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Abstract

We study the measure of a typical cell in a Voronoi tessellation defined by n

independent random points drawn from a density f in R
d. In particular, we prove

that the asymptotic distribution of the measure–with respect to dµ = f(x)dx–of the
cell centered at a point x ∈ R

d is independent of x and the density f . We determine
all moments of the asymptotic distribution and show that the distribution becomes
more concentrated as d becomes large. In particular, we show that the variance
converges to zero exponentially fast in d. We also obtain a bound independent of the
density for the rate of convergence of the diameter of a typical Voronoi cell.
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1 Introduction

Let X1, . . . , Xn be independent, identically distributed random vectors taking values in R
d.

We denote the common distribution of the Xi by µ. We assume throughout the paper that
µ is absolutely continuous with respect to the Lebesgue measure λ and denote the density
of µ by f . Hence, µ(A) =

∫

A
f(x)dx for all Lebesgue measurable sets A ⊂ R

d.
The Xi define the random subsets S1, . . . , Sn of Rd such that Si contains all points in

R
d that are strictly closer to Xi than any other point in {X1, . . . , Xn} \ {Xi}. Formally,

Si =

{

x ∈ R
d : ‖x−Xi‖ < min

j={1,...,n}\{i}
‖x−Xj‖

}

.

{S1, . . . , Sn} is a so-called Voronoi tessellation and the Si are the Voronoi cells. Here ‖ · ‖
denotes the usual Euclidean norm.

In this paper we are interested in the measure of a “typical” Voronoi cell. In particular,
we study the conditional distribution of the random variable µ(S1) conditioned on the event
that X1 = x for some x in the support of µ. Equivalently, we study Mn(x) where for any
x ∈ R

d, Mn(x) is the µ-measure of the Voronoi cell S1 with nucleus x associated with the
point process {x,X2, . . . , Xn}.

Note that since
∑n

j=1 µ(Sj) = 1 and µ(S1), . . . , µ(Sn) are identically distributed, we
have nE [µ(S1))] = 1. In Theorem 1 below we prove that, for µ-almost all x, we have
nEMn(x) → 1. We also show that n2

E[Mn(x)
2] converges to a limit that is independent of

x and the distribution µ. In fact, we prove that for µ-almost all x, nMn(x) has a limiting
distribution that only depends on the dimension. We show that the limiting distribution
becomes more concentrated as the dimension d grows. In particular, the variance converges
to zero exponentially fast in d.

Finally, we study the diameter diam(S1) of the Voronoi cell centered at X1. We show
that for µ-almost all x, conditional on X1 = x, diam(S1) converges to zero at a rate of
n−1/d.

Throughout the paper, Bx,r denotes the closed ball of radius r > 0 centered at x ∈ R
d.

Motivation and related work

Nearest-neighbor-based estimators are among the most basic and popular tools in ad-
dressing classification, regression, density estimation and other problems in nonparametric
statistics, see Biau and Devroye [2] for a recent survey. Many of these estimators build on a
Voronoi partition of the space based on data drawn from an unknown density. In statistics
it is important to understand the behavior of the estimators under as few assumptions as
possible on the distribution of the data. In particular, the measure and the diameter of the

1



Voronoi cells give valuable information about the properties of nearest-neighbor estimators.
The distribution-free results derived in this paper were motivated by and contribute to the
understanding of such estimators.

The measure of a “typical” cell in a Voronoi tessellation has been mostly studied in
the case when the points are drawn from a homogeneous Poisson process. Asymptotically,
as n → ∞, this is equivalent to the special case of drawing n points from the uniform
distribution µ on (say) the unit ball. The study of the (Lebesgue) measure of Voronoi cells
dates back to at least Gilbert [7] who derived formulas and numerical estimates for the
second and third moments the measure of a Voronoi cell when d = 2 or 3. See also Brakke
[3, 4], Hayen and Quine [8].

Our notion of the distribution of a typical cell is analogous to the so-called “Palm
distribution” of the volume of a Voronoi cell in stochastic geometry—Chiu, Stoyan, Kendall,
and Mecke [5], Møller [12], Møller and Stoyan [13].

Brakke [3, 4], Hayen and Quine [8], Heinrich et al. [9], Heinrich and Muche [10], Zuyev
[16] study characteristics of “typical” cells in a Voronoi tessallation of a homogeneous
Poisson process, including the second moment of the volume.

The results of the paper may be easily extended to inhomogeneous multi-dimensional
Poisson processes. This extension is relevant for modelling mobile communication networks,
see Baccelli et al. [1].

For a survey and comprehensive treatment of Voronoi tessellations, we refer to Okabe,
Boots, Sugihara, and Chiu [14].

2 Convergence of the first two moments

Theorem 1 below establishes the asymptotic value of the first and second moments of
the measure of a typical cell centered at a point x. The remarkable feature is that the
asymptotic values are independent of both the density f and the point x (for µ-almost
all x) and only depend on the dimension d. In fact, in Theorem 2 we show that the limit
distribution is also independent of f and x. We emphasize that both theorems hold without
any assumption on the density f .

The asymptotic second moment is expressed in terms of a random variable W de-
fined as follows. Let Y be a random vector uniformly distributed in B0,1. Define 1 =
(1, 0, 0, . . . , 0) ∈ R

d and let B = B1,1

⋃

BY,‖Y ‖. Introduce the random variable

W =
λ(B)

λ(B0,1)
(1)
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(recall that λ denotes the Lebesgue measure) and let

α(d)
def
= E

[

2

W 2

]

.

Theorem 1 Let µ have a density f . Then, as n → ∞,

(i)
nEMn(x) → 1 for µ-almost all x .

(ii)
n2
E[Mn(x)

2] → α(d) for µ-almost all x .

In Section 4 we obtain estimates for the asymptotic conditional second moment α(d).
In particular, in Theorem 3 we show that for all dimensions, 1 ≤ α(d) ≤ 1 + 6(3/4)d/2

and therefore the asymptotic variance of µ(S1) (conditioned on X1 = x) decreases to zero
exponentially in d.

Lebesgue density theorem. The proofs use a version of the Lebesgue density theorem
that we recall first.

Let B be the class of all closed balls of Rd containing the origin. We say that x is a
Lebesgue point for f if for all sequences Bk ∈ B with λ(Bk) ↓ 0,

lim
k→∞

∫

x+Bk
f(y)dy

λ(Bk)
= f(x) .

Let A be the set of all x ∈ R
d such that f(x) > 0 and x is a Lebesgue point for f . Then

µ(A) = 1 by Wheeden and Zygmund [15, pp. 106–108]. See also Devroye and Györfi [6],
Chapter 2.

Proof of part (i). Observe that

EMn(x) = P {Xn+1 ∈ S1 | X1 = x}
= P

{

∩n
i=2{Xi /∈ BXn+1,‖Xn+1−x‖}

}

= E
[

(1− Z(x))n−1
]

,

where Z(x) = µ(BX,‖X−x‖). (Recall that both X and Xn+1 are independent of X1, . . . , Xn

and have the same distribution.) First note that

nE
{

(1− Z(x))n−1
}

→ 1
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whenever
lim
z↓0

z−1
P
{

µ(BX,‖X−x‖) ≤ z
}

= 1 . (2)

To see this, suppose that (2) holds and for every ǫ > 0 there is a δ > 0 such that
|P {Z(x) ≤ z} − z| < zǫ whenever z ∈ (0, δ). But then

nE
{

(1− Z(x))n−1
}

= n

∫ 1

0

P
{

(1− Z(x))n−1 ≥ t
}

dt

= n(n− 1)

∫ 1

0

P {Z(x) ≤ z} (1− z)n−2dz

(by a change of variables)

= n(n− 1)

∫ δ

0

P {Z(x) ≤ z} (1− z)n−2dz + n(n− 1)

∫ δ

0

P {Z(x) ≤ z} (1− z)n−2dz

= n(n− 1)

∫ δ

0

z(1 + ρ(z))P {Z(x) ≤ z} (1− z)n−2dz +O(n2(1− δ)n)

(where |ρ(z)| < ǫ)

= 1 +O(ǫ) +O(n2(1− δ)n) .

The intuitive reason of why (2) should hold is that for any x, µ(Bx,‖X−x‖) is uniformly
distributed on [0, 1] and that µ(BX,‖X−x‖) is stochastically close to µ(Bx,‖X−x‖) when ‖X−
x‖ is small in a sense specified below. The rest of the proof establishes the convergence
(2).

By the Lebesgue density theorem, it suffices to prove (2) for all Lebesgue points x with
f(x) > 0. Fix such a point x. Since for any sequence Bk ∈ B with λ(Bk) ↓ 0 we have

µ(x+Bk)

λ(x+Bk)
→ f(x) ,

for any ǫ ∈ (0, 1) we can find δ > 0 (possibly depending on x) such that ‖v−x‖ ≤ δ implies

∣

∣

∣

∣

µ(Bv,‖v−x‖)

λ(Bv,‖v−x‖)
− f(x)

∣

∣

∣

∣

≤ ǫf(x)

and
∣

∣

∣

∣

µ(Bx,‖v−x‖)

λ(Bx,‖v−x‖)
− f(x)

∣

∣

∣

∣

≤ ǫf(x) .
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This also implies that for any v with ‖v − x‖ ≥ δ,

µ(Bv,‖v−x‖) ≥ µ(Bv∗,δ) ≥ (1− ǫ)f(x)λ(B0,δ) (3)

and µ(Bx,‖v−x‖) ≥ µ(Bx,δ) ≥ (1− ǫ)f(x)λ(B0,δ)

where v∗ is the unique point on the surface of Bx,δ and on the line segment (x, v]. Take
z > 0 so small that z < (1 − ǫ)f(x)λ(B0,δ). We again use the fact that µ(Bx,‖X−x‖) = U
has the uniform distribution on [0, 1]. We rewrite

µ(BX,‖X−x‖) =
µ(BX,‖X−x‖)

λ(BX,‖X−x‖)
· λ(Bx,‖X−x‖)

µ(Bx,‖X−x‖)
· µ(Bx,‖X−x‖) .

If ‖X − x‖ ≤ δ, then the product of the first two factors is sandwiched between

1− ǫ

1 + ǫ
and

1 + ǫ

1− ǫ
.

By (3), we have ‖X − x‖ ≤ δ if either µ(BX,‖X−x‖) ≤ z or µ(Bx,‖X−x‖) ≤ z, and in that
case,

µ(BX,‖X−x‖) ≥
1− ǫ

1 + ǫ
µ(Bx,‖X−x‖)

and

µ(BX,‖X−x‖) ≤
1 + ǫ

1− ǫ
µ(Bx,‖X−x‖) .

Thus,

P{µ(BX,‖X−x‖) ≤ z} ≤ P

{

1− ǫ

1 + ǫ
µ(Bx,‖X−x‖) ≤ z

}

≤ P

{

1− ǫ

1 + ǫ
U ≤ z

}

= min

{

z
1 + ǫ

1 − ǫ
, 1

}

.
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Similarly, for 0 < z ≤ 1,

P{µ(BX,‖X−x‖) ≤ z} = P{µ(BX,‖X−x‖) ≤ z, ‖X − x‖ ≤ δ}

≥ P

{

1 + ǫ

1− ǫ
µ(Bx,‖X−x‖) ≤ z, ‖X − x‖ ≤ δ

}

= P

{

µ(Bx,‖X−x‖) ≤
1− ǫ

1 + ǫ
z, ‖X − x‖ ≤ δ

}

= P

{

µ(Bx,‖X−x‖) ≤
1− ǫ

1 + ǫ
z

}

= P

{

U ≤ 1− ǫ

1 + ǫ
z

}

=
1− ǫ

1 + ǫ
z .

This proves (2) and part (i) of Theorem 1.

Proof of part (ii). Similarly to the proof of part (i), observe that

E[Mn(x)
2] = P {Xn+1 ∈ S1, Xn+2 ∈ S1 | X1 = x}
= P

{

∩n
i=2{Xi /∈ BXn+1,‖Xn+1−x‖ ∪ BXn+2,‖Xn+2−x‖}

}

= E
[

(1− Z2(x))
n−1
]

,

where
Z2(x) = µ(BX,‖X−x‖ ∪BX′,‖X′−x‖)

with X and X ′ independent and distributed with respect to µ. In analogy with the argu-
ment of part (i), in order to prove that

lim
n→∞

n2
E
{

(1− Z2(x))
n−1
}

= α(d) ,

it suffices to show that, for µ-almost all x,

lim
z↓0

z−2
P
{

µ(BX,‖X−x‖ ∪BX′,‖X′−x‖) ≤ z
}

= α(d)/2.

The rough idea of the proof is as follows. The approximate equalities are made rigorous

6



below. For small z,

z−2
P
{

µ(BX,‖X−x‖ ∪BX′,‖X′−x‖) ≤ z
}

= z−2
P

{

µ(BX,‖X−x‖ ∪ BX′,‖X′−x‖)

max{µ(BX,‖X−x‖), µ(BX′,‖X′−x‖)}
max{µ(BX,‖X−x‖), µ(BX′,‖X′−x‖)} ≤ z

}

∼
z→0

z−2
P

{

µ(BX,‖X−x‖ ∪ BX′,‖X′−x‖)

max{µ(BX,‖X−x‖), µ(BX′,‖X′−x‖)}
max{µ(Bx,‖X−x‖), µ(Bx,‖X′−x‖)} ≤ z

}

∼
z→0

z−2
P {W max{U1, U2} ≤ z}

(where U1, U2 are i.i.d. uniform, independent of W )

= z−2
P
{

WU1/2 ≤ z
}

= z−2
E
[

min(z2/W 2, 1)
]

∼
z→0

E

[

1

W 2

]

.

To prove the desired limit formally, as before, by the Lebesgue density theorem, we may
assume that x ∈ R

d is such that f(x) > 0 and x is a Lebesgue point for f . A key point of
the proof uses coupling. Let (Y1, Y2) be the canonical reordering of (X,X ′) such that

‖Y2 − x‖ ≥ ‖Y1 − x‖ .

and introduce M = max(‖X−x‖, ‖X ′−x‖) = ‖Y2−x‖. Define the random variable N by

N =

{

1 if Y1 = X ′

2 if Y2 = X ′ .

Then set V2 = Y2 and let V1 be uniformly distributed on Bx,‖V2−x‖ such that V1 is maximally
coupled with Y1 given Y2. From Doeblin’s coupling argument,

P{Y1 6= V1 | Y2} =
1

2

∫

|fY1
(v)− fV1

(v)|dv ,

where fY1
, fV1

are the conditional densities of Y1 and V1 given Y2.
Choose δ > 0 so small that for M ≤ δ, we have, simultaneously,

µ(Bx,M)

λ(Bx,M)
∈ [f(x)(1− ǫ), f(x)(1 + ǫ)] ,

µ(BX,‖X−x‖ ∪BX′,‖X′−x‖)

λ(BX,‖X−x‖ ∪ BX′,‖X′−x‖)
∈ [f(x)(1− ǫ), f(x)(1 + ǫ)] ,
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and
µ(BX,M)

λ(BX,M)

∣

∣

∣

∣

λ(Bx,M)

µ(Bx,M)
− 1

f(x)

∣

∣

∣

∣

+
1

λ(Bx,M)f(x)

∫

Bx,M

|f(v)− f(x)|dv ≤ ǫ .

Such a δ exists by three applications of the Lebesgue density theorem. (Recall that x is a
Lebesgue point.) Since

fY1
(v) =

f(v)

µ(Bx,‖Y2−x‖)
1v∈Bx,M

and fV1
(v) =

1

λ(Bx,M)
1v∈Bx,M

,

(where 1 denotes the indicator function) we have, writing B = Bx,M ,

∫

|fY1
(v)− fV1

(v)|dv =

∫

B

∣

∣

∣

∣

f(v)

λ(B)

λ(B)

µ(B)
− 1

λ(B)

∣

∣

∣

∣

dv

≤ 1

λ(B)

∫

B

f(v)

∣

∣

∣

∣

λ(B)

µ(B)
− 1

f(x)

∣

∣

∣

∣

dv +
1

λ(B)

∫

B

∣

∣

∣

∣

f(v)

f(x)
− 1

∣

∣

∣

∣

dv

=
µ(B)

λ(B)

∣

∣

∣

∣

λ(B)

µ(B)
− 1

f(x)

∣

∣

∣

∣

+
1

f(x)

1

λ(B)

∫

B

|f(v)− f(x)| dv

≤ ǫ

if M ≤ δ, by choice of δ. Finally, define a pair of random variables (V, V ′), both taking
values in R

d, as follows.

(V, V ′) =

{

(V1, V2) if N = 2
(V2, V1) if N = 1 .

The argument above implies that

P{(V, V ′) 6= (X,X ′) | M} ≤ 1M>δ + 1M≤δ
ǫ

2
.

Since
(µ(Bx,‖X−x‖), µ(Bx,‖X′−x‖))

L
= (U, U ′),

where U, U ′ are independent uniform [0, 1] random variables, we have,

µ(Bx,M)
L
= max(U, U ′)

L
=

√
U .

By construction, V1 is uniform on Bx,‖Y2−x‖, so that, given Y2,

λ(BY2,‖Y2−x‖ ∪BY1,‖Y1−x‖)

λ(BY2,‖Y2−x‖)
L
= W ,
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where W was defined in (1). To complete the argument, set

BX = BX,‖X−x‖, BX′ = BX′,‖X′−x‖, M = max(‖X − x‖, ‖X ′ − x‖) .

Then

µ(BX ∪BX′) =
µ(BX ∪ BX′)

λ(BX ∪ BX′)
· λ(BX ∪ BX′)

λ(Bx,M)
· λ(Bx,M)

µ(Bx,M)
· µ(Bx,M)

def
= r1 · r2 · r3 · r4.

Note that
r1 ∈ [f(x)(1− ǫ), f(x)(1 + ǫ)]

when M ≤ δ, and similarly,

r3 ∈
[

1

f(x)(1 + ǫ)
,

1

f(x)(1− ǫ)

]

when M ≤ δ. When (X,X ′) = (V, V ′), we have

r2 =
λ(BX ∪BX′)

λ(Bx,M)
L
= W

with W independent of

r4 = µ(Bx,M)
L
=

√
U .

Thus, since for small enough z, µ(BX ∪ BX′) ≤ z also µ(Bx,M) ≤ z implies M ≤ δ (as
argued in the proof of (2)), for such z, we have

P{µ(BX ∪ BX′) ≤ z, (X,X ′) = (V, V ′)} ≤ P

{

1− ǫ

1 + ǫ
W

√
U ≤ z

}

.

Write

P{µ(BX ∪ BX′) ≤ z} = P{µ(BX ∪ BX′) ≤ z,M ≤ δ}+ P{µ(BX ∪ BX′) ≤ z,M > δ} .

Clearly,
P{µ(BX ∪ BX′) ≤ z,M > δ} = 0

for z small enough. For such a z, we have

P{µ(BX ∪BX′) ≤ z,M ≤ δ} = P{µ(BX ∪BX′) ≤ z,M ≤ δ, (X,X ′) 6= (V, V ′)}
+P{µ(BX ∪ BX′) ≤ z,M ≤ δ, (X,X ′) = (V, V ′)}

def
= q1 + q2.
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We have

q1 ≤ P{µ(BX) ≤ z}P{µ(BX′) ≤ z} sup
ρ≤δ

P{(X,X ′) 6= (V, V ′) | M ≤ ρ}

= z2(1 + o(1)) sup
ρ≤δ

P{(X,X ′) 6= (V, V ′) | M ≤ ρ}

(according to (2))

= z2(1 + o(1))ǫ (by the choice of δ) .

Also,

q2 ≤ P{µ(BX ∪ BX′) ≤ z,M ≤ δ}

≤ P

{

1− ǫ

1 + ǫ
W

√
U ≤ z

}

≤
(

1 + ǫ

1− ǫ

)2

E

{

1

W 2

}

z2

=

(

1 + ǫ

1− ǫ

)2

z2α(d)/2 .

On the other hand,

P{µ(BX ∪BX′) ≤ z}
≥ P{µ(BX ∪BX′) ≤ z,M ≤ δ, (X,X ′) = (V, V ′)}

≥ P

{

1 + ǫ

1− ǫ

λ(BV ∪BV ′)

λ(Bx,M)
µ(Bx,M) ≤ z,M ≤ δ, (X,X ′) = (V, V ′)

}

= P

{

1 + ǫ

1− ǫ

λ(BV ∪ BV ′)

λ(Bx,M)
µ(Bx,M) ≤ z, (X,X ′) = (V, V ′)

}

= A− B,
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where

A = P

{

1 + ǫ

1− ǫ

λ(BV ∪BV ′)

λ(Bx,M)
µ(Bx,M) ≤ z

}

= P

{

1 + ǫ

1− ǫ
W

√
U ≤ z

}

= P

{

U ≤
(

z(1 − ǫ)

W (1 + ǫ)

)2
}

= E

{

min

{

(

z(1 − ǫ)

W (1 + ǫ)

)2

, 1

}}

= (1− o(1))

(

1− ǫ

1 + ǫ

)2

z2
α(d)

2

(by the dominated convergence theorem) and

B = P

{

1 + ǫ

1− ǫ

λ(BV ∪ BV ′)

λ(Bx,M)
µ(Bx,M) ≤ z, (X,X ′) 6= (V, V ′)

}

≤ P {µ(Bx,M) ≤ z, (X,X ′) 6= (V, V ′)}
= P {µ(Bx,M) ≤ z,M ≤ δ, (X,X ′) 6= (V, V ′)}

≤ P

{

µ(BX ∪ BX′)
1− ǫ

1 + ǫ

1

2d
≤ z,M ≤ δ, (X,X ′) 6= (V, V ′)

}

= O(1)z2ǫ (by the choice of δ).

Since ǫ was arbitrary, this concludes the proof of Part (ii) of Theorem 1.

3 Convergence in distribution

In the next result (Theorem 2) we determine the asymptotic distribution of Mn(x). We do
this by determining the asymptotic moments of the limiting distribution. Once again, the
limit is the same for µ-almost all x.

In order to describe the asymptotic moments, for any positive integer k define the
random variable

Wk =
λ(B1,1 ∪ BY1,‖Y1‖ ∪ · · · ∪ BYk−1,‖Yk−1‖)

λ(B0,1)
,

11



where Y1, . . . , Yk−1 are independent random variables distributed uniformly in B0,1. Note
that

1 = W1 ≤ W2 ≤ · · · ≤ λ(B0,2)

λ(B0,1)
= 2d.

Now we may define a non-negative random variable Z with moments

E[Zk] = E

[

k!

W k
k

]

for k ≥ 1. We may use Carleman’s condition to verify that the distribution of Z is uniquely
defined. Indeed, note that E[Zk] ≤ k! and therefore

∞
∑

k=1

(E[Zk])−1/(2k) ≥
∞
∑

k=1

(k!)−1/(2k) = ∞ ,

and Carleman’s condition is satisfied. Note that if E is an exponentially distributed random
variable with mean 1, then

E
[

Ek
]

= k! ≥ E[Zk] ≥ k!/2dk = E

[

(

E

2d

)k
]

.

We also have

E
[

esZ
]

≤
∞
∑

k=0

sk =
1

1− s

for 0 < s < 1 and

E
[

esZ
]

≥
∞
∑

k=0

( s

2d

)k

=
1

1− s/2d

for 0 < s < 2d.
The next theorem establishes the convergence announced above.

Theorem 2 Let µ have a density f . Then, for µ-almost all x, the random variable nMn(x)
converges, in distribution, to Z.

Note that for the case of a Voronoi tessallation of Rd defined by a Poisson point process
of constant intensity, Zuyev [16] describes the distribution of the volume of the so-called
“fundamental region” of the cell containing the origin, conditional on having a point at
the origin, as a mixture of Gamma distributions. The fundamental region contains the
Voronoi cell. Since this distribution equals the limit for the uniform density and our result

12



is density free, the random variable Z described here is stochastically dominated by the
same mixture of Gamma random variables.

In the case of d = 1 it is easily seen that Z is distributed as (E1 +E2)/2, where E1 and
E2 are independent exponentially distributed random variables with mean 1.

Since the proof of Theorem 2 is an extension of that of part (ii) of Theorem 1, we only
sketch the arguments.

Sketch of proof of Theorem 2. By the moment method, it suffices to show that for all
Lebesgue points x ∈ R

d with f(x) > 0, and for all k ≥ 1, we have

E
[

(nMn(x))
k
]

→ E[Zk] .

As we argued in the case k = 2 in the proof of Theorem 1,

E
[

nkMn(x)
k
]

= nk
E
[

(1− Zk(x))
n−1
]

,

where
Zk(x)

def
= µ(BX1,‖X1−x‖ ∪ · · · ∪BXk ,‖Xk−x‖)

is such that
P {Zk(x) ≤ z}

zk
∼
z→0

P
{

WkU
1/k ≤ z

}

zk
,

where U is uniform [0, 1], independent of Wk. Here we use the fact that

max
1≤i≤k

µ(B0,‖Xi‖)
L
= max

1≤i≤k
Ui

L
= U1/k

with the Ui being independent and uniform on [0, 1]. The equivalence ∼
z→0

above can be

proved by the same arguments as detailed in the proof of part (ii) of Theorem 1.
As in the proof of Theorem 1, in order to show that

E
[

nkMn(x)
k
]

→ E

[

k!

W k
k

]

,

it suffices to show that

lim
z↓0

z−k
P
{

µ(BX1,‖X1−x‖ ∪ · · · ∪ BXk,‖Xk−x‖) ≤ z
}

= E

[

1

W k
k

]

.

By the approximation above,

z−k
P
{

µ(BX1,‖X1−x‖ ∪ · · · ∪BXk,‖Xk−x‖) ≤ z
}

∼
z→0

z−k
P
{

WkU
1/k ≤ z

}

∼
z→0

E

[

1

W k
k

]

.
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4 Some values of α(d)

In this section we investigate the asymptotic second moment α(d). Since the limiting first
moment equals 1, we must have that α(d) ≥ 1. On the other hand, for all d, we have
α(d) ≤ 2. To see this, simply note that

α(d) = E

[

2

W 2
2

]

≤ E

[

2

W 2
1

]

= 2 .

Large values of d

Here we show that for large values of d, α(d) approaches 1 exponentially fast.

Theorem 3 For all d, 1 ≤ α(d) ≤ 1 + 6(3/4)d/2.

Proof. Define
A = B0,1, B = B1,1, and C = BY,‖Y ‖ ,

where Y is uniformly distributed on A. Recall the definition of the random variable W :

W =
λ(B ∪ C)

λ(B)
and let U =

λ(C)

λ(B)
.

Observe that U is uniformly distributed on [0, 1]. We write

α(d)− 1 = E

[

2

W 2
− 2

(1 + U)2

]

= 2E

[

1

W 2

(

1−
(

W

1 + U

)2
)]

≤ 2E

[

1−
(

W

1 + U

)2
]

,

since W ≥ 1. We have that

2

[

1−
(

W

1 + U

)2
]

≤ 2

14



and

2

[

1−
(

W

1 + U

)2
]

= 2

[

(1 + U −W )(1 + U +W )

(1 + U)2

]

≤ 4

[

1 + U −W

1 + U

]

= 4

[

λ(B ∩ C)

λ(B) + λ(C)

]

.

Thus

α(d)− 1 ≤ 2E [1Y ∈B] + 4E

[

λ(B ∩ C)

λ(B) + λ(C)
1Y /∈B

]

.

We finish the proof by showing that

E [1Y ∈B] ≤ (3/4)d/2 (4)

and

E

[

λ(B ∩ C)

λ(B) + λ(C)
1Y /∈B

]

≤ (3/4)d/2 . (5)

For (4), note that

E [1Y ∈B] =
λ(A ∩ B)

λ(B)
≤

λ(B
b,
√

3/4
)

λ(B)
= (3/4)d/2 ,

where b = (1/2, 0, 0, . . .0) ∈ R
d, since A ∩ B ⊂ B

b,
√

3/4
(see Figure 1.)

For (5), we bound

λ(B ∩ C)

λ(B) + λ(C)
1Y /∈B ≤ sup

y/∈B

λ(B ∩ By,‖y‖)

λ(B) + λ(By,‖y‖)

≤ λ(B ∩Ba,1)

λ(B)

(where a = (1/2,
√

3/4, 0, 0, . . . , 0) ∈ R
d)

=
λ(A ∩ B)

λ(B)

≤ (3/4)d/2
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a

B

B
b;
p

3=4

1

A

Figure 1: The sets A,B, and B
b,
√

3/4
.

by arguing as above. That the supremum reached by placing Y (thus, y) at a is clear in
two steps. First, the intersection B ∩ By,‖y‖ can only grow by replacing y by y/‖y‖ since

By,‖y‖ ⊂ By/‖y‖,1.

Next, of all the points on the surface of B1,1, but outside B1,1, the intersection λ(B∩By/‖y‖,1)
is maximized by placing y at a.

Small values of d

It is not difficult to see that α(1) = 3/2. Indeed, according to (1),

B = B1,1 ∪BY,‖Y ‖ = B1,1 ∪BY,|Y | =

{

B1,1 if Y ≥ 0
B1,1 ∪BY,|Y | if Y < 0 ,

we have

W =
λ(B)

λ(B0,1)

L
=

{

1 with probability 1/2,
1 + U with probability 1/2,

where U is uniform [0, 1]. Hence,

α(1) = E

[

2

W 2

]

=
1

2

(

2

1
+ E

[

2

(1 + U)2

])

= 1 + E

[

1

(1 + U)2

]

= 3/2 .
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Previous work has considered the variance of the Lebesgue measure of the Voronoi
cell containing the origin defined by a homogeneous Poisson process, conditioned on the
fact that a point falls in the origin. From these results, we deduce values of α(d) for
d = 2, 3. Indeed Gilbert [7], Brakke [3], and Hayen and Quine [8] showed that α(2) ≈
1.2801760409267 while Gilbert [7] and Brakke [4] showed α(3) ≈ 1.179032437845.

5 On the diameter of a typical cell

Here we prove that, independently of the density, for µ-almost all x ∈ R
d, conditional on

X1 = x, the diameter of the Voronoi cell centered at X1 converges to zero, in probability,
at a rate of n−1/d in the sense specified in Theorem 4. More precisely, for any x ∈ R

d,
let Dn(x) be the diameter of the Voronoi cell S1 with nucleus x associated with the point
process {x,X2, . . . , Xn}. Then we have the following:

Theorem 4 Let µ have a density f . Then for µ-almost all x ∈ R
d,

lim
t→∞

lim sup
n→∞

P
{

n1/dDn(x) ≥ t
}

= 0 .

Proof. A set C ⊂ R
d is a cone of angle θ ∈ (0, π/2) centered at 0 if there exists an

x ∈ R
d with ‖x‖ = 1 such that

C =

{

y ∈ R
d :

(x, y)

‖y‖ ≥ cos(θ/2)

}

.

Let γd be the minimal number of cones C1, . . . , Cγd of angle π/4 centered at 0 such that
their union covers R

d. (For example, γ2 = 8.) Let Rn,j, j = 1, . . . , γd, be the distance
between x and the nearest neighbor among X2, . . . , Xn belonging to x+ Cj (i.e., the cone
Cj translated by x). Define Rn,j = ∞ if no such point exists.

We bound the diameter of the Voronoi cell S1 by observing that

Dn(x) ≤
√
2 max
j=1,...,γd

Rn,j .

To see this, consider an arbitrary point y ∈ S1 and let x+Cj be a cone (among the covering
cones) containing y. If ξj is the nearest neighbor of x among X2, . . . , Xn belonging to x+Cj ,
then ‖y − x‖ ≤ ‖y − ξj‖ and therefore ‖y − x‖ ≤ Rn,j/(2 cos(π/4)). Thus, the diameter of
S1 is at most maxj=1,...,γd Rn,j/ cos(π/4).
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A simple extension of the Lebesgue density theorem implies that if A = B0,1 is the unit
ball centered at the origin, then for µ-almost all x ∈ R

d,

min
j=1,...,γd

∫

x+r[Cj∩A]
f

λ(r[Cj ∩ A])
→ f(x) as r ↓ 0 , (6)

where r[Cj ∩ A] = {rx : x ∈ Cj ∩ A}. Thus, for µ-almost all x, there exists R(x) > 0 such
that for all 0 < r ≤ R(x),

min
j=1,...,γd

∫

x+r[Cj∩A]

f ≥ rd
f(x)

2
λ(C1 ∩A) .

If f(x) = 0 or x does not satisfy (6), set R(x) = 0. For any t > 0, we have

{

Dn(x) > tn−1/d
}

⊂
{

max
j=1,...,γd

Rn,j >
tn−1/d

√
2

}

⊂
γd
⋃

j=1

{

x+
tn−1/d

√
2

[Cj ∩A] has no point among X2, . . . , Xn

}

.

Thus, we have

P
{

n1/dDn(x) ≥ t
}

≤
γd
∑

j=1

P

{

x+
tn−1/d

√
2

[Cj ∩ A] has no point among X2, . . . , Xn

}

.

We bound the probability of each event in the union as follows.

P

{

x+
tn−1/d

√
2

[Cj ∩ A] has no point among X2, . . . , Xn

}

≤ P

{

x+min

(

R(x),
tn−1/d

√
2

)

[Cj ∩ A] has no point among X2, . . . , Xn

}

=

(

1− µ

(

x+min

(

R(x),
tn−1/d

√
2

)

[Cj ∩ A]

))n−1

≤
(

1−
(

min

(

R(x),
tn−1/d

√
2

))d

λ(C1 ∩A)
f(x)

2

)n−1

≤ exp

(

−(n− 1)min

(

R(x)d,
tdn−1

√
2d

)(

λ(C1 ∩ A)
f(x)

2

))
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and the theorem follows since R(x)df(x) > 0 for µ-almost all x.
Note that it follows from the proof that, for µ-almost every x, there exists a positive

constant C(x) such that

P
{

n1/dDn(x) ≥ t
}

≤ γd exp(−(n− 1)C(x))

and therefore the diameter Dn(x) has an exponentially bounded tail. This phenomenon
has been observed before for the Poisson-Voronoi tessellation, see, e.g, Maier, Mayer, and
Schmidt [11].
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2016-003 Feistauer, M.; Roskovec, F.; Sändig, AM.: Discontinuous Galerkin Method for an
Elliptic Problem with Nonlinear Newton Boundary Conditions in a Polygon

2016-002 Steinwart, I.: A Short Note on the Comparison of Interpolation Widths, Entropy
Numbers, and Kolmogorov Widths
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2013-001 Kohls, K.; Rösch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control
Problems with Control Constraints

2012-013 Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.: Polar actions on complex
hyperbolic spaces

2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces

2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs

2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces

2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations

2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces

2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors
under censoring

2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily

2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
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