Long-Time Asymptotics for the Wave Equation of Linear Elasticity in Cylindrical Waveguides

P. H. Lesky

Mathematisches Institut A der Universität Stuttgart, Pfaffenwaldring 57, D 70569 Stuttgart

Abstract

Let $\Omega=\mathbb{R}\times D,\ D\subset\mathbb{R}^2$ bounded. Suppose that Ω is filled with a homogeneous and isotropic elastic medium, which is fixed at the boundary, and that a time-harmonic force $f(x)\,\mathrm{e}^{-\mathrm{i}\omega t}$ acts in Ω , where f has bounded support. The resulting elastic motion and its behaviour as $t\to\infty$ is studied. Depending on the choice of ω and f, two different types of time-asymptotic occur: Either the motion is unbounded as $t\to\infty$ at almost every $x\in\Omega$ (resonance case), or the principle of limiting amplitude holds. The resonance is shown to occur for countable many frequencies of incitation. Even two-dimensional elastic motion in a domain $\Omega=\mathbb{R}\times(0,1)$ is considered; here the same phenomena happen. These results are proved using an explicit representation of the motion, which is obtained combining spectral- and Fourier-transform. The method is presented in a general setting, so that it is applicable also to other translation-invariant wave equations.

1 Introduction

Let $\Omega \subset \mathbb{R}^3$ be filled with a homogeneous and isotropic elastic medium, which is fixed at the boundary $\partial\Omega$. Suppose that a time-harmonic force $F(x) e^{-i\omega t}$ (with $F:\Omega\to\mathbb{R}^3$) acts in Ω . Denote by $s(t,x)\in\mathbb{R}^3$ the resulting motion of a point $x\in\Omega$ at time $t\geq 0$. Then s is solution of (see e.g. [1] or [13])

$$\mu \Delta s(t,x) + (\lambda + \mu) \operatorname{grad} \operatorname{div} s(t,x) + \sigma F(t,x) e^{-i\omega t} = \sigma \partial_t^2 s(t,x) \quad \text{for } t \ge 0, \ x \in \Omega,$$

$$s(t,x) = 0 \quad \text{for } t \ge 0, \ x \in \partial \Omega,$$

$$s(0,x) = s_0(x), \quad \partial_t s(0,x) = s_1(x) \quad \text{for } x \in \Omega,$$

$$(1.1)$$

where $\sigma > 0$ (density of mass) and $\mu > 0$, $3\lambda + 2\mu > 0$ (Lamé-constants). More general, we study in a domain $\Omega \subset \mathbb{R}^n$ the solution $u : [0, \infty) \times \Omega \to \mathbb{R}^n$ of the initial-boundary-value problem

$$\partial_t^2 u(t,x) - (\Delta + c_0 \operatorname{grad} \operatorname{div}) u(t,x) = f(x) e^{-i\omega t} \text{ for } t \ge 0, \ x \in \Omega,$$

$$u(t,x) = 0 \quad \text{for } t \ge 0, \ x \in \partial\Omega,$$

$$u(0,x) = u_0(x), \quad \partial_t u(0,x) = u_1(x) \quad \text{for } x \in \Omega,$$

$$(1.2)$$

where $c_0 > -1$ is supposed. The last condition $c_0 > -1$ is needed to guarantee the coerciveness of the spatial operator. It is satisfied in all physically relevant situations, since $c_0 = 1 + \frac{\lambda}{\mu}$. Let Ω be given by

$$\Omega = \mathbb{R} \times D, \quad D \subset \mathbb{R}^{n-1} \text{ bounded.}$$
 (1.3)

In the case n = 3, if D is connected, then Ω is an infinite tube with cross-section D. If n = 2 and D = (a, b) with $-\infty < a < b < \infty$, then Ω is a layer.

We are interested in the asymptotic behaviour as $t \to \infty$ of u solving (1.2). In order to give a brief description of the results, we suppose that $\partial D \in C^{\infty}$. It will be proved that there exists a set $\omega_{\text{res}} \subset \mathbb{R}$ of resonance frequencies, which is countable and has no finite accumulation point. If the frequency ω of incitation coincides with a resonance frequency, then resonance occurs: There exist $N \in \mathbb{N}$,

 $\alpha_1, \ldots, \alpha_{N-1} \in (0,1)$ and $f_1, \ldots, f_N, u_\omega \in C(\overline{\Omega})$, such that

$$u(t,x) = \sum_{j=1}^{N-1} e^{-i\omega t} t^{\alpha_j} f_j(x) + e^{-i\omega t} \ln t \cdot f_N(x) + e^{-i\omega t} u_\omega(x) + o(1)$$
 (1.4)

as $t \to \infty$, where the precise definition of the meaning of o(1) is given in Theorem 5.2. The functions f_1, \ldots, f_N depend on f and can be computed together with the values of $\alpha_1, \ldots, \alpha_{N-1} \in (0,1)$ solving a parameter-dependent eigenvalue problem in D. This will be done for a special example of D in a subsequent paper. The present article shows, that at least one of f_1, \ldots, f_N does not vanish, if f is chosen suitable, and that the corresponding exponent α_j is element of $[\frac{1}{2}, 1)$.

If $\omega \in [0, \infty) \setminus \omega_{res}$, then u satisfies the principle of limiting amplitude

$$u(t,x) = e^{-i\omega t} u_{\omega}(x) + o(1) \quad \text{as } t \to \infty,$$
 (1.5)

where $u_{\omega} \in C^2(\overline{\Omega})$ solves

$$(-\Delta - c_0 \operatorname{grad} \operatorname{div} - \omega^2) u_{\omega}(x) = f(x) \text{ in } \Omega,$$

$$u(x) = 0 \text{ on } \partial \Omega.$$
(1.6)

These results are obtained using a method, which was developed in [12] and used in [8]. It is based on an explicit representation of the spectral family of the spatial operator in (1.2), which is computed using Fourier-transform with repect to the unbounded variable. This article presents the method in a more general setting, so that it can be applied to other wave equations being translation invariant.

In order to be more precise, let \mathcal{H} be a Hilbert-space given by

$$\mathcal{H} := L_2(\mathbb{R}, H), \quad H = \text{separable Hilbert-space}$$
 (1.7)

(e.g. $H = L_2(D)^n$, $\mathcal{H} = L_2(\Omega)^n$). The Fourier-transform with respect to the first variable is defined by

$$\mathcal{F} := F \otimes \mathrm{Id} : \mathcal{H} = L_2(\mathbb{R}) \otimes H \to \mathcal{H} \qquad (\otimes = \text{tensor product}),$$
 (1.8)

with $F: L_2(\mathbb{R}) \to L_2(\mathbb{R})$ and $\mathrm{Id}: H \to H$ denoting respectively usual Fourier-transform and identity. Let \mathcal{A} be an operator in \mathcal{H} , given by

$$\mathcal{A} = \mathcal{F}^{-1} \circ \int_{\mathbb{R}}^{\oplus} A(\xi) \, d\xi \circ \mathcal{F}, \tag{1.9}$$

where $\{A(\xi)\}_{\xi\in\mathbb{R}}$ denotes a family of self-adjoint operators in H (for the notation see section XIII.16 of [14]). Roughly spoken, (1.9) means that $A(\xi)$ defines the Fourier-transform of \mathcal{A} by

$$(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} f)(\xi) = A(\xi) f(\xi)$$
 for almost every $\xi \in \mathbb{R}$,

if $f \in D(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}) \subset L_2(\mathbb{R}, H)$. The operator family is supposed to satisfy the following assumptions:

- (A1) For every fixed $\xi \in \mathbb{R}$, $A(\xi)$ is self-adjoint and positive in H.
- (A2) For every fixed $\xi \in \mathbb{R}$, $A(\xi)$ has an orthonormal system of eigenfunctions $\{v_j(\xi)\}_{j\in\mathbb{N}}$ being complete in H. The corresponding eigenvalues are denoted by $\lambda_j(\xi)$, where every eigenvalue eventually has to be counted multiple times according to his multiplicity, which is supposed to be finite.
- (A3) For every fixed $j \in \mathbb{N}$, $\lambda_j(\xi)$ and $v_j(\xi)$ depend analytically on ξ .
- (A4) For every $\lambda \in \mathbb{R}$, the set $\{(j,\xi) \in \mathbb{N} \times \mathbb{R} : \lambda_j(\xi) = \lambda\}$ is empty or finite, and for every fixed $j \in \mathbb{N}$, $\lambda_j(\xi) \to +\infty$ as $\xi \to \pm \infty$.

Then \mathcal{A} is self-adjoint in \mathcal{H} (see [14], sec. XIII.16).

Section 2 studies the spectral family of \mathcal{A} . The spectrum $\sigma(\mathcal{A})$ of \mathcal{A} consists of one infinite interval and is purely absolutely continuous. We say that $\lambda \in \sigma(\mathcal{A})$ is a resonance point, if and only if

$$\exists (j,\xi) \in \mathbb{N} \times \mathbb{R} : \lambda = \lambda_j(\xi) \wedge \frac{d\lambda_j}{d\xi}(\xi) = 0.$$
 (1.10)

The set of all resonance points is countable and has no finite accumulation point. The spectral family $\{P_{\lambda}\}_{{\lambda}\in\mathbb{R}}$ of ${\mathcal A}$ will be shown to have a Hölder-continuous derivative

with respect to λ (in a certain sense) at every $\lambda \in \mathbb{R}$ being no resonance point. If $\lambda_0 \in \mathbb{R}$ is a resonance point, then the derivative with respect to λ of the spectral family has a singularity of type $|\lambda - \lambda_0|^{-\alpha}$ with $\alpha \in (0,1)$. For a more precise statement see (2.15).

Section 3 studies the solution of the initial value problem

$$u \in C^{2}([0,\infty), \mathcal{H}), \quad u(t) \in D(\mathcal{A}) \quad \text{for } t \geq 0.$$

$$u''(t) + \mathcal{A}u(t) = f e^{-i\omega t} \quad \text{for } t \geq 0,$$

$$u(0) = u_{0}, \quad u'(0) = u_{1},$$

$$(1.11)$$

where u' denotes the derivative of u. The solution u is given by spectral integrals. Theorem 3.2 shows the connection between the long-time behaviour of u and the properties of the spectral family $\{P_{\lambda}f\}$ at $\lambda = \omega^2$ and at $\lambda = 0$. If ω^2 is a resonance point and if f is chosen suitable, then u shows resonance. If ω^2 is no resonance point and if the behaviour of the spectral family near $\lambda = 0$ is not too bad, then the principle of limiting amplitude holds.

Section 4 studies spectral properties of the elastic spatial operator. It is shown that the theory developed in Sections 2 and 3 can be applied to problem (1.2). In section 5, the long-time behaviour of the solution u of (1.2) is computed. Application of the general theory yields estimates with respect to some weighted norms. Using elliptic regularity theory, pointwise estimates of u(t, x) as $t \to \infty$ are proved.

Equation (1.1) with other (non homogeneous) boundary conditions in a domain $\Omega = \mathbb{R}^2 \times (0, h)$ is considered in the modelling of seismic waves. In this context, L. Brevdo obtained similar resonance effects in [3], [4] and [5]. He studies the solution using spatial Fourier-transform and Laplace-transform with respect to time. This method was developed by R. Briggs in [6]. The theory in this book leads to the same definition of resonance points as (1.10). The considerations there are not restricted to self-adjoint spatial operators. But one has to pay for this generality: It has to be distinguished between resonance points leading to convective instabilities and those leading to absolute instabilities. The result of the present paper shows in the case of a self-adjoint spatial operator, that at every resonance point an absolute instability

occurs.

I want to thank P. Werner and J. Giannoulis for various discussions. Thanks to S. Müller, who gave me a hint how to optimize the underlying Sobolev-spaces.

2 Spectral properties of A

We study the spectral family $\{P_{\lambda}\}$ of the self-adjoint operator \mathcal{A} given by (1.9). The main result in this section consists of an explicit representation of the spectral family (see Theorem 2.3).

Suppose that the operator family $\{A(\xi)\}_{\xi\in\mathbb{R}}$ satisfies Assumptions (A1) – (A4) given on page 4. Set

$$\lambda_{\min} := \min \left\{ \lambda_j(\xi) : j \in \mathbb{N}, \ \xi \in \mathbb{R} \right\}. \tag{2.1}$$

From (A3) and (A4), one obtains that the given set has a minimum. Furthermore, (A1) implies that $\lambda_{\min} \geq 0$. Define the set of resonance points by

$$\sigma_{\text{res}}(\mathcal{A}) := \left\{ \lambda_j(\xi) : j \in \mathbb{N} \ \land \ \xi \in \mathbb{R} \ \land \ \frac{d\lambda_j}{d\xi}(\xi) = 0 \right\}. \tag{2.2}$$

By (A3) and (A4), $\sigma_{res}(A)$ is countable infinite and has no finite accumulation point. Obviously $\lambda_{min} \in \sigma_{res}(A)$. Write $\sigma_{res}(A)$ as

$$\sigma_{\text{res}}(\mathcal{A}) = \{\sigma_1, \sigma_2, \dots\} \text{ with } \lambda_{\min} = \sigma_1 < \sigma_2 < \dots, \sigma_j \to \infty \text{ as } j \to \infty.$$
 (2.3)

In order to define local inverses of the mapping $\xi \mapsto \lambda_j(\xi)$, let $j \in \mathbb{N}$ be fixed. By the analycity of λ_j , the set

$$S_j := \left\{ \xi \in \mathbb{R} : \frac{d\lambda_j}{d\xi}(\xi) = 0 \right\}$$

is finite or countable with no finite accumulation point. Hence one can write

$$S_j = \{\rho_{jk} : k \in \mathbb{I}_j\}$$
 with $\rho_{jk} < \rho_{j(k+1)}$ if $k, k+1 \in \mathbb{I}_j$,

where $\mathbb{I}_j = \{1, \dots, N\}$ or $\mathbb{I}_j = \mathbb{N}$ or $\mathbb{I}_j = \mathbb{Z}$. Define intervals I_{jk} by

$$I_{jk} := \begin{cases} (-\infty, \rho_{j(k+1)}] & \text{if } k \notin \mathbb{I}_j, \ k+1 \in \mathbb{I}_j, \\ [\rho_{jk}, \rho_{j(k+1)}] & \text{if } k, k+1 \in \mathbb{I}_j, \\ [\rho_{jk}, \infty) & \text{if } k \in \mathbb{I}_j, \ k+1 \notin \mathbb{I}_j \end{cases}$$
(2.4)

for $k \in \tilde{\mathbb{I}}_j$, where $\tilde{\mathbb{I}}_j := \mathbb{I}_j \cup \{\min\{k \in \mathbb{I}_j\} - 1\}$ if \mathbb{I}_j is bounded from below, and $\tilde{\mathbb{I}}_j := \mathbb{I}_j$ otherwise. Then $\{I_{jk}\}_{k \in \tilde{\mathbb{I}}_j}$ defines a decomposition of \mathbb{R} having the property, that the restriction $\lambda_j : I_{jk} \to \lambda_j(I_{jk})$ is one-to-one for every $k \in \tilde{\mathbb{I}}_j$. Let $r_{jk} : \lambda_j(I_{jk}) \to I_{jk}$ denote the inverse mapping. Note that the domain of definition of r_{jk} consists of a closed interval. By the analycity of λ_j , r_{jk} is C^{∞} in the interior of $\lambda_j(I_{jk})$. Define $K(\lambda)$ by

$$K(\lambda) := \{(j,k) \in \mathbb{N} \times \mathbb{N} : \lambda \in \lambda_j(I_{jk})\} \quad \text{for } \lambda \in \mathbb{R}.$$
 (2.5)

This set is empty, if $\lambda < \lambda_{\min}$. Otherwise, $K(\lambda)$ contains all pairs $(j, k) \in \mathbb{N} \times \mathbb{N}$ having the property, that λ is in the domain of definition of r_{jk} . According to (A4), $K(\lambda)$ is finite for every $\lambda \geq \lambda_{\min}$. Remember that $\sigma_{\text{res}}(A) = \{\sigma_1, \sigma_2, \dots\}$ and note that $K(\lambda)$ is constant on (σ_p, σ_{p+1}) for every $p \in \mathbb{N}$. For every $\sigma_p \in \sigma_{\text{res}}(A)$ set

$$K^{+}(\sigma_{p}) := \left\{ (j,k) \in K(\lambda) \text{ with } \lambda \in (\sigma_{p}, \sigma_{p+1}) : \frac{d\lambda_{j}}{d\xi}(r_{jk}(\sigma_{p})) = 0 \right\},$$

$$K^{-}(\sigma_{p}) := \left\{ (j,k) \in K(\lambda) \text{ with } \lambda \in (\sigma_{p-1}, \sigma_{p}) : \frac{d\lambda_{j}}{d\xi}(r_{jk}(\sigma_{p})) = 0 \right\} (p \neq 1),$$

$$K^{-}(\sigma_{1}) := \emptyset,$$

$$(2.6)$$

$$N(j,k,p) := \min \left\{ l \ge 2 : \frac{d^l \lambda_j}{d\xi^l} (r_{jk}(\sigma_p)) \ne 0 \right\} \qquad \text{for } (j,k) \in K^+(\sigma_p) \cup K^-(\sigma_p).$$

$$(2.7)$$

Lemma 2.1 1) If $\sigma_p, \sigma_{p+1} \in \sigma_{res}(\mathcal{A})$ and $(j,k) \in K(\lambda)$ for $\lambda \in (\sigma_p, \sigma_{p+1})$, then $r_{jk} \in C^{\infty}(\sigma_p, \sigma_{p+1})$.

2) If $\sigma_p \in \sigma_{res}(\mathcal{A})$, $p \geq 2$, and if $(j,k) \in K(\sigma_p) \setminus (K^+(\sigma_p) \cup K^-(\sigma_p))$, then $r_{jk} \in C^{\infty}(\sigma_{p-1}, \sigma_{p+1})$. Furthermore $K(\sigma_1) = K^+(\sigma_1)$.

3) If $\sigma_p \in \sigma_{res}(A)$ and $(j,k) \in K^+(\sigma_p)$, then there exist constants $c_{jkpq} \in \mathbb{R}$, $c_{jkp1} \neq 0$ and $\delta > 0$ such that

$$\frac{dr_{jk}}{d\lambda}(\lambda) = \sum_{q=1}^{\infty} \frac{c_{jkpq}}{|\lambda - \sigma_p|^{1 - q/N(j,k,p)}}$$
(2.8)

for $\lambda \in (\sigma_p, \sigma_p + \delta)$. If $(j, k) \in K^-(\sigma_p)$, then (2.8) holds for $\lambda \in (\sigma_p - \delta, \sigma_p)$ with suitable chosen constants $c_{jkpq} \in \mathbb{R}$, $c_{jkp1} \neq 0$ and $\delta > 0$.

4) If $\sigma_p \in \sigma_{res}(A)$ and $(j,k) \in K^+(\sigma_p) \cup K^-(\sigma_p)$, then either $(j,k+1) \in K^+(\sigma_p) \cup K^-(\sigma_p)$ or $(j,k-1) \in K^+(\sigma_p) \cup K^-(\sigma_p)$. If $(j,k), (j,k+1) \in K^+(\sigma_p) \cup K^-(\sigma_p)$, then the coefficients in (2.8) satisfy

$$c_{jkp1} = (-1)^{N(j,k,p)+1} c_{j(k+1)p1}.$$
 (2.9)

Proof: Note that $\sigma_{res}(A) = \bigcup_{j=1}^{\infty} \lambda_j(S_j)$. If $(j,k) \in K(\lambda)$ for $\lambda \in (\sigma_p, \sigma_{p+1})$, then (σ_p, σ_{p+1}) is subset of the interior of $\lambda_j(I_{jk})$. This implies $r_{jk} \in C^{\infty}(\sigma_p, \sigma_{p+1})$ by the considerations made before the lemma.

If $\sigma_p \in \sigma_{\text{res}}(\mathcal{A}), p \geq 2$, and if $(j,k) \in K(\sigma_p) \setminus (K^+(\sigma_p) \cup K^-(\sigma_p))$, then $(\sigma_{p-1}, \sigma_{p+1})$ is subset of the interior of $\lambda_j(I_{jk})$ and $r_{jk} \in C^{\infty}(\sigma_{p-1}, \sigma_{p+1})$ follows as before. Assume that $(j,k) \in K(\sigma_1)$. Since $\lambda_j(r_{jk}(\sigma_1)) = \sigma_1$ and $\lambda_j(\xi) \geq \sigma_1 = \lambda_{\min}$ for $\xi \in \mathbb{R}$, $\frac{d\lambda_j}{d\xi}(r_{jk}(\sigma_1))$ has to vanish. Hence $(j,k) \in K^+(\sigma_1)$. On the other hand, $K^+(\sigma_1) \subset K(\sigma_1)$ holds by definition.

If $\sigma_p \in \sigma_{res}(\mathcal{A})$ and $(j,k) \in K^+(\sigma_p) \cup K^-(\sigma_p)$, then $r_{jk}(\sigma_p)$ is a boundary point of I_{jk} . This implies that $\sigma_p = \lambda_j(r_{jk}(\sigma_p))$ is a boundary point of $\lambda_j(I_{jk})$, the domain of definition of r_{jk} . According to [2], §21, r_{jk} can be represented by a puiseux-series

$$r_{jk}(\lambda) = r_{jk}(\sigma_p) + \sum_{q=1}^{\infty} \tilde{c}_{jkpq} |\lambda - \sigma_p|^{q/N(j,k,p)}$$

for $\lambda \in \lambda_j(I_{jk}) \cap (\sigma_p - \delta, \sigma_p + \delta)$ with suitable chosen $\tilde{c}_{jkpq} \in \mathbb{R}$ and $\delta > 0$. Hence (2.8) holds. Since $\sigma_p = \lambda_j(r_{jk}(\sigma_p))$ is a boundary point of $\lambda_j(I_{jk})$, σ_p is either a boundary point of $\lambda_j(I_{j(k-1)})$ or of $\lambda_j(I_{j(k+1)})$. This implies that either $(j, k+1) \in K^+(\sigma_p) \cup K^-(\sigma_p)$ or $(j, k-1) \in K^+(\sigma_p) \cup K^-(\sigma_p)$. Suppose that $(j, k), (j, k+1) \in K^+(\sigma_p) \cup K^-(\sigma_p)$. Then $r_{jk}(\sigma_p) = r_{j(k+1)}(\sigma_p)$ and N(j,k,p) = N(j,k+1,p). Relation (2.9) follows inserting the puiseux-series representation of r_{jk} and $r_{j(k+1)}$ into the Taylor expansion of λ_j at $\xi = r_{jk}(\sigma_p)$ and using that $\lambda_j(r_{jk}(\lambda)) = \lambda$ for $\lambda \in \lambda_j(I_{jk}) \cup \lambda_j(I_{j(k+1)})$.

For $s \in \mathbb{R}$ define the Banach space \mathcal{H}_s by

$$\|\varphi\|_{s} := \left(\int_{\mathbb{R}} \left(1 + |x|^{2} \right)^{s} \|\varphi(x)\|_{H}^{2} dx \right)^{1/2},$$

$$\mathcal{H}_{s} := L_{2,s}(\mathbb{R}, H) := \left\{ \varphi \in L_{2,\text{loc}}(\mathbb{R}, H) : \|\varphi\|_{s} < \infty \right\}$$
(2.10)

Lemma 2.2 Suppose that $s, s' > \frac{1}{2}$ and $f \in \mathcal{H}_s$. Set

$$\psi_j(\xi)(x) := e^{i\xi x} \langle (Ff)(\xi), v_j(\xi) \rangle_H v_j(\xi) \qquad \text{for } \xi, x \in \mathbb{R}, \ j \in \mathbb{N}.$$
 (2.11)

Then $\psi_j(\xi) \in \mathcal{H}_{-s'}$ for $\xi \in \mathbb{R}$ and $\psi_j \in C^{k,\alpha}(\mathbb{R}, \mathcal{H}_{-s'})$ with $k \in \mathbb{N}_0$, $k < \min\{s, s'\} - \frac{1}{2}$ and $\alpha := \min\{s - k - \frac{1}{2}, s' - k - \frac{1}{2}, 1\}$.

Proof: If $v \in H$, then

$$\langle (\mathcal{F}f)(\xi), v \rangle_H = F(\langle f(.), v \rangle_H)(\xi)$$

(see (1.8)). The mapping $\xi \mapsto F(\langle f(.), v \rangle_H)(\xi)$ is element of $H^s(\mathbb{R})$, since $f \in \mathcal{H}_s$. By Sobolev's Lemma, $H^s(\mathbb{R}) \subset C^{k,\alpha}(\mathbb{R})$. Since v_j depends analytically on ξ by Assumption (A3), the mapping $\xi \mapsto \langle (\mathcal{F}f)(\xi), v_j(\xi) \rangle_H v_j(\xi)$ is element of $C^{k,\alpha}(\mathbb{R}, H)$.

Note that $\mathcal{H}_{-s'}$ is adjoint to $\mathcal{H}_{s'}$ with respect to the inner product in \mathcal{H} . If $g \in \mathcal{H}_{s'}$, then

$$\langle \psi_j(\xi), g \rangle_{\mathcal{H}} = \int_{\mathbb{R}} e^{i\xi x} \langle (\mathcal{F}f)(\xi), v_j(\xi) \rangle_H \langle v_j(\xi), g(x) \rangle_H dx$$
$$= \sqrt{2\pi} \langle (\mathcal{F}f)(\xi), v_j(\xi) \rangle_H \langle v_j(\xi), (\mathcal{F}g)(\xi) \rangle_H.$$

Hence $\psi_j \in C^{k,\alpha}(\mathbb{R}, \mathcal{H}_{-s'})$ follows from the first part of the proof.

Theorem 2.3 Let \mathcal{H} be a Hilbert-space having the representation (1.7). Suppose that the self-adjoint operator \mathcal{A} is given by (1.9) and that the associated operator family satisfies Assumptions (A1) – (A4) (see page 4). Denote by $\{P_{\lambda}\}$ the (left-hand continuous) spectral family of \mathcal{A} . Then:

- 1) The spectrum $\sigma(A)$ of A is purely absolutely continuous and $\sigma(A) = [\lambda_{\min}, \infty)$, where λ_{\min} is defined by (2.1). In particular, A has no eigenvalues and $P_{\lambda} = 0$ for $\lambda \leq \lambda_{\min}$.
- 2) Let $s, s' > \frac{1}{2}$ and $f \in \mathcal{H}_s$ be fixed (for the definition of \mathcal{H}_s see (2.10)). Then

$$P_{\lambda}f = \frac{1}{\sqrt{2\pi}} \int_{\lambda_{\min}}^{\lambda} \sum_{(j,k) \in K(\mu)} \left| \frac{dr_{jk}}{d\mu}(\mu) \right| \psi_j(r_{jk}(\mu)) d\mu \qquad (2.12)$$

for $\lambda > \lambda_{\min}$. (For the definition of ψ_j , $K(\mu)$ and r_{jk} see respectively (2.11), (2.5) and the text above (2.5)). Furthermore:

(a) Consider the mapping $P_{\cdot}f: \mathbb{R} \to \mathcal{H}_{-s'}: \lambda \mapsto P_{\lambda}f$. For every $\sigma_p, \sigma_{p+1} \in \sigma_{res}(\mathcal{A})$ (see (2.3)),

$$P.f \in C^{1,\alpha}((\sigma_p, \sigma_{p+1}), \mathcal{H}_{-s'})$$
 with $\alpha := \min\{s - \frac{1}{2}, s' - \frac{1}{2}, 1\}.$ (2.13)

(b) If $\sigma_p \in \sigma_{res}(\mathcal{A})$, set

$$N_p := \max \{ N(j, k, p) : (j, k) \in K^+(\sigma_p) \cup K^-(\sigma_p) \}$$
 (2.14)

and suppose that $s, s' > N_p - \frac{1}{2}$ and $f \in \mathcal{H}_s$ are fixed. Then there exist bounded operators $Q_{jkpl} : \mathcal{H}_s \to \mathcal{H}_{-s'}$, such that

$$\left\| \frac{dP_{\lambda}f}{d\lambda}(\lambda) - \sum_{(j,k)\in K^{+}(\sigma_{p})} \sum_{l=1}^{N(j,k,p)} \frac{1}{\left|\lambda - \sigma_{p}\right|^{1-l/N(j,k,p)}} Q_{jkpl}(f) \right\|_{-s'} = O\left(\left|\lambda - \sigma_{p}\right|^{\alpha/N}\right)$$
(2.15)

as $\lambda \downarrow \sigma_p$ with $\alpha := \min \{ s - N_p + \frac{1}{2}, s' - N_p + \frac{1}{2}, 1 \}$. The same estimate holds as $\lambda \uparrow \sigma_p$, if $K^+(\sigma_p)$ is replaced by $K^-(\sigma_p)$. Furthermore,

$$Q_{jkp1}(f)(x) = \frac{1}{\sqrt{2\pi}} |c_{jkp1}| e^{ix r_{jk}(\sigma_p)} \langle (\mathcal{F}f)(r_{jk}(\sigma_p)), v_j(r_{jk}(\sigma_p)) \rangle_H v_j(r_{jk}(\sigma_p))$$
(2.16)

for $x \in \mathbb{R}$, where c_{jkp1} denotes the constant of the first summand in (2.8).

Proof: Set

$$\widehat{\mathcal{A}} := \int_{\mathbb{R}}^{\oplus} A(\xi) \, d\xi.$$

According to Theorem XIII.85 in [14], $\widehat{\mathcal{A}}$ is self-adjoint in \mathcal{H} . Denote the (left-hand continuous) spectral family in of $\widehat{\mathcal{A}}$ by $\{\widehat{P}_{\lambda}\}_{{\lambda}\in\mathbb{R}}$. Consider a fixed ${\lambda}\in\mathbb{R}$ and set G(t):=1 if $t\leq {\lambda}, G(t):=0$ if $t>{\lambda}$. Theorem XIII.85 in [14] shows that

$$\widehat{P}_{\lambda} = G(\widehat{\mathcal{A}}) = \int_{\mathbb{R}}^{\oplus} G(A(\xi)) d\xi = \int_{\mathbb{R}}^{\oplus} P_{\lambda}^{(\xi)} d\xi$$

with $\{P_{\lambda}^{(\xi)}\}\$ denoting the spectral family of $A(\xi)$ for $\xi \in \mathbb{R}$. If $g \in \mathcal{H}$, then

$$\left(\widehat{P}_{\lambda} g\right)(\xi) = P_{\lambda}^{(\xi)} g(\xi) = \sum_{j \in \{j \in \mathbb{N}: \lambda_{j}(\xi) < \lambda\}} \langle g(\xi), v_{j}(\xi) \rangle_{H} v_{j}(\xi)$$

for every $\xi \in \mathbb{R}$ according to Assumption (A2). Note that $\mathcal{A} = \mathcal{F}^{-1}\widehat{\mathcal{A}}\mathcal{F}$ implies that $P_{\lambda} = \mathcal{F}^{-1}\widehat{P}_{\lambda}\mathcal{F}$ for $\lambda \in \mathbb{R}$. Fix $f \in \mathcal{H}_s$, where $s > \frac{1}{2}$. Then

$$(\mathcal{F}P_{\lambda}f)(\xi) = \left(\widehat{P}_{\lambda}\,\mathcal{F}f\right)(\xi) = \sum_{j\in\{j\in\mathbb{N}:\lambda_{j}(\xi)<\lambda\}} \langle (\mathcal{F}f)(\xi), v_{j}(\xi)\rangle_{H}\,v_{j}(\xi)\,.$$

The right-hand side consists of a finite sum, has bounded support with respect to ξ (see (A4)) and is a continuous mapping from \mathbb{R} into H (see the proof of Lemma 2.2). Set $L(\lambda) := \{j \in \mathbb{N} : \lambda_j(\xi) < \lambda \text{ for at least one } \xi \in \mathbb{R} \}$. By (A4), $L(\lambda)$ is empty or finite for every $\lambda \in \mathbb{R}$. Application of \mathcal{F}^{-1} onto the last equation yields that

$$P_{\lambda}f = \frac{1}{\sqrt{2\pi}} \sum_{j \in L(\lambda)} \int_{\{\xi \in \mathbb{R}: \lambda_j(\xi) \le \lambda\}} \psi_j(\xi) \, d\xi,$$

where ψ_j depends continuously on ξ (see Lemma 2.2). Obviously $P_{\lambda}f = 0$ if $\lambda \leq \lambda_{\min}$. If $\lambda > \lambda_{\min}$ and $j \in L(\lambda)$,

$$\{\xi \in \mathbb{R} : \lambda_j(\xi) \le \lambda\} = \bigcup_{k \in \tilde{\mathbb{I}}_j} (I_{jk} \cap \{\xi \in \mathbb{R} : \lambda_j(\xi) \le \lambda\})$$

with I_{jk} being defined by (2.4). Note that the sets on the right-hand side have disjoint interiors. Furthermore, $I_{jk} \cap \{\xi \in \mathbb{R} : \lambda_j(\xi) \leq \lambda\} \neq \emptyset$ only for finitely many

values of k. Substitution $\xi = r_{jk}(\mu)$ yields that

$$\int_{I_{jk} \cap \{\xi \in \mathbb{R}: \lambda_j(\xi) \le \lambda\}} \psi_j(\xi) \, d\xi = \begin{cases} \int_{\lambda_j(I_{jk}) \cap [\lambda_{\min}, \lambda]} \psi_j(r_{jk}(\mu)) \left| \frac{dr_{jk}}{d\mu}(\mu) \right| d\mu \\ & \text{if } (j, k) \in \tilde{K}(\lambda) := \bigcup_{\mu \le \lambda} K(\mu), \\ 0 & \text{otherwise,} \end{cases}$$

since the integrand on the right-hand side is continuous in the interior of $\lambda_j(I_{jk})$ and has integrable singularities at the boundary points of $\lambda_j(I_{jk})$ according to (2.8). This implies that

$$P_{\lambda}f = \frac{1}{\sqrt{2\pi}} \sum_{j \in L(\lambda)} \sum_{k \in \tilde{\mathbb{I}}_{j}} \int_{I_{jk} \cap \{\xi \in \mathbb{R}: \lambda_{j}(\xi) \leq \lambda\}} \psi_{j}(\xi) d\xi$$
$$= \frac{1}{\sqrt{2\pi}} \sum_{(j,k) \in \tilde{K}(\lambda)} \int_{\lambda_{j}(I_{jk}) \cap [\lambda_{\min}, \lambda]} \psi_{j}(r_{jk}(\mu)) \left| \frac{dr_{jk}}{d\mu}(\mu) \right| d\mu$$

Now (2.12) follows. From (2.12) together with Lemmata 2.1 and 2.2 one obtains that (2.13) holds.

Representation (2.12) shows that $\sigma(\mathcal{A})$ is purely absolutely continuous. For every $\lambda \in [\lambda_{\min}, \infty) \setminus \sigma_{\text{res}}(\mathcal{A})$, there exists $f \in \mathcal{H}_s$ such that $\frac{dP_{\lambda}f}{d\lambda}(\lambda) \neq 0$. This together with $P_{\lambda} = 0$ for $\lambda \leq \lambda_{\min}$ proves that $\sigma(\mathcal{A}) = [\lambda_{\min}, \infty)$.

If the assumptions of case 2b) are satisfied, Lemma 2.2 implies that

$$\left\| \psi_{j}(\xi) - \sum_{l=0}^{N_{p}-1} \frac{1}{l!} \frac{d^{l} \psi_{j}}{d\xi^{l}} (r_{jk}(\sigma_{p})) (\xi - r_{jk}(\sigma_{p}))^{l} \right\|_{-s'} = O\left(|\xi - r_{jk}(\sigma_{p})|^{N_{p}-1+\alpha} \right)$$

as $\xi \to r_{jk}(\sigma_p)$, where

$$f \mapsto \frac{d^l \psi_j}{d\xi^l}(r_{jk}(\sigma_p)): \mathcal{H}_s \to \mathcal{H}_{-s'}$$

are bounded linear operators according to Lemma 2.2. Inserting (2.8) and the corresponding puiseux-series representation of r_{jk} at σ_p in the preceding estimate yields (2.15) and (2.16).

3 Initial-value problems

We study the solution u of (1.11), where \mathcal{A} denotes a positive self-adjoint operator in a Hilbert-space \mathcal{H} . The long time behaviour of u is given by Theorem 3.2 and Corollary 3.3.

Denote by $\{P_{\lambda}\}_{{\lambda}\in\mathbb{R}}$ the (left-hand continuous) spectral family of \mathcal{A} . Then $P_{\lambda}=0$ if $\lambda\leq 0$. For r>0, set

$$D(\mathcal{A}^r) := \left\{ \varphi \in \mathcal{H} : \int_0^\infty \lambda^{2r} d(\|P_\lambda \varphi\|^2) < \infty \right\},$$

$$\mathcal{A}^r \varphi := \int_0^\infty \lambda^r d(P_\lambda \varphi) \quad \text{if } \varphi \in D(\mathcal{A}^r).$$
(3.1)

Theorem 3.1 Let A be a self-adjoint positive operator in the Hilbert-space \mathcal{H} . Then:

- 1) There is at most one solution u of the initial-value problem (1.11).
- 2) If $\omega \geq 0$ and $u_0 \in D(\mathcal{A}^{k/2})$, $u_1 \in D(\mathcal{A}^{(k-1)/2})$, $f \in D(\mathcal{A}^{(k-2)/2})$ for some $k \in \mathbb{N}$, $k \geq 2$, then (1.11) has a solution u. Furthermore,

$$\frac{\mathcal{A}^{(k-j)/2} u \in C^{j}([0,\infty),\mathcal{H}) \quad (j \leq k),}{\frac{d^{j}(\mathcal{A}^{i/2}u)}{dt^{j}} = \mathcal{A}^{i/2} \left(\frac{d^{j}u}{dt^{j}}\right) \quad (j+i \leq k).}$$
(3.2)

Proof: If u solves (1.11) with vanishing data, then $\frac{d}{dt}(||u'(t)||^2 + \langle \mathcal{A}u(t), u(t)\rangle) = 0$ for t > 0. This implies that u = 0.

By functional calculus, the solution of (1.11) is given by

$$u(t) = \int_0^\infty \psi_\omega(t,\lambda) \, d(P_\lambda f) + \int_0^\infty \cos\sqrt{\lambda}t \, d(P_\lambda u_0) + \int_0^\infty \frac{\sin\sqrt{\lambda}t}{\sqrt{\lambda}} \, d(P_\lambda u_1), \tag{3.3}$$

where in the case $\omega > 0$

$$\psi_{\omega}(t,\lambda) = \begin{cases} \frac{1}{\lambda - \omega^{2}} \left(e^{-i\omega t} - \cos\sqrt{\lambda}t + \frac{i\omega}{\sqrt{\lambda}} \sin\sqrt{\lambda}t \right) & \text{if } \lambda \in \mathbb{R} \setminus \{\omega^{2}, 0\}, \\ \frac{i}{2\omega} \left(t e^{-i\omega t} - \frac{1}{\omega} \sin\omega t \right) & \text{if } \lambda = \omega^{2}, \\ \frac{1}{\omega^{2}} \left(1 - e^{-i\omega t} - i\omega t \right) & \text{if } \lambda = 0, \end{cases}$$
(3.4)

and

$$\psi_0(t,\lambda) = \begin{cases} \frac{1}{\lambda} \left(1 - \cos \sqrt{\lambda} t \right) & \text{if } \lambda \in \mathbb{R} \setminus \{0\}, \\ \frac{t^2}{2} & \text{if } \lambda = 0. \end{cases}$$
 (3.5)

From this (3.2) follows by standard calculations.

Note that $\psi_{\omega}(t,\omega^2)$ and $\psi_{\omega}(t,0)$ are unbounded as $t\to\infty$. The behaviour of u as $t\to\infty$ depends crucially on the behaviour of P_{λ} as $\lambda\to\omega^2$ and $\lambda\downarrow 0$. We require, that the operator \mathcal{A} satisfies the following assumption:

(P1) \mathcal{H} is continuously imbedded in some Banach-space \mathcal{B} and there is a subset $\tilde{\mathcal{B}} \subset \mathcal{H}$, such that for every fixed $g \in \tilde{\mathcal{B}}$ the mapping $P.g : \mathbb{R} \mapsto \mathcal{B} : \lambda \mapsto P_{\lambda}g$ is differentiable almost everywhere with derivative $\frac{dP_{\lambda}g}{d\lambda} \in L_1((0,M),\mathcal{B})$ for every M > 0.

If $f \in \tilde{\mathcal{B}}$ and $\varphi \in C([0, M])$, then

$$\int_{0}^{M} \varphi(\lambda) d(P_{\lambda}f) = \int_{0}^{M} \varphi(\lambda) \frac{dP_{\lambda}f}{d\lambda}(\lambda) d\lambda$$
 (3.6)

(M > 0), where the right-hand side has to be read as a Bochner-integral, see eg. [16]. We will make use of the following theorem:

Theorem 3.2 Suppose that \mathcal{A} is a positive and self-adjoint operator in the Hilbert space \mathcal{H} and that \mathcal{A} obeyes condition (P1) given above. Let $\omega \geq 0, f \in \tilde{\mathcal{B}}, u_1 \in D(\mathcal{A}^{1/2}) \cap \tilde{\mathcal{B}}, u_2 \in D(\mathcal{A}) \cap \tilde{\mathcal{B}}$ be given. Furthermore suppose that the following two assumptions are satisfied:

(**P2**) There exist $N_f, N_{u_1} \in \mathbb{N}_0$ and $f_1^{(0)}, \ldots, f_{[N_f/2]}^{(0)}, (u_1)_1^{(0)}, \ldots, (u_1)_{[N_{u_1}/2]}^{(0)} \in \mathcal{B}$ (with $\left[\frac{N}{2}\right] := \max\left\{j \in \mathbb{N}_0 : j \leq \frac{N}{2}\right\}$), such that for respectively g := f and $g := u_1$

$$\int_0^1 \frac{1}{\sqrt{\lambda}} \left\| \frac{dP_{\lambda}g}{d\lambda}(\lambda) - \sum_{j=1}^{[N_g/2]} \frac{g_j^{(0)}}{\lambda^{1-j/N_g}} \right\|_{\mathcal{B}} d\lambda < \infty.$$

(P3) There exist $N \in \mathbb{N}_0$ and $f_1^{\pm}, \ldots, f_N^{\pm} \in \mathcal{B}$, such that

$$\int_{0}^{\omega^{2}} \frac{1}{|\lambda - \omega^{2}|} \left\| \frac{dP_{\lambda}f}{d\lambda}(\lambda) - \sum_{j=1}^{N} \frac{f_{j}^{-}}{|\lambda - \omega^{2}|^{1-j/N}} \right\|_{\mathcal{B}} d\lambda < \infty \qquad (if \, \omega^{2} > 0),$$

$$\int_{\omega^{2}}^{\omega^{2}+1} \frac{1}{\lambda - \omega^{2}} \left\| \frac{dP_{\lambda}f}{d\lambda}(\lambda) - \sum_{j=1}^{N} \frac{f_{j}^{+}}{(\lambda - \omega^{2})^{1-j/N}} \right\|_{\mathcal{B}} d\lambda < \infty.$$

Then the solution u of (1.11) given by (3.3) has the following asymptotic behaviour:

1) If $\omega \neq 0$, then

$$\lim_{t \to \infty} \| u(t) - e^{-i\omega t} I_1(t) - I_2(t) - e^{-i\omega t} u_{\omega} \|_{\mathcal{B}} = 0,$$
 (3.7)

where

$$I_{1}(t) := \sum_{j=1}^{N-1} t^{1-j/N} \frac{D_{1}(1-\frac{j}{N})(f_{j}^{+}-f_{j}^{-}) + i D_{2}(1-\frac{j}{N})(f_{j}^{+}+f_{j}^{-})}{(2\omega)^{1-j/N}} + \ln t \cdot (f_{N}^{+}-f_{N}^{-}), \tag{3.8}$$

$$D_1(\beta) := \frac{\pi}{2\Gamma(\beta+1)\sin\frac{\beta\pi}{2}} \quad for \quad 0 < \beta < 2, \tag{3.9}$$

$$D_2(\beta) := \frac{\pi}{2\Gamma(\beta+1)\cos\frac{\beta\pi}{2}} \quad for \quad -1 < \beta < 1,$$
 (3.10)

$$I_{2}(t) := -\sum_{j=1}^{[N_{f}/2]} t^{1-2j/N_{f}} \frac{2i D_{2}(1-\frac{2j}{N_{f}})}{\omega} f_{j}^{(0)} + \sum_{j=1}^{[N_{u_{1}}/2]} t^{1-2j/N_{u_{1}}} 2 D_{2}(1-\frac{2j}{N_{u_{1}}}) (u_{1})_{j}^{(0)},$$

$$(3.11)$$

$$u_{\omega} := \lim_{\varepsilon \downarrow 0} \left(\int_{|\lambda - \omega^{2}| \geq \varepsilon} \frac{1}{\lambda - \omega^{2}} d(P_{\lambda} f) - \sum_{j=1}^{N-1} \frac{1}{(1 - \frac{j}{N}) \varepsilon^{1 - j/N}} (f_{j}^{+} - f_{j}^{-}) + \ln \varepsilon \cdot (f_{N}^{+} - f_{N}^{-}) \right) + \frac{i\pi}{2} (f_{N}^{+} + f_{N}^{-}) + (C_{e} - \ln(2\omega)) (f_{N}^{+} - f_{N}^{-})$$
(3.12)

 $(C_e := Euler-Mascheroni's constant, the limit has to be taken in <math>\mathcal{B}).$

2) If $\omega = 0$, then

$$\lim_{t \to \infty} \|u(t) - I_3(t) - u_0\|_{\mathcal{B}} = 0, \tag{3.13}$$

where

$$I_{3}(t) := \sum_{j=1}^{N-1} t^{2-2j/N} 2 D_{1}(2 - \frac{2j}{N}) f_{j}^{+} + \ln t \cdot 2 f_{N}^{+}$$

$$+ \sum_{j=1}^{[N_{u_{1}}/2]} t^{1-2j/N_{u_{1}}} 2 D_{2}(1 - \frac{j}{N_{u_{1}}}) (u_{1})_{j}^{(0)}, \qquad (3.14)$$

$$u_{0} := \lim_{\varepsilon \downarrow 0} \left(\int_{\varepsilon}^{\infty} \frac{1}{\lambda} d(P_{\lambda}f) - \sum_{j=1}^{N-1} \frac{f_{j}^{+}}{(1 - \frac{j}{N}) \delta^{1-j/N}} + \ln \delta \cdot f_{N}^{+} \right)$$

$$+ 2C_{e} f_{N}^{+} \qquad (3.15)$$

(the limit has to be taken with respect to the norm in \mathcal{B}).

Proof: Note that

$$D_{1}(\beta) = \int_{0}^{\infty} \frac{1 - \cos \mu}{\mu^{1+\beta}} d\mu \quad \text{for} \quad 0 < \beta < 2,$$

$$D_{2}(\beta) = \int_{0}^{\infty} \frac{\sin \mu}{\mu^{1+\beta}} d\mu \quad \text{for} \quad -1 < \beta < 1.$$
(3.16)

Let $\varepsilon > 0$ be given. The proof proceeds in several steps.

Step 1: Since \mathcal{H} is supposed to be continuously imbedded in \mathcal{B} , we can choose

 $M > \omega^2 + 1$, such that

$$\left\| \int_{M}^{\infty} \psi_{\omega}(t,\lambda) d(P_{\lambda}f) + \int_{M}^{\infty} \cos\sqrt{\lambda}t d(P_{\lambda}u_{0}) + \int_{M}^{\infty} \frac{\sin\sqrt{\lambda}t}{\sqrt{\lambda}} d(P_{\lambda}u_{1}) \right\|_{\mathcal{B}}^{2}$$

$$\leq c \left\| \int_{M}^{\infty} \psi_{\omega}(t,\lambda) d(P_{\lambda}f) + \int_{M}^{\infty} \cos\sqrt{\lambda}t d(P_{\lambda}u_{0}) + \int_{M}^{\infty} \frac{\sin\sqrt{\lambda}t}{\sqrt{\lambda}} d(P_{\lambda}u_{1}) \right\|_{\mathcal{H}}^{2}$$

$$\leq 3c \left(\int_{M}^{\infty} 9 d(\|P_{\lambda}f\|_{\mathcal{H}}^{2}) + \int_{M}^{\infty} 1 d(\|P_{\lambda}u_{0}\|_{\mathcal{H}}^{2}) + \int_{M}^{\infty} 1 d(\|P_{\lambda}u_{1}\|_{\mathcal{H}}^{2}) \right)$$

$$< \varepsilon^{2}$$

and

$$\left\| \int_{M}^{\infty} \frac{1}{\lambda - \omega^2} d(P_{\lambda} f) \right\|_{\mathcal{B}} < \varepsilon.$$

Step 2: By the Riemann-Lebesgue-Lemma (see eg. [9]), we have

$$\left\| \int_0^M \cos \sqrt{\lambda} t \, d(P_{\lambda} f) \right\|_{\mathcal{B}} = \left\| \operatorname{Re} \int_0^{\sqrt{M}} e^{i\mu t} \, \frac{dP_{\lambda} f}{d\lambda}(\mu^2) \, 2\mu \, d\mu \right\|_{\mathcal{B}} < \varepsilon$$

for $t > T_1$. Here and in the following, T_1, T_2, \ldots denote suitable chosen positive real numbers.

Step 3: By (P2), we can choose $\delta > 0$, such that

$$\left\| \int_0^{\delta} \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} \left(\frac{dP_{\lambda} u_1}{d\lambda} (\lambda) - \sum_{j=1}^{[N_{u_1}/2]} \frac{(u_1)_j^{(0)}}{\lambda^{1-j/N_{u_1}}} \right) d\lambda \right\|_{\mathcal{B}}$$

$$\leq \int_0^{\delta} \frac{1}{\sqrt{\lambda}} \left\| \frac{dP_{\lambda} u_1}{d\lambda} (\lambda) - \sum_{j=1}^{[N_{u_1}/2]} \frac{(u_1)_j^{(0)}}{\lambda^{1-j/N_{u_1}}} \right\|_{\mathcal{B}} d\lambda$$

$$< \varepsilon.$$

Riemann-Lebesgue's Lemma yields as above

$$\left\| \int_{\delta}^{M} \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} d(P_{\lambda} f) \right\|_{\mathcal{P}} < \varepsilon \quad \text{for } t > T_{2}.$$

With (3.16), we obtain for $j \in \{1, \dots, \left\lceil \frac{N_{u_1}}{2} \right\rceil \}$

$$\int_0^{\delta} \frac{\sin\sqrt{\lambda}t}{\sqrt{\lambda}} \frac{1}{\lambda^{1-j/N_{u_1}}} d\lambda = 2t^{1-2j/N_{u_1}} \int_0^{\infty} \frac{\sin\mu}{\mu^{2-2j/N_{u_1}}} d\mu + O\left(\frac{1}{t}\right)$$
$$= 2t^{1-2j/N_{u_1}} D_2\left(1 - \frac{2j}{N_{u_1}}\right) + O\left(\frac{1}{t}\right)$$

as $t \to \infty$. Combining all estimates of this step, we conclude that

$$\left\| \int_0^M \frac{\sin\sqrt{\lambda}t}{\sqrt{\lambda}} d(P_{\lambda}u_1) - \sum_{j=1}^{[N_{u_1}/2]} t^{1-2j/N_{u_1}} 2D_2(1 - \frac{2j}{N_{u_1}}) (u_1)_j^{(0)} \right\|_{\mathcal{B}} < 3\varepsilon$$
 for $t > T_3$.

Step 4: From here to Step 6, the case $\omega \neq 0$ will be considered. Note that

$$\psi_{\omega}(t,\lambda) = e^{-i\omega t} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^2} - \frac{i \sin\sqrt{\lambda}t}{\omega\sqrt{\lambda}} + \frac{i \sin\sqrt{\lambda}t}{\omega\left(\sqrt{\lambda} + \omega\right)}$$

The same argument used in Step 3 shows that

$$\left\| \int_{0}^{M} \left(-\frac{i \sin \sqrt{\lambda} t}{\omega \sqrt{\lambda}} + \frac{i \sin \sqrt{\lambda} t}{\omega \left(\sqrt{\lambda} + \omega\right)} \right) d(P_{\lambda} f) + \sum_{j=1}^{[N_{f}/2]} t^{1-2j/N_{f}} \frac{2i D_{2} (1 - \frac{2j}{N_{f}})}{\omega} f_{j}^{(0)} \right\|_{\mathcal{B}} < \varepsilon$$

for $t > T_4$.

Step 5: Assumption (P3) implies, that the limit

$$\mu_{\omega}^{-} := \lim_{\delta \downarrow 0} \left(\int_{0}^{\omega^{2} - \delta} \frac{1}{\lambda - \omega^{2}} \frac{dP_{\lambda} f}{d\lambda}(\lambda) d\lambda + \sum_{j=1}^{N-1} \frac{f_{j}^{-}}{(1 - \frac{j}{N}) \delta^{1 - j/N}} - \ln \delta \cdot f_{N}^{-} \right)$$

exists in \mathcal{B} . Choose $\delta > 0$ so small, such that

$$\left\| \int_0^{\omega^2 - \delta} \frac{1}{\lambda - \omega^2} \frac{dP_{\lambda} f}{d\lambda}(\lambda) d\lambda + \sum_{j=1}^{N-1} \frac{f_j^-}{(1 - \frac{j}{N}) \delta^{1 - j/N}} - \ln \delta \cdot f_N^- - \mu_{\omega}^- \right\|_{\mathcal{B}} < \varepsilon$$

and

$$\int_{\omega^2 - \delta}^{\omega^2} \frac{|1 - e^{-i(\sqrt{\lambda} - \omega)t}|}{|\lambda - \omega^2|} \left\| \frac{dP_{\lambda} f}{d\lambda}(\lambda) - \sum_{j=1}^{N} \frac{f_j^-}{|\lambda - \omega^2|^{1 - j/N}} \right\|_{\mathcal{B}} d\lambda < \varepsilon$$

(see (P3)). Let $\beta \in (0,1)$ be fixed. Standard calculations (see e.g. [11], (6.2)–(6.9) and the equation following (6.29)) show, that for every $\tilde{\varepsilon} > 0$, there exists $\delta(\tilde{\varepsilon}) > 0$, such that for every $\delta \in (0, \delta(\tilde{\varepsilon}))$ there is an $T_5(\tilde{\varepsilon}, \delta) > 0$ with

$$\left| \int_{\omega^2 - \delta}^{\omega^2} \frac{1 - \mathrm{e}^{-\mathrm{i}(\sqrt{\lambda} - \omega)t}}{(\lambda - \omega^2)|\lambda - \omega^2|^{\beta}} \, d\lambda - \frac{1}{\beta \, \delta^{\beta}} + \frac{t^{\beta}}{(2\omega)^{\beta}} \int_0^{\infty} \frac{1 - \mathrm{e}^{\mathrm{i}\mu}}{\mu^{(1+\beta)}} \, d\mu \right| \, < \, \tilde{\varepsilon}$$

and

$$\left| \int_{\omega^2 - \delta}^{\omega^2} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^2} d\lambda + \ln \delta + \ln t + C_e - \ln(2\omega) - \frac{i\pi}{2} \right| < \tilde{\varepsilon}$$

for $t > T_5(\tilde{\varepsilon}, \delta)$. By Riemann-Lebesgue,

$$\left\| \int_0^{\omega^2 - \delta} \frac{e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^2} d(P_{\lambda} f) \right\|_{\mathcal{B}} < \varepsilon \quad \text{for } t > T_6,$$

if $\delta > 0$ is fixed. This, together with (3.16), proves

$$\left\| \int_{0}^{\omega^{2}} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^{2}} d(P_{\lambda}f) - \mu_{\omega}^{-} + \left(C_{e} - \ln(2\omega) - \frac{i\pi}{2} \right) f_{N}^{-} + \sum_{j=1}^{N-1} t^{1-j/N} \frac{D_{1}(1 - \frac{j}{N}) - iD_{2}(1 - \frac{j}{N})}{(2\omega)^{1-j/N}} f_{j}^{-} + \ln t \cdot f_{N}^{-} \right\|_{\mathcal{B}} < 5\varepsilon$$

for $t > T_7$.

Step 6: As above,

$$\left\| \int_{\omega^{2}}^{M} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^{2}} d(P_{\lambda}f) - \mu_{\omega}^{+} - \left(C_{e} - \ln(2\omega) + \frac{i\pi}{2} \right) f_{N}^{+} - \sum_{j=1}^{N-1} t^{1-j/N} \frac{D_{1}(1 - \frac{j}{N}) + iD_{2}(1 - \frac{j}{N})}{(2\omega)^{1-j/N}} f_{j}^{+} + \ln t \cdot f_{N}^{+} \right\|_{\mathcal{B}} < \varepsilon$$

for $t > T_8$ with

$$\mu_{\omega}^{+} := \lim_{\delta \downarrow 0} \left(\int_{\omega^{2} + \delta}^{M} \frac{1}{\lambda - \omega^{2}} \frac{dP_{\lambda} f}{d\lambda}(\lambda) d\lambda - \sum_{i=1}^{N-1} \frac{f_{j}^{+}}{\left(1 - \frac{j}{N}\right) \delta^{1 - j/N}} + \ln \delta \cdot f_{N}^{+} \right)$$

is proved. Combining the results of Step 1 to Step 6, we obtain that (3.7) holds.

The case $\omega = 0$ is proved in the same way by

$$\left| \int_{0}^{\delta} \frac{1 - \cos\sqrt{\lambda}t}{\lambda^{1+\beta}} d\lambda - 2t^{2\beta} \int_{0}^{\infty} \frac{1 - \cos\mu}{\mu^{1+2\beta}} d\mu + \frac{1}{\beta \delta^{\beta}} \right| < \tilde{\varepsilon} \qquad (\beta \in (0,1)),$$

$$\left| \int_{0}^{\delta} \frac{1 - \cos\sqrt{\lambda}t}{\lambda} d\lambda - 2\ln t - \ln \delta - 2C_{e} \right| < \tilde{\varepsilon}$$

for $t > T_9(\tilde{\epsilon}, \delta)$ (use (3.67) in [15]).

Corollary 3.3 (Regularity estimates) Let all Assumptions of Theorem 3.2 be satisfied. In addition, suppose that $u_0 \in D(\mathcal{A}^k)$, $u_1 \in D(\mathcal{A}^{k-1/2})$, $f \in D(\mathcal{A}^{k-1})$ for a fixed $k \in \mathbb{N}$. Denote by u the solution of (1.11).

1) General case: If $\omega \neq 0$, then

$$\lim_{t \to \infty} \|A^{j} u(t) - e^{-i\omega t} \omega^{2j} I_{1}(t) - e^{-i\omega t} u_{\omega}^{(j)}\|_{\mathcal{B}} = 0 \quad \text{for } j = 1, 2, \dots, k$$
(3.17)

with $I_1(t)$ being defined in Theorem 3.2 and

$$u_{\omega}^{(j)} := \lim_{\varepsilon \downarrow 0} \left(\int_{|\lambda - \omega^{2}| \geq \varepsilon} \frac{\lambda^{j}}{\lambda - \omega^{2}} d(P_{\lambda} f) - \sum_{l=1}^{N-1} \frac{\omega^{2j}}{(1 - \frac{l}{N}) \varepsilon^{1 - l/N}} (f_{l}^{+} + f_{l}^{-}) + \ln \varepsilon \cdot \omega^{2j} (f_{N}^{+} - f_{N}^{-}) \right) + \frac{i\pi \omega^{2j}}{2} (f_{N}^{+} + f_{N}^{-}) + \omega^{2j} (C_{e} - \ln(2\omega)) (f_{N}^{-} - f_{N}^{+})$$
(3.18)

 $(j \le k)$, where the limit has to be taken in \mathcal{B} . If $\omega = 0$, then

$$\lim_{t \to \infty} ||A^{j}u(t) - A^{j-1}f||_{\mathcal{B}} = 0 \quad \text{for } j = 1, 2, \dots, k.$$
 (3.19)

2) Principle of limiting Amplitude: Suppose that additionally $N_f = N_{u_1} = 0$ in (P2) of Theorem 3.2 and that N = 1, $f_1^+ = f_1^- \ (= \frac{dP_{\lambda}}{d\lambda}(\omega^2))$ in (P3). Then

$$\lim_{t \to \infty} \left\| \mathcal{A}^j u(t) - e^{-i\omega t} u_{\omega}^{(j)} \right\|_{\mathcal{B}} = 0 \quad \text{for } j = 0, 1, \dots, k$$
 (3.20)

with

$$u_{\omega}^{(j)} := \lim_{\varepsilon \downarrow 0} \int_{|\lambda - \omega^2| > \varepsilon} \frac{\lambda^j}{\lambda - \omega^2} d(P_{\lambda} f) + i\pi \, \omega^{2j} f_1^+$$
 (3.21)

 $(j \leq k)$. The limit in (3.21) has to be taken in \mathcal{B} .

Proof: For the first part, use the arguments of the proof of Theorem 3.2. The additional assumption is needed only in Step 1. From Step 2 on, replace $\frac{dP_{\lambda}f}{d\lambda}(\lambda)$ by $\lambda^k \frac{dP_{\lambda}f}{d\lambda}(\lambda)$.

The assertion of the second part follows directly from part 1, if $j \ge 1$. The case j=0 is obtained from Theorem 3.2. Note that $f_1^+=f_1^-=0$ if $\omega=0$, since $P_{\lambda}f=0$ for $\lambda \le 0$.

The following theorem characterizes the limiting amplitude (3.21) by the principle of limiting absorption.

Theorem 3.4 Suppose that A is a positive and self-adjoint operator in the Hilbert space \mathcal{H} and that A obeyes the condition (P1) given before Theorem 3.2. Let $\omega \geq 0$ and $f \in \tilde{B}$ be given and assume that (P3) of Theorem 3.2 is satisfied with N = 1 and $f_1^+ = f_1^-$. Then $u_\omega^{(0)}$ defined by (3.21) exists in \mathcal{B} and

$$\lim_{\tau \downarrow 0} \| R_{\omega^2 + i\tau} f - u_{\omega}^{(0)} \|_{\mathcal{B}} = 0.$$
 (3.22)

Proof: Conclude from (P1) and (P3) (with N=1 and $f_1^+=f_1^-$), that the limit $u_{\omega}^{(0)}$ exists in \mathcal{B} . Recall that

$$R_{\omega^2+i\tau}f = \int_0^\infty \frac{1}{\lambda - \omega^2 - i\tau} d(P_{\lambda}f).$$

Let $\varepsilon > 0$ be given. Choose $\delta > 0$, such that

$$\left\| \int_{\omega^{2}-\delta}^{\omega^{2}+\delta} \frac{1}{\lambda - \omega^{2} - i\tau} \left(\frac{dP_{\lambda}f}{d\lambda}(\lambda) - f_{1}^{+} \right) d\lambda \right\|_{\mathcal{B}}$$

$$\leq \int_{\omega^{2}-\delta}^{\omega^{2}+\delta} \frac{1}{|\lambda - \omega^{2}|} \left\| \frac{dP_{\lambda}f}{d\lambda}(\lambda) - f_{1}^{+} \right\|_{\mathcal{B}} d\lambda$$

$$< \varepsilon$$

and

$$\left\| \int_{|\lambda - \omega^2| > \delta} \frac{1}{\lambda - \omega^2} d(P_{\lambda} f) + i\pi f_1^+ - u_{\omega}^{(0)} \right\|_{\mathcal{B}} < \varepsilon$$

with $u_{\omega}^{(0)}$ being defined by (3.21). There exists $\tau_0 > 0$, such that for $\tau \in (0, \tau_0)$

$$\left\| \int_{|\lambda - \omega^{2}| \geq \delta} \frac{1}{\lambda - \omega^{2} - i\tau} d(P_{\lambda}f) - \int_{|\lambda - \omega^{2}| \geq \delta} \frac{1}{\lambda - \omega^{2}} d(P_{\lambda}f) \right\|_{\mathcal{B}}$$

$$\leq c \left\| \int_{|\lambda - \omega^{2}| \geq \delta} \frac{\tau}{(\lambda - \omega^{2})(\lambda - \omega^{2} - i\tau)} d(P_{\lambda}f) \right\|_{\mathcal{H}}$$

$$< \varepsilon$$

and

$$\left\| \int_{\omega^2 - \delta}^{\omega^2 + \delta} \frac{1}{\lambda - \omega^2 - i\tau} f_1^+ d\lambda - i\pi f_1^+ \right\|_{\mathcal{B}} < \varepsilon.$$

This proves (3.22).

4 Spectral properties of elastic operator

Let $\Omega \subset \mathbb{R}^n$ be given by (1.3) and set

$$D(\mathcal{A}) := \left\{ \varphi \in \mathring{H}^{1}(\Omega)^{n} : (\Delta + c_{0} \operatorname{grad} \operatorname{div}) \varphi \in L_{2}(\Omega)^{n} \right\},$$

$$\mathcal{A} \varphi := -(\Delta + c_{0} \operatorname{grad} \operatorname{div}) \varphi \quad \text{for } \varphi \in D(\mathcal{A}),$$

$$(4.1)$$

where $c_0 > -1$ is supposed, the derivatives have to be taken in distributional sense and $\mathring{H}^1(\Omega)$ denotes the closure of $C_0^{\infty}(\Omega)$ in $H^1(\Omega)$. Standard calculations show that

$$\langle \mathcal{A} \varphi, \varphi \rangle \ge \min\{1, 1 + c_0\} \left(\|\varphi\|_1^2 - \|\varphi\|_0^2 \right) \quad \text{for } \varphi \in D(\mathcal{A})$$
 (4.2)

 $(||.||_k := \text{norm in } H^k(\Omega)^n)$ and that \mathcal{A} is self-adjoint in $L_2(\Omega)^n$.

Note that $L_2(\Omega)^n = L_2(\mathbb{R}, L_2(D)^n)$, since Ω is given by (1.3). In this section we define an operator family $\{A(\xi)\}_{\xi\in\mathbb{R}}$ in $L_2(D)$, such that \mathcal{A} can be represented by (1.9). We show that the theory developed in section 2 can be applied to obtain a representation of the spectral family of \mathcal{A} .

Let the variable in D be denoted by (x_2, \ldots, x_n) and set

$$\operatorname{grad}_D := (\partial_2, \dots, \partial_n)^T, \quad \operatorname{div}_D := (\partial_2, \dots, \partial_n), \quad \Delta_D := \partial_2^2 + \dots + \partial_n^2$$

Consider the dyadic product $\operatorname{grad}_D\operatorname{div}_D$ defining a $(n-1)\times(n-1)$ -matrix. The $n\times n$ -matrix given by

$$\begin{pmatrix} -\xi^2 & i\xi \operatorname{div}_D \\ i\xi \operatorname{grad}_D & \operatorname{grad}_D \operatorname{div}_D \end{pmatrix}$$

contains $(-\xi^2, i\xi\partial_2, i\xi\partial_3, \dots, i\xi\partial_n)$ in the first line and $(-\xi^2, i\xi\partial_2, i\xi\partial_3, \dots, i\xi\partial_n)^T$ in the first column. E.g. in the case n=3,

$$\begin{pmatrix} -\xi^2 & \mathrm{i}\xi\mathrm{div}_D \\ \mathrm{i}\xi\mathrm{grad}_D & \mathrm{grad}_D\,\mathrm{div}_D \end{pmatrix} = \begin{pmatrix} -\xi^2 & \mathrm{i}\xi\partial_2 & \mathrm{i}\xi\partial_3 \\ \mathrm{i}\xi\partial_2 & \mathrm{i}\xi\partial_2^2 & \mathrm{i}\xi\partial_2\partial_3 \\ \mathrm{i}\xi\partial_3 & \mathrm{i}\xi\partial_3\partial_2 & \mathrm{i}\xi\partial_3^2 \end{pmatrix}.$$

Define the operator $A(\xi)$ for $\xi \in \mathbb{R}$ by

$$D(A(\xi)) := \left\{ \varphi \in \mathring{H}^{1}(D)^{n} : \left(\Delta_{D} + c_{0} \begin{pmatrix} 0 & 0 \\ 0 & \operatorname{grad}_{D} \operatorname{div}_{D} \end{pmatrix} \right) \varphi \in L_{2}(D)^{n} \right\},$$

$$A(\xi)\varphi := -\left(\Delta_{D} - \xi^{2} + c_{0} \begin{pmatrix} -\xi^{2} & \mathrm{i}\xi \operatorname{div}_{D} \\ \mathrm{i}\xi \operatorname{grad}_{D} & \operatorname{grad}_{D} \operatorname{div}_{D} \end{pmatrix} \right) \varphi \quad \text{for } \varphi \in D(A(\xi)).$$

$$(4.3)$$

Let $\xi \in \mathbb{R}$ be fixed. As above,

$$\langle A(\xi)\varphi,\varphi\rangle_{D} \geq \min\{1,1+c_{0}\}\left(\sum_{j=1}^{n}\|\operatorname{grad}_{D}\varphi_{j}\|_{D}^{2}+\xi^{2}\|\varphi\|_{D}^{2}\right) \geq 0$$
 (4.4)

for $\varphi = (\varphi_1, \dots, \varphi_n) \in D(A(\xi))$ is proved. Furthermore, $A(\xi)$ is self-adjoint in $L_2(D)^n$.

Lemma 4.1 Suppose that D has the segment property and that $A(\xi)$ is defined by (4.3). Then:

- 1) For every fixed $\xi \in \mathbb{R}$, $A(\xi)$ has an orthonormal system of eigenfunctions $\{v_j(\xi)\}_{j\in\mathbb{N}}$ being complete in $L_2(D)^n$. Eigenfunctions and associated eigenvalues $\{\lambda_j(\xi)\}_{j\in\mathbb{N}}$ can be chosen in a way, such that for every fixed $j\in\mathbb{N}$ the mappings $\xi\mapsto v_j(\xi)$, $\xi\mapsto\lambda_j(\xi)$ are analytic on \mathbb{R} .
- **2)** For every $\xi \in \mathbb{R}$, $\lambda_j(\xi) > 0$ for $j \in \mathbb{N}$ and $\lambda_j(\xi) \to \infty$ as $j \to \infty$.
- 3) For every $j \in \mathbb{N}$, there exists $k \in \mathbb{N}$, such that $\lambda_j(\xi) = \lambda_k(-\xi)$ for $\xi \in \mathbb{R}$.

Proof: Let $\xi \in \mathbb{R}$ be fixed. Using Rellich's selection theorem, one obtains from (4.4) that $(A(\xi) + \mathrm{Id})^{-1} : L_2(D)^n \to L_2(D)^n$ is compact. Furthermore this operator is symmetric and positive. The theory of compact symmetric operators shows that $(A(\xi) + \mathrm{Id})^{-1}$ has an orthonormal system $\{v_1(\xi), v_2(\xi), \ldots\}$ of eigenfunctions being complete in $L_2(D)^n$. Denote by $\mu_j(\xi)$ the eigenvalue of $(A(\xi) + \mathrm{Id})^{-1}$ associated to $v_j(\xi)$ $(j \in \mathbb{N})$. Then $\mu_j(\xi) \downarrow 0$ as $j \to \infty$. The operator $A(\xi)$ has the same eigenfunctions with associated eigenvalues $\lambda_j(\xi) = \frac{1-\mu_j(\xi)}{\mu_j(\xi)} \to \infty$ as $j \to \infty$.

Now let $\xi \in \mathbb{R}$ vary. In the notation of [10], $\{A(\xi)\}$ is a self-adjoint holomorphic operator family of type (A) with compact resolvent. According to Theorem 3.9 of Chapter VII there, eigenvalues and eigenfunctions can be chosen in a way, such that they depend analytically on ξ . Since the graphs of $\lambda = \lambda_j(\xi)$ may intersect, enumeration has to be changed eventually. Note that this change doesnt't touch the property $\lambda_j(\xi) \to \infty$ as $j \to \infty$ for fixed $\xi \in \mathbb{R}$. Finally, $\lambda_j(\xi) > 0$ is obtained from (4.4) and from $D(A(\xi)) \subset \mathring{H}^1(D)^n$.

Fix $j_0 \in \mathbb{N}$ and consider $v_{j_0}(\xi) = \binom{u_1(\xi)}{u_D(\xi)}$, where $u_D := (v_{j_02}, \dots, v_{j_0n})^T$. From $A(\xi)\binom{u_1(\xi)}{u_D(\xi)} = \lambda_{j_0}(\xi)\binom{u_1(\xi)}{u_D(\xi)}$ and the definition of $A(\xi)$,

$$A(-\xi) \begin{pmatrix} -u_1(\xi) \\ u_D(\xi) \end{pmatrix} = \lambda_{j_0}(\xi) \begin{pmatrix} -u_1(\xi) \\ u_D(\xi) \end{pmatrix}$$

follows. In particular, for every $\xi > 0$, there exists $j \in \mathbb{N}$, such that $\lambda_j(-\xi) = \lambda_{j_0}(\xi)$. This implies, that there is at least one $j \in \mathbb{N}$, such that $\lambda_j(-\xi) = \lambda_{j_0}(\xi)$ for more than countable many values of $\xi \in [0,1]$. Hence $\lambda_j(-\xi) = \lambda_{j_0}(\xi)$ for $\xi \in \mathbb{R}$ by analycity of λ_j and λ_{j_0} .

Lemma 4.2 Suppose that ∂D has the segment property and let $\{\lambda_j(\xi)\}_{j\in\mathbb{N}}$ denote the eigenvalues of $A(\xi)$ given by Lemma 4.1. Then

$$\lambda_{\min} := \min \{ \lambda_j(\xi) : j \in \mathbb{N}, \ \xi \in \mathbb{R} \} > 0. \tag{4.5}$$

Furthermore, for every $\lambda \geq \lambda_{\min}$, equation $\lambda_j(\xi) = \lambda$ admits only finitely many solutions $(j, \xi) \in \mathbb{N} \times \mathbb{R}$.

Proof: It is sufficient to consider $\lambda_j(\xi)$ with $\xi \geq 0$ according to Item 3 of Lemma 4.1. Note that

$$2\operatorname{Re}\left\langle A(\xi)v_j(\xi), \frac{d}{d\xi}v_j(\xi)\right\rangle_D = \lambda_j(\xi)\frac{d}{d\xi}\|v_j(\xi)\|_D^2 = \lambda_j(\xi)\frac{d}{d\xi} \, 1 = 0 \quad \text{for } \xi \in \mathbb{R}.$$

From this, one obtains with $v_j(\xi) = \binom{u_1(\xi)}{u_D(\xi)}$ and $\xi \geq 0$ that

$$\frac{d}{d\xi}\lambda_{j}(\xi) = \frac{d}{d\xi}\langle A(\xi)v_{j}(\xi), v_{j}(\xi)\rangle_{D}$$

$$= 2\operatorname{Re}\left\langle A(\xi)v_{j}(\xi), \frac{d}{d\xi}v_{j}(\xi)\right\rangle_{D} + 2\xi \|v_{j}(\xi)\|_{D}^{2}$$

$$-c_{0}\left\langle \begin{pmatrix} -2\xi u_{1}(\xi) + i\operatorname{div}_{D}u_{D}(\xi) \\ i\operatorname{grad}_{D}u_{1}(\xi) \end{pmatrix}, \begin{pmatrix} u_{1}(\xi) \\ u_{D}(\xi) \end{pmatrix}\right\rangle_{D}$$

$$= 2\xi \left(\|v_{j}(\xi)\|_{D}^{2} + c_{0}\|u_{1}(\xi)\|_{D}^{2}\right) + 2c_{0}\operatorname{Im}\left\langle\operatorname{grad}_{D}u_{1}(\xi), u_{D}(\xi)\right\rangle_{D}$$

$$\geq -|c_{0}|\left(\|\operatorname{grad}_{D}u_{1}(\xi)\|_{D}^{2} + \|u_{D}(\xi)\|_{D}^{2}\right)$$

$$\geq -|c_{0}|\left(\|\operatorname{grad}_{D}u_{1}(\xi)\|_{D}^{2} + 1\right),$$

since $||u_D(\xi)||_D^2 \le ||v_j(\xi)||_D^2 = 1$. Inequality (4.4) implies that

$$\|\operatorname{grad}_D u_1(\xi)\|_D^2 \le \frac{1}{\min\{1, 1 + c_0\}} \langle A(\xi)v_j(\xi), v_j(\xi) \rangle_D = \frac{\lambda_j(\xi)}{\min\{1, 1 + c_0\}}.$$

Hence

$$\frac{d}{d\xi}\lambda_{j}(\xi) \geq -|c_{0}| - \frac{|c_{0}|}{\min\{1, 1 + c_{0}\}} \lambda_{j}(\xi) =: -|c_{0}| - c_{1}\lambda_{j}(\xi)$$

follows. Application of Gronwall's Lemma yields

$$\lambda_j(\xi) \ge \lambda_j(0)e^{-c_1\xi} - |c_0| \int_0^{\xi} e^{-c_1(\xi - s)} ds = \left(\lambda_j(0) + \frac{|c_0|}{c_1}\right) e^{-c_1\xi} - \frac{|c_0|}{c_1}$$
 (4.6)

for $\xi \geq 0$. (Set $\varphi(\xi) := e^{c_1 \xi} \lambda_j(\xi)$ and integrate the resulting differential inequality.)

In order to prove Lemma 4.2, it is convenient to search for eigenvalues $\lambda_j(\xi)$ being smaller than some given $\lambda \geq 0$. From (4.4) one obtains that

$$\lambda_{j}(\xi) = \langle A(\xi)v_{j}(\xi), v_{j}(\xi)\rangle_{D} \geq \min\{1, 1 + c_{0}\} \, \xi^{2} \, ||v_{j}(\xi)||_{D}^{2} = \min\{1, 1 + c_{0}\} \, \xi^{2}$$

$$(4.7)$$

and hence

$$\lambda_j(\xi) > \lambda \quad \text{for } j \in \mathbb{N}, \ \xi \ge \sqrt{\frac{\lambda}{\min\{1, 1 + c_0\}}} =: c_2.$$

If $\xi \in [0, c_2]$, then (4.6) implies that

$$\lambda_j(\xi) \ge \left(\lambda_j(0) + \frac{|c_0|}{c_1}\right) e^{-c_1c_2} - \frac{|c_0|}{c_1} > \lambda \quad \text{for } j > J_0$$

with suitable chosen $J_0 \in \mathbb{N}$, since $\lambda_j(0) \to \infty$ as $j \to \infty$. Hence equation $\lambda_j(\xi) = \lambda$ admits only solutions $(j, \xi) \in \mathbb{N} \times \mathbb{R}$ with $j \leq J_0$ and $\xi \in [0, c_2]$. By the analycity of $\lambda_j(.)$, both assertions of Lemma 4.2 follow.

Lemma 4.3 Let $\Omega \subset \mathbb{R}^n$ be given by (1.3), where D is supposed to have the segment property. Set $\mathcal{H} := L_2(\Omega)^n = L_2(\mathbb{R}, H)$ with $H = L_2(D)^n$) and denote by $\mathcal{F} : \mathcal{H} \to \mathcal{H}$ the Fourier-transform (see (1.8)). Then

$$\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} = \int_{\mathbb{R}}^{\oplus} A(\xi) \, d\xi =: \widehat{\mathcal{A}}$$
 (4.8)

with A and $A(\xi)$ being defined by respectively (4.1) and (4.3).

Proof: For every $\varphi, \psi \in L_2(D)^n$, the mapping $\xi \mapsto \langle \varphi, (A(\xi) + \mathrm{Id})^{-1} \psi \rangle_D$ is continuous on \mathbb{R} by Lemma 4.1, and hence measurable. This shows that $\int_{\mathbb{R}}^{\oplus} A(\xi) d\xi$ is defined. It is sufficient to prove $\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} \subset \widehat{\mathcal{A}}$. This implies that $\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} = \widehat{\mathcal{A}}$, since both operators are self-adjoint. (For the case of $\widehat{\mathcal{A}}$ see Theorem XIII.85 in [14].) Suppose that $f \in D(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1})$, which means that $\mathcal{F}^{-1}f \in D(\mathcal{A})$. Since $D(\mathcal{A}) \subset \mathring{H}^1(\Omega)^n$, there exists a sequence $\{\varphi_j\}$ in $C_0^{\infty}(\Omega)^n$ with

$$\|\varphi_j - \mathcal{F}^{-1}f\|_{H^1(\Omega)^n} \to 0 \quad \text{as } j \to \infty.$$

Since \mathcal{F} is norm-invariant and commutes with derivatives with respect to x_2, \ldots, x_n , this implies that

$$\int_{\mathbb{R}} \|(\mathcal{F}\varphi_j)(\xi) - f(\xi)\|_{H^1(D)^n}^2 d\xi \to 0 \quad \text{as } j \to \infty.$$

There exists a subsequence of $\{\varphi_j\}$, again denoted by $\{\varphi_j\}$, such that

$$\|(\mathcal{F}\varphi_j)(\xi) - f(\xi)\|_{H^1(D)^n}^2 \to 0$$
 as $j \to \infty$ a.e. on \mathbb{R} .

Note that $(\mathcal{F}f)(\xi) \in C_0^{\infty}(D)^n$ for every $\xi \in \mathbb{R}$. Hence $f(\xi) \in \mathring{H}^1(D)^n$ a.e. for $\xi \in \mathbb{R}$. If $\varphi \in C_0^{\infty}(\Omega)^n$, then $(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}\varphi)(\xi) = A(\xi)\varphi(\xi,.)$ and

$$\langle \mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} f, \varphi \rangle_{\Omega} = \langle f, \mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} \varphi \rangle_{\Omega} = \int_{\mathbb{R}} \langle f(\xi), A(\xi) \varphi(\xi, .) \rangle_{D} d\xi$$
$$= \int_{\mathbb{R}} \left\langle \left(-\Delta_{D} + \xi^{2} - c_{0} \begin{pmatrix} -\xi^{2} & i\xi \operatorname{div}_{D} \\ i\xi \operatorname{grad}_{D} & \operatorname{grad}_{D} \operatorname{div}_{D} \end{pmatrix} \right) f(\xi), \varphi(\xi, .) \right\rangle_{D} d\xi$$

by the symmetry of $\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}$, Fubini's theorem and definition of weak derivative. Again using Fubini's theorem, one obtains that

$$\left(-\Delta_D + \xi^2 - c_0 \begin{pmatrix} -\xi^2 & \mathrm{i}\xi \mathrm{div}_D \\ \mathrm{i}\xi \mathrm{grad}_D & \mathrm{grad}_D \, \mathrm{div}_D \end{pmatrix}\right) f(\xi) = (\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} f)(\xi) \in L_2(D)^n$$

a.e. for $\xi \in \mathbb{R}$, and hence that $f(\xi) \in D(A(\xi))$ and $A(\xi)f(\xi) = (\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}f)(\xi)$ a.e. for $\xi \in \mathbb{R}$. Furthermore,

$$\int_{\mathbb{R}} \|A(\xi)f(\xi)\|_D^2 d\xi = \int_{\mathbb{R}} \|(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}f)(\xi)\|_D^2 d\xi < \infty$$

follows. This implies that $f \in D(\widehat{A})$ and

$$(\widehat{\mathcal{A}}f)(\xi) = A(\xi)f(\xi) = (\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}f)(\xi)$$
 a.e. for $\xi \in \mathbb{R}$,

which concludes the proof of $\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} \subset \widehat{\mathcal{A}}$.

The following corollary is obtained from Lemmata 4.1, 4.2, 4.3 and from (4.4), (4.7):

Corollary 4.4 Suppose that $D \subset \mathbb{R}^{n-1}$ is bounded and has the segment property. Then:

- 1) The operator family $\{A(\xi)\}_{\xi\in\mathbb{R}}$ given by (4.3) satisfies Assumptions (A1) (A4) (see page 4).
- 2) All assertions of Theorem 2.3 are valid for spectrum and spectral family of the operator A given by (4.1).

5 Elastic wave equation

We study the long-time behaviour of u solving (1.2). L_2 -estimates are given by Theorem 5.1, if u is a strong solution. Pointwise estimates of the classical solution are presented in Theorem 5.2.

In Section 2, Banach-spaces $\mathcal{H}_s = L_{2,s}(\mathbb{R}, H)$ with assiciated norm $||.||_s$ $(s \in \mathbb{R})$ were defined (see (2.10)). In the following application, $H := L_2(D)^n$ has to be set, since $\Omega = \mathbb{R} \times D$. Note that

$$\mathcal{H}_s = H_s^0(\Omega)^n$$
, $\|.\|_s$ is equivalent to $\|.\|_{0,s}$,

where

$$H_s^k(\Omega)^n := \left\{ \varphi \in H_{loc}^k(\Omega)^n : ||\varphi||_{k,s} < \infty \right\},$$

$$||\varphi||_{k,s} := \left(\int_{\Omega} \left(1 + |x|^2 \right)^s \left(\sum_{|\alpha| \le k} |D^{\alpha} \varphi(x)|^2 \right) dx \right)^{1/2}$$

$$(5.1)$$

 $(k \in \mathbb{N}_0, s \ge 0)$.

Theorem 5.1 Let $\Omega \subset \mathbb{R}^n$ be given by (1.3) whith D having the segment property, and let A be the elastic spatial operator defined by (4.1). Denote by u the solution of (1.11) (with $\mathcal{H} := L_2(\Omega)^n$), where

$$\omega \ge 0, \quad u_0 \in D(\mathcal{A}), \quad u_1 \in D(\mathcal{A}^{1/2}), \quad f \in L_2(\Omega)^n$$
 (5.2)

is supposed.

1) Principle of limiting amplitude: If, in addition to (5.2), $\omega^2 \notin \sigma_{res}(A)$ (see (2.2)) and $u_0, u_1, f \in H_s^0(\Omega)^n$ for some $s > \frac{1}{2}$, then

$$u(t) = e^{-i\omega t} u_{\omega} + r(t), \qquad (5.3)$$

where

$$||r(t)||_{0,-s'} = o(1)$$
 as $t \to \infty$ (5.4)

for every $s' > \frac{1}{2}$ and $u_{\omega} := u_{\omega}^{(0)}$ is given by (3.21) (with $\mathcal{B} := H_{-s'}^0(\Omega)^n$).

2) Resonance case: If, in addition to (5.2), $\omega^2 = \sigma_p \in \sigma_{res}(\mathcal{A})$ and $u_0, u_1, f \in H_s^0(\Omega)^n$ for some $s > N_p + \frac{1}{2}$ (see (2.14)), then resonance of order t^{1-1/N_p}

occurs. In particular,

$$u(t) = e^{-i\omega t} \sum_{(j,k)\in K^{+}(\sigma_{p})} \left(\sum_{l=1}^{N(j,k,p)-1} t^{1-l/N(j,k,p)} \times \frac{D_{1}(1-\frac{l}{N(j,k,p)}) + iD_{2}(1-\frac{l}{N(j,k,p)})}{(2\omega)^{1-l/N(j,k,p)}} Q_{jkpl}(f) \right)$$

$$+ \ln t \cdot Q_{jkpN(j,k,p)}(f)$$

$$- e^{-i\omega t} \sum_{(j,k)\in K^{-}(\sigma_{p})} \left(\sum_{l=1}^{N(j,k,p)-1} t^{1-l/N(j,k,p)} \times \frac{D_{1}(1-\frac{l}{N(j,k,p)}) - iD_{2}(1-\frac{l}{N(j,k,p)})}{(2\omega)^{1-l/N(j,k,p)}} Q_{jkpl}(f) \right)$$

$$+ \ln t \cdot Q_{jkpN(j,k,p)}(f) + e^{-i\omega t} u_{\omega} + r(t),$$
 (5.5)

where r satisfies (5.4) for every $s' > N_p + \frac{1}{2}$ and where at least one term of order $t^{1-1/N(j,k,p)}$ with $N(j,k,p) = N_p$ does not vanish and is not cancelled out by other terms, if f is chosen suitable. Furthermore, u_{ω} is given by

$$u_{\omega} = \lim_{\varepsilon \downarrow 0} \left(\int_{|\lambda - \sigma_{p}| \geq \varepsilon} \frac{1}{\lambda - \sigma_{p}} d(P_{\lambda}f) \right)$$

$$- \sum_{(j,k) \in K^{+}(\sigma_{p})} \left(\sum_{l=1}^{N(j,k,p)-1} \frac{1}{\left(1 - \frac{l}{N(j,k,p)}\right)} \varepsilon^{1-l/N(j,k,p)} Q_{jkpl}(f) \right)$$

$$+ \left(\frac{i\pi}{2} + C_{e} - \ln(2\omega) \right) Q_{jkpN(j,k,p)}(f)$$

$$+ \sum_{(j,k) \in K^{-}(\sigma_{p})} \left(\sum_{l=1}^{N(j,k,p)-1} \frac{1}{\left(1 - \frac{l}{N(j,k,p)}\right)} \varepsilon^{1-l/N(j,k,p)} Q_{jkpl}(f) \right)$$

$$+ \left(\frac{i\pi}{2} - C_{e} + \ln(2\omega) \right) Q_{jkpN(j,k,p)}(f) \right), \qquad (5.6)$$

where the limit has to be taken in $H^0_{-s'}(\Omega)^n$ for $s' > N_p + \frac{1}{2}$.

Proof: According to Corollary 4.4, the spectral family of \mathcal{A} and its properties are given by (2.12), (2.13) and (2.15). Application of Corollary 3.3, Part 2 (with k = 1 and $\tilde{\mathcal{B}} := \mathcal{H}_s = H_s^0(\Omega)^n$, $\mathcal{B} := \mathcal{H}_{-s'} = H_{-s'}^0(\Omega)^n$) yields (5.3) and (5.4). From Item 1 of Theorem 3.2, (5.5) with (5.4) and (5.6) is obtained.

It remains to prove, that resonance of order t^{1-1/N_p} occurs, if f is chosen suitable. Note that every term on the right-hand side of (5.5) with $N(j,k,p) < N_p$ or with l > 1 grows slower than t^{1-1/N_p} . Thus only summands with $N(j,k,p) = N_p$ and l = 1 have to be studied. Choose one pair $(j_0,k_0) \in K^+(\sigma_p) \cup K^-(\sigma_p)$ such that $N(j_0,k_0,p) = N_p$. Furthermore, choose $f \in H_s^0(\Omega)^n$ such that $\langle (\mathcal{F}f)(r_{j_0k_0}(\sigma_p)), v_{j_0}(r_{j_0k_0}(\sigma_p)) \rangle_D \neq 0$ (Note that it is possible to suppose $f \in C_0^\infty(\Omega)^n$). Then $Q_{j_0k_0p_1}(f) \neq 0$ according to (2.16). The associated resonance-term is not cancelled out by the other terms on the right-hand side of (5.5), which will be shown in the following.

Consider another pair $(j,k) \in K^+(\sigma_p) \cup K^-(\sigma_p)$ with $N(j,k,p) = N_p$. If $r_{jk}(\sigma_p) \neq r_{jok_0}(\sigma_p)$, then $Q_{jkp_1}(f)$ and $Q_{jok_0p_1}(f)$ are linearly independent due to the factor $e^{ixr_{jk}(\sigma_p)}$ in the definition (2.16) of $Q_{jkp_1}(f)$. If $r_{jk}(\sigma_p) = r_{jok_0}(\sigma_p)$ and $j \neq j_0$, then $Q_{jkp_1}(f)$ and $Q_{jok_0p_1}(f)$ are again linearly independent, since $\{v_j(r_{jok_0}(\sigma_p))\}_{j\in\mathbb{N}}$ is supposed to be an orthonormal system. It remains to consider the case $r_{jk}(\sigma_p) = r_{jok_0}(\sigma_p)$ and $j = j_0$. In this case, $k = k_0 \pm 1$ according to Item 4 of Lemma 2.1 and construction of r_{jk} . Furthermore $Q_{jkp_1}(f) = Q_{jok_0p_1}(f)$ holds (see (2.9) and (2.16)). If (j,k), (j_0,k_0) are contained in the same set $K^+(\sigma_p)$ (or respectively $K^-(\sigma_p)$), then both associated summands in (5.5) lead to the same resonance term, so that the factor of $t^{1-1/N_p}Q_{jok_0p_1}(f)$ is multiplied by two. If e.g. $(j,k) \in K^+(\sigma_p)$ and $(j_0,k_0) \in K^-(\sigma_p)$, then the factor of $t^{1-1/N_p}Q_{jok_0p_1}(f)$ is given by

$$\frac{D_1(1-\frac{1}{N_p})+\mathrm{i}\,D_2(1-\frac{1}{N_p})}{(2\omega)^{1-1/N_p}}-\frac{D_1(1-\frac{1}{N_p})-\mathrm{i}\,D_2(1-\frac{1}{N_p})}{(2\omega)^{1-1/N_p}}=2\mathrm{i}\,\frac{D_2(1-\frac{1}{N_p})}{(2\omega)^{1-1/N_p}}\neq 0.$$

The same happens if $(j,k) \in K^-(\sigma_p)$ and $(j_0,k_0) \in K^+(\sigma_p)$.

Theorem 5.2 Let Ω and \mathcal{A} be given by respectively (1.3) and (4.1). Suppose that $\omega \geq 0$ and that

$$\partial D \in C^K$$
, $u_0 \in D(\mathcal{A}^{K'})$, $u_1 \in D(\mathcal{A}^{K'-1/2})$, $f \in D(\mathcal{A}^{K'-1})$ (5.7)

for some $K > \frac{n}{2} + 2$, $K' > \frac{n}{4} + 1$. Then Problem (1.2) has a solution $u \in C^2([0,\infty) \times \overline{\Omega})$. It is the only solution of (1.2) satisfying

$$u \in C^2([0,\infty), L_2(\Omega)), \quad u(t) \in D(\mathcal{A}) \text{ for } t \ge 0.$$
 (5.8)

Furthermore the following asymptotic estimates hold:

1) Principle of limiting amplitude: If, in addition to (5.7), $\omega^2 \notin \sigma_{res}(A)$ and $u_0, u_1, f \in H^0_s(\Omega)^n$ for some $s > \frac{1}{2}$, then

$$u(t,x) = e^{-i\omega t} u_{\omega}(x) + r(t,x), \qquad (5.9)$$

where $u_{\omega} \in C^2(\overline{\Omega})$ is solution of (1.6) and, for every $s' > \frac{1}{2}$,

$$\frac{1}{(1+|x|^2)^{s'/2}} r(t,x) = o(1) \quad as \ t \to \infty, \text{ uniformly with respect to } x \in \overline{\Omega}.$$
(5.10)

2) Resonance case: If, in addition to (5.8), $\omega^2 \in \sigma_{res}(A)$ and $u_0, u_1, f \in H_s^0(\Omega)^n$ for some $s > N_p + \frac{1}{2}$, then u satisfies (5.5) pointwise with respect to $x \in \overline{\Omega}$, where r(t,x) obeyes (5.10) for every $s' > N_p + \frac{1}{2}$ and $u_\omega \in C^2(\overline{\Omega})$ solves (1.6).

For the proof, the following lemma is needed. It can be found in [7], but without proof. For the idea of the proof see e.g. Hilfssatz 1.15 in [12].

Lemma 5.3 Set $\mathcal{D} := -(\Delta + c_0 \operatorname{grad} \operatorname{div})$ (in distributional sense) and $\mathring{H}^1_{-s}(\Omega)^n :=$ completition of $C_0^{\infty}(\Omega)^n$ in $H^1_{-s}(\Omega)^n$ ($s \geq 0$). Suppose that Ω is given by (1.3) with $\partial D \in C^K$ for some $K \geq 2$ and that $\varphi \in H^0_{-s}(\Omega)^n$ satisfies

$$\mathcal{D}^j \varphi \in \mathring{H}^1_{-s}(\Omega)^n \text{ for } j = 0, 1, \dots, K' - 1, \qquad \mathcal{D}^{K'} \varphi \in \mathcal{H}^0_{-s}(\Omega)^n$$

for some $K' \in \mathbb{N}$ and some $s \geq 0$. Then $\varphi \in H^{\min\{K,2K'\}}_{-s}(\Omega)^n$ and

$$\|\varphi\|_{\min\{K,2K'\},-s} \le c(K,K',s,\Omega) \left(\|\mathcal{D}^{K'}\varphi\|_{0,-s} + \|\varphi\|_{0,-s} \right)$$
 (5.11)

with $c(K, K', s, \Omega) > 0$ not depending on φ .

Proof of Theorem 5.2: Denote by u the solution of (1.11) given by (3.3). From (5.7) and Theorem 3.1, one obtains that $\mathcal{D}^{K'-j}\frac{d^2ju}{dt^2j}\in C([0,\infty),L_2(\Omega)^n),\ j\leq K'.$ Application of Lemma 5.3 (with s=0) and Sobolev's imbedding theorem yields $u\in C^2([0,\infty)\times\overline{\Omega})$. By definition of \mathcal{A} (see (4.1)), u solves (1.2). Uniqueness of the solution of (1.2) satisfying (5.8) follows from the uniqueness of the solution of (1.11) asserted by Theorem 3.1.

Suppose that all assumptions of Part 2 are satisfied and that $s' > N_p + \frac{1}{2}$. Note that $\omega^2 = \sigma_p > 0$ by (4.5) and (2.3). According to (5.5) and Corollary 3.3, there exist constants $N \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_N \in [0, 1)$, $\alpha_1 < \ldots < \alpha_N$ and operators Q_0, \ldots, Q_N , such that

$$\left\| \mathcal{D}^{j} u(t) - e^{-i\omega t} \omega^{2j} \left(\sum_{k=1}^{N} t^{\alpha_k} Q_k(f) + \ln t \cdot Q_0(f) \right) - e^{-i\omega t} u_{\omega}^{(j)} \right\|_{0,-s'} \to 0$$

as $t \to \infty$ $(j = 0, 1, \dots, K')$. Set

$$v(t) := t^{-\alpha_N} e^{i\omega t} u(t)$$
 for $t \ge 0$.

Then $v(t), \mathcal{D}v(t), \ldots, \mathcal{D}^{K'}v(t)$ converge as $t \to \infty$ with respect to $\|.\|_{0,-s'}$. Furthermore $v(t), \mathcal{D}v(t), \ldots, \mathcal{D}^{K'-1}v(t) \in \mathring{H}^1_{-s'}(\Omega)^n$ for every $t \ge 0$ (since $v(t) \in D(\mathcal{A}^{K'})$). Application of Lemma 5.3 yields

$$||v(t) - v(t')||_{\min\{K, 2K'\}, -s'} \to 0$$
 as $t, t' \to \infty$.

This implies that $Q_N(f) = \lim_{t \to \infty} v(t) \in H^{\min\{K,2K'\}}_{-s'}(\Omega)^n$, $\mathcal{D}^j Q_N(f) = \omega^{2j} Q_N(f)$ $(j = 1, \ldots, k)$ and $\mathcal{D}^j Q_N(f) \in \mathring{H}^1_{-s'}(\Omega)^n$ for $j = 0, 1, \ldots, k-1$. Repeat the same argument with $v(t) := t^{-\alpha_{N-1}} e^{\mathrm{i}\omega t} (u(t) - t^{\alpha_N} Q_N(f))$ and so on. This proves that

$$||r(t)||_{\min\{K,2K'\},-s'}$$

$$= \left\| u(t) - e^{-i\omega t} \left(\sum_{k=1}^{N} t^{\alpha_k} Q_k(f) + \ln t \cdot Q_0(f) \right) - e^{-i\omega t} u_{\omega}^{(0)} \right\|_{\min\{K,2K'\},-s'}$$

$$\to 0 \quad \text{as } t \to \infty.$$

Now use Sobolev's inequality to obtain

$$\left| \frac{r(t,x)}{(1+|x|^2)^{s'/2}} \right| \le c_1 \left\| \frac{r(t)}{(1+|.|^2)^{s'/2}} \right\|_{\min\{K,2K'\},0}$$

$$\le c_2 \|r(t)\|_{\min\{K,2K'\},-s'}$$

$$\to 0 \quad \text{as } t \to \infty$$

uniformly with repect to $x \in \overline{\Omega}$. Thus (5.10) is proved in the resonance case. Finally note that $u_{\omega}^{(0)} \in H_{-s'}^{\min\{K,2K'\}} \subset C^2(\overline{\Omega})$ and

$$\begin{split} \left\langle (\mathcal{D} - \omega^2) u_{\omega}^{(0)}, \varphi \right\rangle &= \left\langle u_{\omega}^{(0)}, (\mathcal{D} - \omega^2) \varphi \right\rangle \\ &= \lim_{t \to \infty} \left\langle \mathrm{e}^{\mathrm{i}\omega t} \, u(t) - \sum_{k=1}^N t^{\alpha_k} \, Q_k(f) - \ln t \cdot Q_0(f), (\mathcal{D} - \omega^2) \varphi \right\rangle \\ &= \lim_{t \to \infty} \left\langle (\mathcal{D} - \omega^2) \mathrm{e}^{\mathrm{i}\omega t} \, u(t), \varphi \right\rangle \\ &= \left\langle f, \varphi \right\rangle \end{split}$$

for every $\varphi \in C_0^{\infty}(\Omega)^n$, since $(\mathcal{D} - \omega^2)Q_k(f) = 0$ and

$$\left\| \mathrm{e}^{\mathrm{i}\omega t} \left(\mathcal{D} - \omega^2 \right) u(t) - f \right\|_{0, -s'} \; = \; \left\| \mathrm{e}^{\mathrm{i}\omega t} \left(\mathcal{A} - \omega^2 \right) u(t) - f \right\|_{0, -s'} \; \to 0 \qquad \text{as } t \to \infty,$$

which follows by the same arguments used in the proof of Theorem 3.2. This shows that $u_{\omega} = u_{\omega}^{(0)}$ solves (1.6). Part 1 of the theorem is proved in the same way.

References

- [1] J. D. Achenbach. Wave propagation in elastic solids. North-Holland Publishing Company, Amsterdam, London, 1973.
- [2] L. Bieberbach. Einführung in die Funktionentheorie. B. G. Teubner, Stuttgart, 1966.
- [3] L. Brevdo. Axisymmetric resonant disturbances in a homogeneous waveguide. Europ. J. Mech. A/Solids, 17, 979–999 (1998).

- [4] L. Brevdo. Wave packets, signalling and resonances in a homogeneous waveguide. *J. Elasticity*, **49**, 201–237 (1998).
- [5] L. Brevdo. High-order resonances in a homogeneous waveguide. Z. angew. Math. Phys., 50, 152–169 (1999).
- [6] R. J. Briggs. *Electron stream interaction with plasmas*. M.I.T. Press, Cambridge/Massachusetts, 1964.
- [7] D. M. Eidus. The principle of limit amplitude. Russian Math. Surveys, 24, 97–167 (1969).
- [8] M. D. Groves and P. L. Lesky. Resonance phenomena for water waves in channels of arbitrary cross-section. *Math. Meth. in the Appl. Sci.*, 22, 837 – 865 (1999).
- [9] H. Helson. Harmonic Analysis. Addison-Wesley, Reading, Mass., 1983.
- [10] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin, Heidelberg, New York, 1966.
- [11] P. Lesky. Resonance phenomena for a class of partial differential equations of higher order in cylindrical waveguides. *Math. Meth. in the Appl. Sci.*, **11**, 697–723 (1989).
- [12] P. H. Lesky. Zur Langzeitasymptotik periodisch angeregter polyharmonischer und elastischer Wellen. Shaker Verlag, Aachen, 1999.
- [13] J. Miklowitz. The theory of elastic waves and waveguides. North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978.
- [14] M. Reed and B. Simon. *Methods of Modern Mathematical Physics*, volume IV. Academic Press Inc., New York, 1978.

- [15] P. Werner. Zur Asymptotik der Wellengleichung und der Wärmeleitungsgleichung in zweidimensionalen Außenräumen. *Math. Meth. in the Appl. Sci.*, 7, 170–201 (1985).
- [16] K. Yosida. Functional Analysis. Springer, Berlin, Heidelberg, 1980 (6. ed.).