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Klaus Höllig, Jörg Hörner

Preprint 2011/016





Universität
Stuttgart

Fachbereich
Mathematik

Programming Multigrid Methods with B-Splines
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Programming Multigrid Methods with B-Splines

Klaus Höllig and Jörg Hörner

August 24, 2011

Abstract

Multigrid algorithms are the method of choice for solving large Ritz-Galerkin
systems for elliptic boundary value problems. Using b-spline bases provides geometric
flexibility as well as many computational advantages and permits particularly efficient
and elegant implementations. This is described for a fairly general discretization
which covers all principal features of b-spline elements.

1 Introduction

Multigrid algorithms generally provide the most efficient solvers for elliptic Ritz-
Galerkin systems. The classical article by Brandt [8] beautifully describes and in
detail analyzes programming strategies for numerous applications. The mathematical
theory is fascinating, too. We refer, e.g., to the early convergence proofs of Fedorenko
[14] and Bakhvalov [2] (difference equations) as well as Bank and Dupont [3] (finite
elements). By now, there exists a vast literature on almost any aspect of multigrid
algorithms (cf., e.g., [16, 9] and the references cited therein); multigrid solvers have
become standard tools.

Due to their regular data structure, uniform b-splines are ideally suited for mul-
tilevel strategies. For weighted extended b-spline bases (web-splines), this has been
demonstrated in [21]. In particular, a proof of the grid-independent convergence rate
was given. For isogeometric elements, this should also be possible under appropri-
ate assumptions. In this article, we consider a combination of these two principal
b-spline-based approaches: weighted isogeometric elements, a mixed basis type in-
troduced in [18]. This very general class of basis functions comprises the principal
features of b-spline elements and has analogous properties. Hence, it is conceivable
that the earlier multigrid convergence proofs can be adapted to the new setting. How-
ever, this is not the purpose of our article. Instead, we focus on the implementation
of a typical multigrid scheme, showing that the simplicity and elegance of b-spline
algorithms prevail also in a fairly complex setting.

Usually, finite element discretizations involve index lists and yield a linear system
with irregular sparse structure which is solved with standard software. Proceeding
in this way, many advantages of the b-spline basis are lost. Exploiting the regular
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Figure 1: Domain D ⊂ R2 with inner boundary Γ

data structure not only leads to very efficient programs, these programs are also
rather pretty from an esthetic point of view. If, in the end, the reader thinks that
multigrid algorithms for b-splines are almost trivial to implement, the goal of our
rather elementary exposition has been achieved: We would like to stimulate the
interest in b-spline specific finite element programming.

A multigrid finite element algorithm with b-splines has, to our knowledge, first
been programmed by Wipper [31]. Subsequently, multigrid methods with b-splines
were used for several different applications [28, 19, 23, 24]. Our article builds on the
experience gained by these earlier implementations and provides a general framework
which applies to weighted as well as isogeometric elements. To keep the presentation
short and easy to understand, we will neither use the most general rational b-spline
basis nor consider a general elliptic boundary value problem. Moreover, we limit our
discussion to discretizations in two variables. The generalizations are straightforward.

Our article is organized as follows. We begin in Section 2 by describing the Ritz-
Galerkin discretization of a Poisson type equation with mixed boundary conditions
which will serve as an elementary model problem. In Section 3 we introduce (poly-
nomial) weighted isogeometric elements which combine essential features of the two
main b-spline-based discretizations. Section 4 is devoted to a prototype of a dy-
namic multigrid algorithm. After these necessary prerequisites, we in detail discuss
the implementation of the key multigrid modules in Sections 5 to 8 : matrix assem-
bly, smoothing iteration, grid transfer, and the coarsening of Ritz-Galerkin matrices.
Finally, we briefly comment on possible convergence proofs in Section 9.

2 Model Problem

For multigrid techniques, the Laplace operator often serves as a principal test case.
Accordingly, we consider the mixed boundary value problem

−∆u + u = f in D, u = 0 on Γ ⊆ ∂D, ∂⊥u = 0 on ∂D\Γ ,

on a domain D ⊂ R2 of the form as in Figure 1 and with ∂⊥ denoting the normal
derivative. The particular form of the differential operator was chosen to allow Γ = ∅
as a special case. In contrast to Poisson’s equation, there exists a unique solution
also for pure natural boundary conditions (∂⊥u = 0 on ∂D).
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The Ritz-Galerkin method (cf., e.g., [30, 32]) approximates the solution u by a
linear combination ∑

k

ukBk

of suitable basis functions Bk (finite elements) which satisfy the essential boundary
condition, i.e., Bk = 0 on Γ. The coefficients U = (uk) are computed with the aid of
the weak form of the mixed boundary value problem:∫

D
gradu grad v + uv =

∫
D

fv, ∀v ∈ H1
Γ ,

where H1
Γ is the Sobolev space of functions with square integrable first derivatives

which vanish on Γ. Substituting u =
∑

k ukBk, v = Bj , leads to the linear system∑
k

(∫
D

grad Bj grad Bk + BjBk

)
uk =

∫
D

Bjf ,

which we abbreviate as
GU = F .

While the Ritz-Galerkin approach is very general, it is clear that the choice of the
basis functions is crucial. It influences the accuracy of the approximation as well as
the efficiency of its computation.

3 Weighted Isogeometric B-Splines

B-splines have played a key role in many areas of applied mathematics and engineer-
ing (cf., e.g., [6, 29, 13, 11]), most recently also for finite element analysis. In this
context, two different strategies have been proposed. Weighted approximations use
uniform b-splines on a grid which covers the simulation region and incorporate essen-
tial boundary conditions via a weight function [20]. Isogeometric methods transform
b-splines on tensor product grids to the physical domain via suitable parametrizations
[22] (cf. the textbooks [17, 12] for a comprehensive description of the two approaches
as well as [4, 1, 15] for samples of applications). Both methods have their pros and
cons. Figure 1 gives an elementary example where each of the two techniques is
not completely satisfactory. The weighted method does not exploit the geometric
simplicity of the domain, whereas the isogeometric approach requires a partitioning
which leads to unnecessary element distortions. A combination of both methods
suggests itself and overcomes these difficulties. The basic principle is illustrated in
Figure 2 for the particular example considered.

We parametrize the extended domain enclosed by the outer boundary by a smooth
bijective mapping Φ which is defined on the unit square:

[0, 1]2 = Q 3 ξ 7→ x = Φ(ξ) ∈ De .

Moreover, as in [20], we describe the inner boundary by a weight function w: De → R
with

w = 0 ∧ gradw 6= 0 on Γ, w > 0 in D\Γ, w < 0 in De\D ,
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Φ−→

Figure 2: Weighted isogeometric b-splines

i.e., D = {x ∈ Φ(Q) : w(x) > 0}. The discretization uses uniform b-splines bk of
coordinate degree n and grid width h, defined on Q. Denoting by M the numbers of
grid cells in the two coordinate directions, (M + n)2 b-splines are relevant, i.e., have
some support in Q, namely:

bk = b(k1,k2), kν = 1, . . . ,M + n (ν = 1, 2) ,

where the subscript refers to the grid position. More precisely,

Q = [0,Mh]× [0,Mh], supp bk = [(k1 − n− 1)h, k1h]× [(k2 − n− 1)h, k2h] .

With these definitions, the finite element basis for the mixed boundary value problem
consists of so-called weighted isogeometric b-splines

x 7→ Bk(x) = w(x)bk(ξ), ξ = Φ−1(x), k ∼ D ,

which have some support in D (cf. [18] for a more detailed description). We note
in particular that the multiplication by w ensures that Bk vanishes on Γ. Moreover,
we remark that the pure weighted method corresponds to the special case Γ = ∂D,
Φ = idR2 for the sample problem under consideration. The pure isogeometric method
can be recovered by choosing Γ = ∅, w(x) = 1.

For programming purposes, it is convenient to keep also irrelevant b-splines, i.e.,
elements Bk, k 6∼ D, which have no support in D. In Figure 2, relevant and irrelevant
basis functions are distinguished by dots and circles in the center of their supports.
This means, a weighted isogeometric spline has the form

M+n∑
k1=1

M+n∑
k2=1

ukBk .

Hence, an approximation is represented by a rectangular coefficient array

U : u(k1,k2), 1 ≤ kν ≤M + n .

The coefficients uk with k 6∼ D can have arbitrary values since Bk(x) = 0 for x ∈ D.
We will usually set them to zero or mark them with an appropriate flag.
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INITIALIZE

ℓ = 1

[U ℓ, R] = SMOOTH(U ℓ, F ℓ, ℓ)

converged ? slow ?

ℓ = L ? stop ℓ = 1 ?

V = EXTEND(U ℓ)

ℓ← ℓ + 1, U ℓ
← U ℓ + V

F ℓ−1 = RESTRICT(R)

ℓ← ℓ− 1, U ℓ = 0

no no

yes

yes yes

yes

no no

Figure 3: “Cycle C” [8]: Dynamic multigrid iteration for linear elliptic problems

In accordance with our convention for the coefficients U , the Ritz-Galerkin matrix
G is a four-dimensional array; the row and column indices refer to the grid positions
(j1, j2), (k1, k2) of the b-splines. As a consequence, the matrix multiplication U 7→
GU has to be interpreted in a generalized sense, but is of course defined in the usual
way:

(GU)(j1,j2) =
M+n∑
k1=1

M+n∑
k2=1

g(j1,j2),(k1,k2) u(k1,k2) .

Keeping irrelevant elements with no support in D results in zero rows and columns of
the Ritz-Galerkin matrix. To preserve the positive definiteness of the linear system,
we set diagonal entries corresponding to irrelevant indices equal to 1. Since corre-
sponding entries fj =

∫
D Bjf , j 6∼ D, of the right side are 0, this leads to the proper

values uj = 0 for the Ritz-Galerkin solution.

4 Dynamic Multigrid Iteration

There are numerous variants of multigrid algorithms. Which one to select, depends of
course on the application and, to some extent, also on preferences of the programmer.
Our personal favorite for linear problems is the dynamic iteration proposed by Brandt
in his fundamental article [8] and (essentially) restated in Figure 3 for the convenience
of the reader.
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The multigrid strategy is based on the fact that the discretizations

G`U ` = F `

on a sequence of grids (referred to by the superscript `) with grid widths

h` = H 21−`, ` = 1, . . . , L ,

are closely related, since they correspond to the same continuous problem. The
dynamic multigrid algorithm exploits this in two ways.
(i) Initial approximations: First, for all levels ` one generates the matrices G` and
right sides F ` and sets U ` = 0 (subroutine INITIALIZE). Then, starting on the
coarsest grid (` = 1), a sufficiently accurate Ritz-Galerkin solution u` =

∑
k u`

kB
`
k is

used as an initial approximation on the next finer grid. To this end, u` is expressed
as linear combination of the refined elements (subroutine EXTEND),

u` =
∑

k

vkB
`+1
k ,

and used as initial guess for u`+1:

U `+1 ← U `+1 + V, V = (vk) ,

recalling that U `+1 = 0 initially.
(ii) Main iteration: To improve the accuracy of U `, a classical scheme such as the
Jacobi or Gauß-Seidel method is used as basic iteration. Typically, a fixed number
α of steps is performed (subroutine SMOOTH) before a convergence test is made. As
is well known, the basic classical iterations smooth the residual

R = F ` −G`U ` ,

i.e., oscillating error components are rapidly damped. Hence, if the convergence
becomes slow (otherwise, no action is necessary), we can compute a correction V ≈
(G`)−1R, to be added to the current approximation U `, on the coarser grid. To this
end, the residual is transferred to the coarser grid (subroutine RESTRICT), where the
dominant slowly varying components can be adequately represented:

F `−1 ← R .

For the iterative solution of the residual equation G`−1U `−1 = F `−1, which presum-
ably determines a small correction, U `−1 = 0 is the appropriate initial guess. Once
sufficient accuracy is obtained, the current approximation is improved by transferring
the coarse grid correction to the finer grid (subroutine EXTEND) and adding it to U `:

V ← U `−1, U ` ← U ` + V .

This strategy is applied recursively. On the coarsest grid, where no transfer of the
residual is possible, the iteration continues until the accuracy criterion is met.

6



Although the Gauß-Seidel scheme yields the best convergence rates, we prefer the
Jacobi iteration. The less efficient smoothing is outweighed by the ease of imple-
mentation and, more important, vectorization, necessary in particular for large scale
applications.

The implementation of the dynamic iteration based on Jacobi’s scheme requires
subroutines for assembling the Ritz-Galerkin matrices, matrix/vector multiplication
in sparse format, and grid transfer. Essentially, this is all! Each of these multigrid
components will be described in detail in the next sections. Here, we comment briefly
on the general algorithmic parameters, following the discussion in [8].

The convergence rate on a particular grid can be estimated via the quotient
of the residual norms, which are computed in conjunction with the Jacobi steps.
Convergence is slow if

‖Rnew‖/‖Rold‖ > β

with β slightly less than 1.
To judge the accuracy of an approximation on grid level `, we compare the norms

of the residual R and the right side F ` (equal to the residual for the initial guess
U ` = 0). The iteration has converged if

‖R‖ ≤ tol ‖F `‖ .

The constant tol depends on the level and the phase of the iteration. On a grid,
where the solution to the boundary value problem is currently approximated, the
relative accuracy should be proportional to the truncation error:

tol = γ1 (h`)n+1

with γ1 rather small (n equals the degree). On grids, where corrections are currently
computed, a moderate reduction of the size of the residual is sufficient:

tol = γ2

with γ2 significantly less than 1, but independent of the grid width h`.
According to this strategy, initially tol = γ1 (h`)n+1 on all grids. After having

computed an accurate numerical solution on grid ` and passed as initial approxima-
tion to grid ` + 1, we set tol = γ2 on grid `. This was done already on the coarser
grids 1, . . . , `−1, where numerical solutions were previously generated. On the finest
grid, tol = γ1 (h`)n+1 during the entire dynamic multigrid iteration.

From our practical experience, good choices of the parameters are α = 5, β = 0.8,
γ1 = 0.01, and γ2 = 0.2. The optimal values can vary, depending on the problem and
the type of basis functions (degree, weight function, parametrization, etc.). However,
as has been pointed out in [8], generally, dynamic multigrid algorithms are fairly
robust with respect to small changes in the parameters. Clearly, increasing α, β and
decreasing tol improve stability of the iteration while requiring more operations per
multigrid cycle.
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5 Matrix Assembly and Initialization

As for conventional finite element methods, Ritz-Galerkin systems GU = F for
weighted isogeometric b-spline elements are computed with the aid of numerical
integration over the parameter domain. The standard procedure is easily described
(cf., e.g., [17, 12]). We review the principal ideas mainly for the convenience of the
reader and to introduce the data structure for the multigrid algorithm. For the sake
of brevity, we only consider the assembly of the matrix G. The computation of the
entries of the right side F is simpler and completely analogous.

First, we observe that

gradx Bk(x) = (gradx w(x)) bk(Φ−1(x)) + w(x) (gradx bk(Φ−1(x))
= (gradx w)(Φ(ξ)) bk(ξ) + w(Φ(ξ)) (gradξ bk(ξ)Φ′(ξ)−1)

by the chain rule, where Φ′ denotes the Jacobi matrix of the parametrization. Ab-
breviating the expression for gradx Bk by p(k, ξ) and denoting by Ω = Φ−1(D) the
portion of Q mapped onto D by Φ, the nontrivial entries of the Ritz-Galerkin matrix
equal

gj,k =
∫

Ω

(
p(j, ξ)p(k, ξ) + w(Φ(ξ))2bj(ξ)bk(ξ)

)
|det Φ′(ξ)|︸ ︷︷ ︸

q(j,k,ξ)

dξ, j, k ∼ D ,

by the rule for transformation of multiple integrals.
Second, we note that G is most easily assembled by summing the contributions

from each grid cell Qm:∫
Ω

q(j, k, ξ) dξ =
M∑

m1=1

M∑
m2=1

∫
Qm∩Ω

q(j, k, ξ) dξ ,

where only those summands are relevant for which Qm lies in the common supports
of bj and bk, i.e.,

mν ≤ jν , kν ≤ mν + n (ν = 1, 2) .

The integrals over the grid cell intersections are approximated with the aid of an
appropriate quadrature rule, as is illustrated in Figure 4:∫

Qm∩Ω
q(j, k, ξ) dξ ≈

∑
i

rm(i)q(j, k, ηm(i)) .

If Qm ⊂ Ω, a standard tensor product Gauß formula is applicable. However, if the
preimage of Γ intersects Qm, we have to use an appropriate partition in order to
preserve the high accuracy of the b-spline method (cf. [17] for details). The weights
rm and the nodes ηm involve a combination of Gauß formulas in such cases. Clearly,
if Qm ∩ Ω = ∅, we set rm(i) = 0.

The matrix entry gj,k is nonzero only if the support of the b-splines bj and bk

overlap, i.e., if
sν = kν − jν ∈ {−n, . . . , n}, ν = 1, 2 .
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Figure 4: Gauß points for cell integrals

Hence, we can store G in sparse format, i.e., in a condensed array A of dimension
(M + n)× (M + n)× (2n + 1)× (2n + 1):

gj,k = aj,s, 1 ≤ jν , kν ≤M + n, −n ≤ sν = kν − jν ≤ n , (1)

for ν = 1, 2. The (generalized) columns of A, a(·,·),s, contain the diagonals of G with
the index s corresponding to the offset from the main diagonal. We allow negative
indices sν to keep the symmetry, which is convenient in formulas. In programs, we
have to shift the index appropriately, i.e.,

aprogram
j,s = atheory

j,s+(n+1,n+1) ,

which is not a serious inconsistency.
We note that the entries aj,s with kν = jν + sν /∈ {1, . . . ,M + n} for ν = 1 or

ν = 2 do not correspond to matrix elements. This is due to the slightly different
lengths of the diagonals of G. Defined as 0, these elements do not affect the result
in matrix operations, which is convenient in programs. Also, with this convention,
there is no need for specifying the proper range of the indices sν . Similarly, we set
elements of a vector to 0 if their index is out of range.

After these preliminary considerations, the assembly subroutine for the Ritz-
Galerkin matrix has a very simple form. It uses auxiliary arrays

WEIGHTS{m1,m2}(:), POINTS{m1,m2}(:,1:2) ,

which store the integration weights rm(i) and nodes (ηm(i, 1), ηm(i, 2)) for the grid
cells Qm and a subroutine

VALUES(j1,j2,k1,k2,P) ,

which evaluates the integrand q(j, k, ·) at the points P(i,1:2). In the program
listed below, for each grid cell Qm, the contributions of element combinations Bj , Bk

with overlapping supports are computed and successively added in the appropriate
positions of A (the offset indices sν shifted by n+1 range from 1 to 2n+1). In a final
loop, the diagonal entries corresponding to irrelevant indices j 6∼ D are modified.
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function A = SYSTEM(WEIGHTS,POINTS,VALUES,n)
% assembly of a Ritz-Galerkin matrix

M = size(WEIGHTS,1);
A = zeros(M+n,M+n,2*n+1,2*n+1);
for m1=1:M, for m2=1:M

for j1=m1:m1+n, for j2=m2:m2+n
for k1=m1:m1+n, for k2=m2:m2+n

s1 = k1-j1+n+1; s2 = k2-j2+n+1;
V = VALUES(j1,j2,k1,k2,POINTS{m1,m2});
A(j1,j2,s1,s2) = A(j1,j2,s1,s2) + WEIGHTS{m1,m2}’*V;

end, end

end, end

end, end

for j1=1:M+n, for j2=1:M+n
if A(j1,j2,n+1,n+1)==0

A(j1,j2,n+1,n+1)=1;
end

end, end

The simplicity of the code is deceptive. Of course, the reader realizes that we
hide the geometric complexity in the arrays WEIGHTS and POINTS and the evaluation
of the weighted isogeometric b-splines in the subroutine VALUES. Let us comment on
these aspects in some more detail.

The parameters for numerical integration are computed in a preprocessing step.
First, the arrays WEIGHTS{m1,m2}(:) and POINTS{m1,m2}(:,1:2) are initialized
with standard Gauß parameters for squares. For cells outside the domain, the weights
are set to 0. Then, for those m, for which the grid cell Qm intersects the boundary of
Ω, the parameters are modified. Depending on the particular representation of the
weight function w and the complexity of the boundary of Qm ∩Ω, this can be time-
consuming. But, there are at most O(h−1) such boundary cells, many of which can
be handled with just one subdivision. Hence, generating the integration parameters
requires only a small portion of the overall computing time.

The function VALUES describing the Ritz-Galerkin integrand just involves the
evaluation of the weight function w, the b-splines bk, and the parametrization Φ.
This is straightforward and fast since no inversion of Φ is necessary.

In the initialization phase of the multigrid algorithm, the matrices G` and right
sides F ` have to be assembled for all grid levels ` = 1, . . . , L. To this end, it is
important to note that numerical integration, as described above, is necessary only
for the finest grid level L. The systems for coarser grids can be generated from GL,
FL with the aid of grid transfer operations, as will be discussed in Section 8.

To stabilize and accelerate the iteration, we precondition the Ritz-Galerkin system
by using symmetric diagonal scaling, i.e.,

G→ Ĝ = diag(G)−1/2 G diag(G)−1/2 .
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The preconditioned matrices in sparse format, the square roots of the original diag-
onals, and the right sides are stored in arrays

A{`}, DA{`}, F{`}, ` = 1, . . . , L;

the cell arrays A, DA, and F are global variables. It is also convenient to use a global
structure PAR for the algorithmic parameters:

PAR.n, PAR.L, PAR.H, PAR.alpha, PAR.beta, PAR.gamma(1:2), PAR.rho(1:L) .

They contain the degree, the number of levels, the maximal grid width, the number
of Jacobi steps, the smoothing rate, the relative accuracies, and the maximum norms
of the preconditioned Ritz-Galerkin matrices.

6 Smoothing Iteration

In this section we describe the implementation of the Jacobi scheme, which is one of
the basic components of the multigrid iteration. Using familiar concepts for banded
matrices, the b-spline data structure can be exploited in a straightforward fashion.

We begin by describing the multiplication with the preconditioned Ritz-Galerkin
matrix Ĝ, an operation needed for computing the residual, hence in particular also
for implementing a Jacobi step. Recalling that Ĝ is stored in sparse format in the
array A, as described in (1), the multiplication U → V = ĜU has the explicit form

vj =
n∑

s1=−n

n∑
s2=−n

aj,s uj+s, 1 ≤ jν ≤M + n, ν = 1, 2 . (2)

We recall our convention that uk = 0 for k = j + s /∈ {1, . . . ,M +n}2. Such elements
are multiplied by entries aj,s, s = k − j, which do not represent matrix elements of
Ĝ and have been set to 0, too.

The extremal index pairs occurring are

k = (1− n, 1− n), k = (M + 2n, M + 2n) .

Hence, to implement the formula (2), we pad the (M + n) × (M + n) array U with
n layers of zeros on both sides. Denoting the enlarged array by U◦, i.e., setting

uk1−n,k2−n = u◦k1,k2
,

the matrix vector multiplication can be computed with the following MATLAB
program.

function V = MULT(U,l)
% multiplication with a Ritz -Galerkin matrix

global A, PAR
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Al = A{l}; n = PAR.n; M = size(U,1)-n;
J = 1:M+n;
U0 = zeros(M+3*n,M+3*n); U0(n+J,n+J) = U;
V = zeros(M+n,M+n);
for s1 =1:2*n+1, for s2 =1:2*n+1

V = V + Al(:,:,s1,s2) .* U0(J+s1 -1,J+s2 -1);
end, end

We note the perfect vectorization: (2n + 1)2 additions and pointwise multiplica-
tions of (M + n)× (M + n) dimensional arrays.

We now consider a Jacobi smoothing step for solving GU = F . As mentioned
before, we use symmetric diagonal preconditioning, i.e., we solve

ĜÛ = F̂ ⇔
(
diag(G)−1/2 G diag(G)−1/2

) (
diag(G)1/2 U

)
=
(
diag(G)−1/2 F

)
.

Then, one step of the iteration has the form

Û ← Û + %−1(F̂ − ĜÛ)

with % = maxj(
∑

k |ĝj,k|) equal to the maximum norm of Ĝ. With the aid of the
program MULT for multiplying with the preconditioned Ritz-Galerkin matrix, the
Jacobi smoothing is easily implemented.

function [U,R] = SMOOTH(U,F,l)
% Jacobi smoothing steps

global A, DA, PAR

Al = Al; DAl = DAl; RHOl = PAR.rho(l);
U = U.*DAl; F = F./DAl;
for i = 1:PAR.alpha

U = U + (F-MULT(U,l))/RHOl;
end

R = (F - MULT(U,l)).*DAl;
U = U./DAl;

We note that, while the Ritz-Galerkin matrix is stored in preconditioned form in
the cell array A, the preconditioning has to be applied to the vectors U and F before
the Jacobi steps. After the loop, the diagonal scaling is reversed.

7 Grid Transfer

The modules EXTEND and RESTRICT for changing between grid levels are based on
the formula for subdividing a b-spline bk [25, 10, 5], which is illustrated in Figure 5.
Accordingly, we can express a linear combination of b-splines b̃k on a coarser grid in

12
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Figure 5: Subdivision of a bi-quadratic b-spline

terms of the fine grid b-splines bj ; this is of course also possible for the corresponding
weighted isogeometric elements:

B̃k =
∑

j

pj,kBj =⇒
M/2+n∑
k1=1

M/2+n∑
k2=1

vkB̃k =
M+n∑
j1=1

M+n∑
j2=1

ujBj , U = PV , (3)

where the sums are taken over all b-splines which are relevant for the parameter
domain Q = [0, 1]2.

For univariate splines, the coefficient vector U can be computed from V by two
extremely simple operations:
(E1): The elements of V are doubled and divided by 2n, i.e.,

U ← 2−n (v1, v1, v2, v2, . . .)t .

(E2): A simultaneous (scaled by 2) average

U ← (u1 + u2, u2 + u3, . . .)t

is repeated n times.
The first step doubles the size of the coefficient vector. In the second step, each

average shrinks the size of U by 1. Accordingly, the dimension changes from M/2+n
to M + n, in agreement with equation (3).

For bivariate b-splines, the subdivision operations are applied separately in each
coordinate direction. We illustrate the effect of the operations (E1) and (E2) for
degree n = 1:

V
E1→ 1

4


v1,1 v1,1 v1,2 v1,2 . . .
v1,1 v1,1 v1,2 v1,2

v2,1 v2,1 v2,2 v2,2

v2,1 v2,1 v2,2 v2,2
...

. . .


E2→


v1,1

v1,1+v1,2

2 v1,2 . . .
v1,1+v2,1

2
v1,1+v1,2+v2,1+v2,2

4
v1,2+v2,2

2

v2,1
v2,1+v2,2

2 v2,2
...

. . .

→ U .

The simplicity of the resulting subdivision algorithm, reflected by the MATLAB
program below, is striking: step (E1) makes four copies of each element, step (E2),
repeated n times, forms averages of four neighbors.
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function U = EXTEND(V)
% extension to a finer grid

global PAR
n = PAR.n;
K = ceil([1/2 : 1/2 : size(V,1)]);
U = V(K,K)/4^n;
for i=1:n

U = U(1:end-1,:) + U(2:end,:);
U = U(:,1:end-1) + U(:,2:end);

end

Step (E1) is implemented by creating an index vector K = (1, 1, 2, 2, . . .). The
loop, corresponding to step (E2), computes the averages simultaneously for the entire
array - a perfect vector operation.

As is common practice for finite element discretizations, we use the transpose of
the extension matrix for the restriction to a coarser grid. To this end, we need the
matrix representation P of the subdivision operations (E1) and (E2). Considering
univariate b-splines first,

U = PV, P = Pn · · ·P 1︸ ︷︷ ︸
step (E2)

2−n P 0︸ ︷︷ ︸
step (E1)

,

where
p0

j,k = δj−2k+1 + δj−2k, p1
jk = · · · = pn

j,k = δj−k + δj−k+1 (4)

with the symbol δ defined as

δk =
{

1 for k = 0
0 otherwise

.

The superscripts 1, . . . , n are necessary merely since the dimension changes; each
(scaled) average reduces the vector length by 1. It may be helpful to give a concrete
example. Below we list the matrices for univariate subdivision of a linear combination
of quadratic b-splines

∑3
k=1 vk b̃k:

P 2 =


1 1 0

1 1
1 1

0 1 1

 , P 1 =


1 1 0

1 1
1 1

1 1
0 1 1

 , P 0 =



1 0
1

1
1

1
0 1

 .

Here, M = 2, and the vectors V and U have dimensions M/2+2 = 3 and M +2 = 4,
respectively.

Staying in the univariate setting, the effect of the transposition is easily deter-
mined. Writing

P t = 2−n (P 0)t (P 1)t · · · (Pn)t ,

14



we consider the two types of factors in turn. Referring to (4),

V = (P 0)tU ⇔ vj =
∑

k

(δk−2j+1 + δk−2j) uk = u2j−1 + u2j ,

i.e., multiplication by P 0 just adds two adjacent vector elements. Again, by definition
(4), for µ = 1, . . . , n,

V = (Pµ)tU ⇔ vj =
∑

k

(δk−j + δk−j+1) uk = uj + uj−1 ,

where we recall that uj = 0 for indices out of range. Since the dimension J of V is
by 1 larger than the dimension of U , u0 = 0 = uJ . With this convention, the above
matrix/vector multiplication is identical to the operation (E2) if we append a zero
entry to U on both sides. Summarizing, the (univariate) restriction V of a vector U
is computed by the following two operations:
(R2): A simultaneous (scaled) average of an extended vector,

U ← (0 + u1, u1 + u2, . . . , uK−1 + uK , uK + 0)t ,

with K the current length of U , is repeated n times.
(R1): Pairs of consecutive elements of U are added and divided by 2n:

V ← 2−n (u1 + u2, u3 + u4, . . .)t ,

halving the length of the vector.
The procedure generalizes to two dimensions in a by now familiar fashion. The

operations (R2) and (R1) are performed separately in each variable.

(R22d): For kν = 1, . . . ,K + 1,

uk ← u(k1−1,k2) + u(k1,k2), uk ← u(k1,k2−1) + u(k1,k2) ,

where K is the current dimension of the input vector U , and we recall that elements
with indices out of range (here kν = 0 and kν = K + 1) are set to 0.
(R12d): V ← 4−n U and

vj ← v(2j1−1,j2) + v(2j1,j2), vj ← v(j1,2j2−1) + v(j1,2j2) .

This leads to the following MATLAB program.

function V = RESTRICT(U)
% restriction to a coarser grid

global PAR
n = PAR.n; M = size(U,1);
V = zeros(M+2*n,M+2*n);
V(1+n:M+n,1+n:M+n) = U/4^n;

15



for i=1:n
V = V(1:end-1,:) + V(2:end,:);
V = V(:,1:end-1) + V(:,2:end);

end

V = V(1:2:end,:) + V(2:2:end,:);
V = V(:,1:2:end) + V(:,2:2:end);

We notice a minor modification compared to the theoretical descriptions of steps
(R22d) and (R12d). Instead of padding with one layer of zeros in each of the n aver-
aging steps, we pad the input array immediately by n layers of zeros. Programmed
in this way, the loop corresponding to (R22d) is identical to the implementation of
(E2). Essentially, the only major difference to the program EXTEND is the realization
of (R12d) in the last two statements.

The short implementations of the extension and restriction modules reflect the
elegance of subdivision algorithms, which have become powerful tools, in particular
in computer graphics (cf., e.g., [27] for a comprehensive treatment of the beautiful
mathematical theory in a much more general context).

8 Coarse Grid Ritz-Galerkin Matrices

The Ritz-Galerkin matrices on coarse grids can, of course, be assembled as described
in Section 5. New weights and nodes do not have to be generated. Instead, the
parameters for four small squares, which form a large square, can be combined.
While proceeding in this way is reasonably efficient, a more elegant alternative is to
use subdivision. As will be explained below, the Ritz-Galerkin matrix G̃ on a coarser
grid (before preconditioning) can be obtained from the fine grid matrix G by a simple
averaging procedure.

We use the fact that the entries g̃j,k depend bilinearly on the weighted isogeometric
elements, which we indicate by writing

g̃j,k = π(B̃j , B̃k) .

Substituting the subdivision formula (3), B̃i =
∑

µ pµ,iBµ,

g̃j,k =
∑

σ

∑
τ

pσ,j π(Bσ, Bτ )︸ ︷︷ ︸
gσ,τ

pτ,k ⇔ G̃ = P tGP .

Hence, the transformation has a very simple form. Multiplying by P t from the left
(P from the right) means applying the operations (R22d), (R12d) simultaneously to
all columns (rows) of G. A slight complication is the diagonal storage format for
the Ritz-Galerkin matrices which prevents us from using just the program RESTRICT.
However, the implementation of the n+1 successive modifications of G (n applications
of operation (R22d) and one application of operation (R12d)) is similar. We discuss
each step in turn.
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(R2matrix): Recalling the relation (1) between an input matrix G and the correspond-
ing array A, the row operations have the form

aj,s = gj,k ← gj,(k1−1,k2) + gj,(k1,k2) = aj,(s1−1,s2) + aj,(s1,s2)

aj,s = gj,k ← gj,(k1,k2−1) + gj,(k1,k2) = aj,(s1,s2−1) + aj,(s1,s2) ,
(5)

where sν = kν − jν . Similarly, the column operations lead to the modifications

aj,s = gj,k ← g(j1−1,j2),k + g(j1,j2),k = a(j1−1,j2),(s1+1,s2) + a(j1,j2),(s1,s2)

aj,s = gj,k ← g(j1,j2−1),k + g(j1,j2),k = a(j1,j2−1),(s1,s2+1) + a(j1,j2),(s1,s2) .
(6)

We recall that all vectors are padded with zeros at both ends before performing the
averaging operations. Hence, each dimension of G increases by one and the number
of diagonals (the third and fourth dimension of the array A) by two.
(R1matrix): The operations are very similar. Scaled averages are formed, but only
for every second pair. Since this halves each dimension of an input array G, treating
each component separately, as done in (R2matrix), does not fit with the diagonal
storage pattern. Hence, we have to combine the row and column operations for each
coordinate direction. For the first coordinate, this yields

aj,s = gj,k ← g(2j1−1,j2),(2k1−1,k2) + g(2j1−1,j2),(2k1,k2) + g(2j1,j2),(2k1−1,k2) + g(2j1,j2),(2k1,k2)

= a(2j1−1,j2),(2s1,s2) + a(2j1−1,j2),(2s1+1,s2) + a(2j1,j2),(2s1−1,s2) + a(2j,j2),(2s1,s2) .
(7)

Clearly, the operations are identical for the second coordinate, just applied with
respect to the second and fourth index of A.

Before giving an implementation of the above difference equations, let us comment
on the dimensions J ×J ×S×S of the array A modified by the algorithm. From the
definition of the Ritz-Galerkin matrices we recall that 1 ≤ jν ≤ M/2 + n, |sν | ≤ n,
for the output array. Hence, on the right side of (7), jν ∈ {1, . . . ,M + 2n} and
sν ∈ {−2n− 1, . . . , 2n + 1}. Therefore, before step (R1matrix),

J = M + 2n, S = 4n + 3 .

In equations (5), (6), the range of the first and second index of the array A is by
1 larger on the right side, the range of the third and fourth index by 2 (the indices
sν − 1, sν , sν + 1 appear). Hence, proceeding backwards, the dimensions increase
according to

J → J + 1, S → S + 2 .

Since the operations (R2matrix) are repeated n times, initially

J = (M + 2n) + n, S = (4n + 3) + 2n .

Comparing these values with the dimension (M + n)2× (2n + 1)2 of the input array,
and recalling our convention that entries out of range are set to 0, we must pad
with 2× n layers of zeros in dimensions 1, 2 and with 2× (2n + 1) layers of zeros in
dimensions 3, 4.
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function A0 = MATRIX(A1)
% Ritz-Galerkin matrix for a coarser grid

global PAR
n = PAR.n; M = size(A1,1)-n;
A0 = zeros(M+2*[n,n,2*n+1,2*n+1]);
A0(1+n:end-n,1+n:end-n,2+2*n:end-2*n-1,2+2*n:end-2*n-1) = A1/16^n;
for i = 1:n

A0 = A0(:,:,1:end-1,:) + A0(:,:,2:end,:);
A0 = A0(:,:,:,1:end-1) + A0(:,:,:,2:end);
A0 = A0(1:end-1,:,2:end,:) + A0(2:end,:,1:end-1,:);
A0 = A0(:,1:end-1,:,2:end) + A0(:,2:end,:,1:end-1);

end

M = size(A0); J = 1:2:M(1)-1; S = [2:2:M(3)-1];
A0 = A0(J,:,S,:) + A0(J,:,S+1,:) + A0(J+1,:,S-1,:) + A0(J+1,:,S,:);
A0 = A0(:,J,:,S) + A0(:,J,:,S+1) + A0(:,J+1,:,S-1) + A0(:,J+1,:,S);

There seem a little bit too many instructions in this program. A shorter version
is possible. For example, using an alternative version of (R2matrix),

gj,k ←
∑
r,t∈I

gj−r,k−t, I = {0, 1}2 ,

we can replace the statements in the loop by the following code segment.

A = zeros(size(A0)-[1;1;2;2]);
for r1=0:1, for r2=0:1, for t1=0:1, for t2=0:1

A = A + A0([2:end]-r1,[2:end]-r2,[2:end-1]+r1-t1,[2:end-1]+r2-t2);
end, end, end, end

A0 = A;

Similar changes can be made also for the last two statements of MATRIX and in
other programs. The possible reductions are listed in Figure 6 which in brackets
shows the minimal number of floating point instructions achievable by introducing
additional loops. However, fewer loops usually provide a slightly more efficient im-
plementation. For the above example, the four operations of the original program
segment compare favorably with the 24-fold repetition of the statement within the
four loops.

9 Convergence

Since the classical work by Fedorenko [14], Bakhvalov [2], Bank and Dupont [3],
numerous proofs of grid independent convergence rates have been given (cf., in par-
ticular [7] for a general framework). By now, the arguments are standard, and apply
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SYSTEM MULT SMOOTH EXTEND RESTRICT MATRIX

.∗, ./ 1 1 4 0 0 0
± 1 1 3 2 [1] 4 [2] 10 [2]

Figure 6: Actual and minimal (in brackets) number of floating point instructions of MAT-
LAB programs for key multigrid components

also for some b-spline-based methods [21]. For a second order elliptic boundary value
problem, they rely usually on the following properties of finite element basis functions
Bk.

• Stability: The L2-norm of approximations is comparable to the 2-norm of the
coefficients: ∥∥∥∥∥∑

k

ukBk

∥∥∥∥∥
L2(D)

� hd/2

(∑
k

|uk|2
)1/2

,

where d is the dimension (d = 2 throughout this article).

• Bernstein Inequality: Differentiation increases the norm of approximations uh =∑
k ukBk at most by a factor h−1, i.e.∥∥∥uh

∥∥∥
H1(D)

� h−1
∥∥∥uh

∥∥∥
L2(D)

.

• Jackson Inequality: There exists a projector P h onto the finite element subspace
which is bounded in L2(D) and approximates with optimal order, i.e.∥∥∥u− P hu

∥∥∥
H`(D)

� hn+1−` ‖u‖H2(D) , ` = 0, 1 .

In the above inequalities, the symbols �,� stand for inequalities in one or both
directions with constants which do not depend on u, U , or h.

The first property, stability, is crucial for all the proofs given so far. However, it
is not valid for the weighted isogeometric elements which were used in this article.
Due to the curved boundary Γ, there can exist b-splines with very small support in
D, and this leads to an ill-conditioned basis. The problem can be overcome with an
extension procedure, which is part of the construction of web-splines [20], and should
easily be adapted to the present situation. In two variables, extension seems to be
not even necessary. Reif and Mößner [26] showed that in many cases simple diagonal
scaling stabilizes b-spline bases on domains with curved boundaries. Regardless of
which method is applied, the stabilized weighted isogeometric elements should have
all of the above properties. We did not incorporate such stabilization measures here
since practical experience has shown that stabilization seems to be essential neither
for accuracy nor for the convergence of multigrid algorithms. A possible explanation
is that diagonal preconditioning has a stabilizing effect for standard iterative solvers.
Hence, rather than duplicating previous proofs, we conclude with an open question.
Can the grid-independent convergence rate of multigrid algorithms for b-splines be
proved under less stringent stability assumptions?
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Conclusion

B-splines have become standard tools in approximation, modeling, and simulation,
gradually replacing less sophisticated techniques. We think that b-splines will even-
tually play a key role for finite element methods, too. Familiar advantages of the
b-spline calculus have already been successfully demonstrated in many simulations
involving partial differential equations. We will not present the long list of favorable
properties here and refer to [12, 17]). We just mention several key features which are
apparent from the multigrid algorithms described in this article:

• regular data structure;

• simple, short, and elegant programs;

• fully vectorizable code;

• superior computational efficiency.

Clearly, our concluding statements reflect our faible for b-splines. Coming back
to our remarks in the introduction, we hope to have provided some incentives to
participate in the development of b-spline specific finite element software.
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2010/010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a

regression function
2010/009 Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-

Li-Yau Inequalities
2010/008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
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