformly with respect to x € Q.

———75 T
(1 + |af?)*/
(5.10)

2) Resonance case: If, in addition to (5.8), w? € 0yes(A) and ug, uy, f € HX(Q)"
for some s > N, + %, then u satisfies (5.5) pointwise with respect to x € €,
where 7(t, z) obeyes (5.10) for every s' > Np+ 3 and u, € C?(Q) solves (1.6).

For the proof, the following lemma is needed. It can be found in [7], but without

proof. For the idea of the proof see e.g. Hilfssatz 1.15 in [12].

Lemma 5.3 Set D := —(A+c¢ograddiv) (in distributional sense) and ﬁis(ﬂ)" =
completition of C°(Q)™ in H' ,(Q)"™ (s > 0). Suppose that Q is given by (1.8) with
dD € CK for some K > 2 and that o € H° (Q)" satisfies

Dige H ()" for j=0,1,...,K'—1,  DNype# ("
for some K' € N and some s > 0. Then ¢ € Hmin{K’ZKI}(Q)" and

sy < el K59 ([0 +lelos) G0

0,—s

with ¢(K,K',s,Q) > 0 not depending on ¢.
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Proof of Theorem 5.2: Denote by u the solution of (1.11) given by (3.3). From
(5.7) and Theorem 3.1, one obtains that ’DK'_j‘f;—i}* € C([0,00), Ly(2)™), 7 < K.
Application of Lemma 5.3 (with s = 0) and Sobolev’s imbedding theorem yields
u € C*([0,00) x Q). By definition of A (see (4.1)), u solves (1.2). Uniqueness of
the solution of (1.2) satisfying (5.8) follows from the uniqueness of the solution of
(1.11) asserted by Theorem 3.1.

Suppose that all assumptions of Part 2 are satisfied and that s’ > N, + % Note
that w? = o, > 0 by (4.5) and (2.3). According to (5.5) and Corollary 3.3, there exist
constants N € N, aq,...,ay € [0,1), oy < ... < ay and operators Qy, ... ,Qn,

such that

N
Diu(t) - ¢~ (Z % Qu(f) +Int Qo(f)) — ey

k=1

0,—s'

ast—o00 (j=0,1,...,K'). Set
v(t) = 17N el y(t) for t > 0.

Then v(t), Dv(t),... , DX v(t) converge as t — oo with respect to ||.||o,_y. Further-
more v(t), Do(t), ..., DX "1u(t) € H.,(Q)" for every ¢ > 0 (since v(t) € D(AX")).
Application of Lemma 5.3 yields

||'U(t) - U(tl)”min{K,ZK’},_sl — O an t, tl — OQ.

Thi> implies that Qn(f) = lim v(t) € HMME2K Oy DiIQu(f) = w¥Qn(f)
—00

(j=1,...,k) and DIQn(f) € ISIES,(Q)" for j =0,1,...,k — 1. Repeat the same

argument with v(¢) := ¢ -1 ! (u(t) — t**Qn(f)) and so0 on. This proves that

[ (¢) ||min{K,2K’},fs’

N
u(t) — e vt (Z 1% Qu(f) +1nt - Qo(f)) — e iy ()
k=1

- 0 as t — oo.

min{K,2K'},—s'
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Now use Sobolev’s inequality to obtain

r(tz)
(1+[af)""

r(t)

(1+[2)"
<

< allr®ll a2y, —s

C1

min{K,2K"},0

— 0 ast — oo

uniformly with repect to x € Q. Thus (5.10) is proved in the resonance case. Finally

note that u'” e HT;?{K’QK’} c C? (ﬁ) and

(D=l o) = (U, (D-w?)p)
= lim <ei°Jtu(t) — Zto"“ Qr(f) —Int-Qo(f), (D — w2)<p>

t—o0

= lim ((D - wQ)ei‘”t;(t), ©)

t—o0

= (f,¥)
for every ¢ € C3°(Q)", since (D — w?)Qk(f) = 0 and
et (D — w?)u(t) — f”O,—s’ = ||e“" (A — w?)u(t) — f”O,—s’ —0 ast— oo,

which follows by the same arguments used in the proof of Theorem 3.2. This shows

that u, = ul” solves (1.6). Part 1 of the theorem is proved in the same way. O
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