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Preface

Introduction

Exact categories

An exact category is an additive category equipped with a family of short exact sequences
satisfying certain properties. This notion of an exact category was introduced by Quillen [12,
§2]. As a general reference on exact categories, we use Biihler’s article [2].

For example, any abelian category forms an exact category when equipped with all short exact
sequences. On the other hand, it also forms an exact category when equipped with the split
short exact sequences only. In practice, there also appear exact structures in between these
extremal cases. For example, let mod-Z denote the category of finitely generated abelian
groups and let C(mod-Z) denote the category of complexes with entries in mod-Z. We may
equip the latter with the pointwise split short exact sequences. In this way, C(mod-Z) becomes
an exact category, which is even a Frobenius category, whose corresponding stable category is
the homotopy category K(mod-Z).

Given any abelian category B, then an extension-closed full additive subcategory A C B forms
an exact category when equipped with the short exact sequences in B whose three objects lie
in A. Somewhat more generally, an immersion of an exact category into an abelian category
is a functor from the former to the latter that is full, faithful, exact and detects exactness.
Moreover, we call such an immersion closed if its essential image is closed under extensions. So
the inclusion functor from A to B is an example of a closed immersion.

But for C(mod-Z), equipped with the pointwise split short exact sequences, there is no obvious
way how to immerse it into an abelian category. So we ask how, in general, an exact category
A can be immersed into an abelian one.

The immersion of Gabriel, Quillen and Laumon

Quillen states in [12, p. 16] that we may closedly immerse A into the category GQL(.A) of left-
exact contravariant functors from A to abelian groups via the Yoneda functor Y: A — GQL(A)



and that one can prove this assertion following ideas of Gabriel [4]. As far as I know, Laumon
was the first to publish a proof [8, th. 1.0.3]. His proof relies on the theory of sheaves on sites,
originally due to Grothendieck and Verdier [5], cf. also [9]. However, this immersion is not
universal.

A universal construction

Adelman [1] gives a construction of the universal abelian category Adel(.A) of the underlying
additive category A, cf. also [14]. The objects of Adel(A) are diagrams in A of the form
Xo 25X, 25 X,. Let I: A — Adel(A) denote the inclusion functor that maps A € Ob.A
to 0—— A——0. For each abelian category B and each additive functor F': A — B, there
exists an exact functor F': Adel(A) — B, unique up to isotransformation, such that Fol=F.

A—L B

| A

Adel(A)

Let AV denote the intersection of the kernels of the induced functors F', where F runs through
all exact functors from A into arbitrary abelian categories. He defines the universal abelian
category U(A) of the exact category A to be the localisation of Adel(.A) by N, where morphisms
in Adel(A) with kernel and cokernel in N/ become formally inverted.

Let L: Adel(A) — U(A) denote the localisation functor. The universal property of U(A),
together with the exact universal functor 3 = Lol: A — U(A), states that for each abelian
category B and each exact functor F': A — B, there exists an exact functor F': U (A) — B,
unique up to isotransformation, such that FoJ=F.

In the extremal cases, we obtain the following. If A is abelian and equipped with all short exact
sequences, then A is its own universal abelian category. More precisely, J is an equivalence in
this case. On the other hand, if A is abelian and equipped with the split short exact sequences
only, then L is an equivalence.

Adelman also shows that for a relative projective object P in A, the image J(P) is projective
in U(A) [1, th. 2.5].

Keller gives a similar construction in his manuscript [6]. Additionally, he proposes to study
the connection between the universal category U(A) and the Gabriel-Quillen-Laumon category



CQL(A) via the functor Y: U(A) — GQL(A) provided by the universal property of ¢(A). We
follow that idea in this thesis.

Properties of the universal functor

We consider the diagram

to study how properties of Y can be transported to J via Y. It follows directly that J is
faithful and that it detects exactness since Y has these properties. To obtain further results,
we need to study GQL(A) in detail. Following Laumon [8], we equip A with the structure of
a site and interpret GQL(A) as a certain subcategory of the category of abelian sheaves on
A. To explicitly calculate in GQL(.A), we need tools from sheaf theory, which we provide in a
self-contained course on the Grothendieck-Verdier theory of sheaves on sites. This allows us to
study further properties of J, Y and Y. We show that J is also full and therefore an immersion,
cf. theorem 4.4.4. Under the assumption that .4 has enough relative projectives (or injectives),
we prove that the immersion J is closed, cf. proposition 4.4.6. However, I do not know whether
the immersion J is closed in general.

The universal functor is self-dual, as follows from the universal property. We provide an example
where Y is not self-dual and where N C Ker(Y), cf. proposition 4.5.4. This shows that neither
Y nor Y are faithful in general. In particular, Y is not an equivalence and hence GQL(.A) is

not universal. We also see that I is not always left-exact, cf. proposition 4.5.1.

Furthermore, we give an alternative description of the thick subcategory A of Adel(A). Tt is

generated by the homologies of the images of the pure short exact sequences under I, which are of

the forms 0—— X 45V, YV 442750 and X 45V 4+ 7, where X 45V {57

is a pure short exact sequence in A. We denote the corresponding full subcategory of Adel(.A)
by H. So (H) =N and U(A) = Adel(A)/(H). A larger family of generating objects of N is
given by the pure exact sequences of A.

We present two ways how to obtain the objects of such a thick subcategory from the generating
objects in general. In section 3.1.2.2, we successively construct larger subcategories and finally
obtain the desired thick subcategory as their union. We start with the subcategory of the
generating objects. To obtain the larger subcategory in each step, we add the middle object of
a short exact sequence when the outer objects lie in the previous subcategory. Conversely, if
the middle object lies in the previous subcategory, then we add the outer objects.



A different approach is described in section 3.1.2.3. At first, we add subfactors of the generating
objects to obtain an enlarged subcategory that is closed under subobjects and factor objects
and contains the generating objects. Then we take all objects that have a finite filtration with
subfactors in this enlarged subcategory and these form the desired thick subcategory.

Results

We summarise. Suppose given an exact category A. Adelman [1, §2] constructs an abelian
category U(A) and an exact universal functor J: A — U(A) such that the following universal
property is fulfilled. For each abelian category B and each exact functor F': A — B, there
exists an exact functor F': U (A) — B, unique up to isotransformation, such that FoJ=F.

A———B

Theorem. The universal functor J is an immersion, i.e. it is full, faithful, exact and detects
exactness, cf. theorem 4.4.4. Moreover, if 4 has enough relative projectives or enough relative
injectives, then J is a closed immersion, i.e. the essential image of J is closed under extensions,
cf. proposition 4.4.6.

Let Y: A — GQL(A) denote the closed immersion of Gabriel, Quillen and Laumon.

Proposition. The induced functor Y: 2(A) — GQL(A) is not faithful in general, cf. propo-
sition 4.5.4. In particular, it is not an equivalence and therefore Y is not universal in general.

Outline of the thesis

We summarise the required preliminaries in chapter 1. In particular, section 1.5 contains the
needed results on exact categories.

In chapter 2, we present the general theory of sheaves on sites and construct the sheafification
functor which is left adjoint to the inclusion functor from the category of sheaves into the
category of presheaves. This adjunction is used to show that the category of R-sheaves is
abelian for any ring R. Then we explain how an exact category is equipped with the structure
of a site and that the additive sheaves turn out to be the left-exact functors. Afterwards, we are
able to prove the Gabriel-Quillen-Laumon immersion theorem. We also give a description of
cokernels in GQL(.A) without using the language of sheaves, which seems involved and difficult
to work with.

The topic of chapter 3 is a recapitulation of the localisation theory of an abelian category at
a thick subcategory. At first, we study thick subcategories and how to generate them. For



example, we show how subfactors and filtrations can be used to obtain the objects of the
resulting thick subcategory from the generating objects. Then we recall the construction of
the quotient category and the corresponding localisation functor. We prove that the former is
abelian and that the latter is exact. Finally, we present the universal property.

Chapter 4 contains the construction of the universal abelian category of an exact category.
We begin with an overview of Adelman’s construction of the universal abelian category of
an additive category. Then we define the subcategory H consisting of the homologies of the
images of the pure short exact sequences under I. We show that a functor F': A — B is exact
if and only if the functor F': Adel(A) — B vanishes on H. Moreover, we provide Adelman’s
characterisation of the thick subcategory (#) in terms of the kernels of the induced functors
of exact functors. We also present a larger family of generating objects of (H), namely the
pure exact sequences. Next, we define the universal abelian category U(A) to be the quotient
category Adel(A)/(H) and prove the universal property. In section 4.4, we use the Gabriel-
Quillen-Laumon immersion to show that the universal functor J is an immersion and that it
is also closed if A has enough relative projectives. We conclude by disproving some assertions
concerning U(A) and its relationship to GQL(A) and by formulating some open questions.

I would like to thank my advisor Matthias Kiinzer for an uncountable amount of very useful
suggestions and for his continual support.

Conventions

We assume the reader to be familiar with elementary category theory. An introduction to
category theory can be found in [13]. Some basic definitions and notations are given in the
conventions below. Cf. [14, conventions].

Suppose given categories A, B and C.

1. All categories are supposed to be small with respect to a sufficiently big universe, cf. [13,
§3.2 and §3.3].

2. The set of objects in A is denoted by Ob.A. The set of morphisms in A is denoted by
Mor A. Given A, B € Ob A, the set of morphisms from A to B is denoted by Hom4 (A, B)
and the set of isomorphisms from A to B is denoted by Hom'{(A, B). The identity
morphism of A € Ob A is denoted by 14 . We write 1 := 14 if unambiguous. Given
f € Hom®°(A, B), we denote its inverse by f~' € Hom’°(B, A).

3. Suppose given A—L 4B in A. We call A € ObA the domain or source dom(f) of f. We
call B € Ob A the codomain or target cod(f) of f.



10.
11.

12.

. The composition of morphisms is written naturally:

(A—sB2s0)=(A1%0) = (A% )i A

. The composition of functors is written traditionally: (AL B LC) = (A%C).

Given A, B € Ob A, we write A = B if A and B are isomorphic in A.

The opposite category (or dual category) of A is denoted by A°°. Given f € Mor A, the
corresponding morphism in A is denoted by f°P. Cf. [14, rem 1].

. We call A preadditive if Homy(A, B) carries the structure of an abelian group for

A, B € Ob A, written additively, and if f(g + ¢')h = fgh + fg'h holds for
A—1.B é/; C—"+Din A
9

The zero morphisms in a preadditive category A are denoted by 04 5 € Hom4 (A, B) for
A,B € Ob A. We write 04 := 04 4 and 0 := 04 p if unambiguous.

. The set of integers is denoted by Z. The set of positive integers is denoted by N and the

set of non-negative integers is denoted by Nj .
Given a,b € Z, we write [a,b] :={z € Z: a < z < b}.

For n € Ny, let A, be the poset category of [0,n] with the partial order inherited from
Z. This category has n + 1 objects 0,1,2,...,n and morphisms ¢ — j for i,j € Z with
i <.

Suppose that A is preadditive and suppose given A, B € Ob A. A direct sum of A and B
is a diagram A<—+> C% B in A satisfying ip = 14, jq = 1p and pi + qj = 1¢.

This is generalized to an arbitrary finite number of objects as follows.

Suppose given n € Ny and A, € Ob A for k € [1,n]. A direct sum of Ay,..., A4, is a
tuple (C, (ik) ke[,n) (pk)ke[ljn]) with C' € Ob A and morphisms Ay, 42—%> C in A satisfying
WP = la,, igpe = 04, 4, and Y " | Pl = 1o for k, £ € [1,n] with k # . Cf. [14, rem. 2].
Sometimes we abbreviate C' := (C’, (k) kep,n]; (pk)ke[l,n}) for such a direct sum.

We often use the following matrix notation for morphisms between direct sums.

Suppose given n,m € Ny, a direct sum (C’, (k) kef,n]; (Pk)ke[l,n]) of Ay,..., A, in A and
a direct sum (D, (k) keft,m) (C_Ik;)keu,m]) of By,...,B,, in A.

Any morphism f: C' — D in A can be written as f = Y ,_, > )", prfreje with unique
morphisms fyy = ixfqe: Ay — By for k € [1,n] and ¢ € [1,m]. We write

fir o fim
= (fke)ke[l,n], = ( el )

ZE[I,m] fn1 20 fam

Omitted matrix entries are zero.
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13. An object A € Ob A is called a zero object if for every B € Ob A, there exists a single
morphism from A to B and there exists a single morphism from B to A.

If A is preadditive, then A € Ob A is a zero object if and only if 14 = 04 holds.
14. We call A additive if A is preadditive, if A has a zero object and if for A, B € Ob A, there

exists a direct sum of A and B in A. In an additive category direct sums of arbitrary
finite length exist.

15. Suppose that A is additive. We choose a zero object 04 and write 0 := 0 4 if unambiguous.
We choose 0400 =04 , cf. [14, rem. 1.(c)].

For n € Ny and Ay,..., A, € Ob A, we choose a direct sum

@Ak’ <Z2Ak)k€[l,n]> ’ (péAk)kG[l,n]) )
o1 Le(1,n] Le(1,n]

We sometimes write A; @ --- ® A,, := P _, Ax.
0

A ey 0 (AR keris . . :
Note that pé Keeal — | )| and zé Bkeinl (0---010---0) in matrix notation, where
0

0
the ones are in the (th row resp. column for ¢ € [1,n].

In functor categories we use the direct sums of the target category to choose the direct
sums, cf. [14, rem. 5].

16. Suppose given a full subcategory N of A. We say that N is closed under isomorphisms
in Aif A~ Bin Afor A€ ObN and B € Ob A implies B € Ob .

17. Suppose that A is additive and suppose given a full subcategory N of A. We call N a
full additive subcategory of A if N contains a zero object of A and if N contains a direct
sum of A and B for objects A, B € ObW\.

18. Suppose that A is additive. Suppose given M C Ob.A. The full subcategory ,qqa(M) of
A defined by

¢
Ob (add<M>) = {Y eObA: Y & @Xi for some ¢ € Ny and some X; € M for i € [l,ﬁ]}

i=1
shall be the full additive subcategory of A generated by M.
19. Suppose that A is preadditive. Suppose given f: A — B in A. A kernel of f is a

morphism k: K — A in A with kf = 0 such that the following factorisation property
holds.



20.

21.

22.

23.

24.

11

Given g: X — A with gf = 0, there exists a unique morphism u: X — K such that
uk = g holds.

Sometimes we refer to K as the kernel of f.

The dual notion of a kernel is called a cokernel.

Note that kernels are monomorphic and that cokernels are epimorphic.

In diagrams, we often denote monomorphisms by —e— and epimorphisms by ——. In

exact categories, we use this notation for pure monomorphisms resp. epimorphisms, cf.
definition 1.5.1.

Suppose that A is preadditive. Suppose given f: A — B in A, a kernel k: K — A of f,
a cokernel ¢c: B — C of f, a cokernel p: A — J of k and a kernel i: [ — B of c.

There exists a unique morphism f : J — I such that the following diagram commutes.

s A ! B—
A
JLI

We call such a diagram a kernel-cokernel-factorisation of f, and we call f the induced

K C

morphism of the kernel-cokernel-factorisation. Cf. [14, rem 8].

We call A abelian if A is additive, if each morphism in A has a kernel and a cokernel and
if for each morphism f in A, the induced morphism f of each kernel-cokernel-factorisation
of f is an isomorphism.

Suppose that A and B are preadditive. A functor F': A — B is called additive if F'(f+g) =
F(f)+ F(g) holds for X%}Y in A, cf. [14, prop 4].

Suppose given functors F,G: A — B.
A tuple o = (ax)xeob.a, where ax: F(X) — G(X) is a morphism in B for X € Ob A,

is called natural if F(f)ay = ax G(f) holds for X L.V in A. A natural tuple is also

F
called a transformation. We write a: F — G, a: F = G or A%| 1 B.
G

A transformation a: F' = (G is called an isotransformation if and only if ax is an isomor-
phism in B for X € Ob A. The isotransformations from F' to G are precisely the elements
of Hom$% (F, G), cf. convention 25.

F

m K
Suppose given A —c—— B ) 2C.
ppose g N JLLZ

H
We have the transformation o+ 5 = af8: F' = H with (af)x := axfx for X € Ob A.



25.

26.

27.

28.

29.

30.

31.

12

We have the transformation 7 x a: K o FF = Lo G with (y xa)y = K(ax)’yc(x) —
vr(x) L(ax) for X € Ob A.

YF(X)

(Ko F)(X)—— (Lo F)(X)
K(Oéx)l JL(OéX)
(K 0 G)(X) 3 (Lo G)(X)

We have the transformation 1p: F' = F with (1p)x = 1px) for X € ObA.
Weset yxF:=vx1lp: KoF = LoFand Kxa:=1lgxa: KoF = Ko(G.
So (yx F)x =vpx) and (1g xa)x = K(ax) for X € Ob A.

Thus we also have

yxa=(y*xF) - (Lxa)=(K*xa)-(y*G).

Cf. (14, lem. 6].

Let A€ denote the functor category whose objects are the functors from C to A and whose
morphisms are the transformations between such functors. Cf. remark 1.1.9.

The identity functor of A shall be denoted by 14: A — A.

A functor F': A — B is called an isomorphism of categories if there exists a functor
G:B— Awith FoG =1z and Go F = 14 . In this case, we write F~! := G.

A functor F': A — B is called an equivalence of categories if there exists a functor
G:B— Awith FoG 2 1z1in B® and GoF = 14 in A*. The functor F is an equivalence
if and only if it is full, faithful and dense.

Suppose given a functor F': A — B. The full subcategory Imeg(F') of B defined by
Ob(Imegs(F')) := {B € ObB: there exists A € Ob A such that F(A) = B in B}

is called the essential image of F'.

Suppose given AL B in A. The morphism f is called a retraction if there exists
a morphism ¢g: B — A with gf = 1y . The dual notion of a retraction is called a
coretraction.

Suppose that A is abelian. An object P € Ob A is called projective if for each morphism
g: P —Y and each epimorphism f: X — Y, there exists h: P — X with hf = g.

b

X—}—>Y



32.

33.

34.

35.

36.

37.
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The dual notion of a projective object is called an injective object.

Cf. remark 1.2.5.

Suppose that A is abelian. Suppose given X T yinA A diagram X LAy N
is called an image of f if p is epimorphic, if 7 is monomorphic and if pz = f holds.

Suppose that A is preadditive. A sequence X Ly 2z A is called left-exact if
f is a kernel of g and right-exact if g is a cokernel of f. Such a sequence is called short
ezxact if it is left-exact and right-exact.

Suppose that A is abelian.

Suppose given n € Ny and a sequence Ag —=s Ay —2 Ay —25 ... 2223 4 20 4

in A. The sequence is called ezact if for each choice of images
(AkL)AkJrl ) = (Ak—pik—>[k—10k—)Ak+1 )

for k € [0,n — 1], the sequences I} SN A1 255 Thoiy are short exact for k € [0,n — 2).
Cf. [14, rem. 12].

Suppose that A and B are abelian.

An additive functor F': A — B is called left-exact if for each left-exact sequence
X4y 57 A, the sequence F'(X) 0, F(Y) 19, F(Z) is also left-exact.
An additive functor F': A — B is called right-exact if for each right-exact sequence
p QUG T BN A, the sequence F'(X) MF(Y) L),
An additive functor F': A — B is called ezxact if it is left-exact and right-exact.
Cf. also definitions 1.5.3 and 1.5.7.

F(Z) is also right-exact.

Suppose given a subcategory A" C A and a subcategory B’ C B. Suppose given a functor
F: A— Bwith F(f) € MorB for f € Mor A'.

Let F|5,: A’ — B’ be defined by F|5,(A) = F(A) for A€ Ob A" and F|5,(f) = F(f) for
f € Mor A'.

Let F|y = F|5 and let F|¥ = F|§.

All rings are supposed to be associative with an identity element and all modules are
supposed to be right unitary.
Suppose given a ring R. The category of (right) R-modules is denoted by Mod-R.

Suppose given a ring R. Let gY: Mod-R — Set denote the forgetful functor.



38.

39.

40.

41.

42.

43.

14

Suppose that A is additive. A short exact sequence A ——+C —1— B is called split short

; ' j
ezact if there exist € —— A and B—-— C in A such that A <—+> C ? B is a direct

sum of A and B. Cf. lemma 1.1.4.
Let A x B denote the product category of A and B.

Suppose that A is abelian and that N is a full subcategory of A. We say that A is closed

under subobjects in A if for each monomorphism A 1. B in Awith B € Ob N, we have
A€ ObN.

We say that N is closed under factor objects in A if for each epimorphism AL Bin
A with A € Ob N, we have B € ObN.

We say that N is closed under extensions in A if for each short exact sequence

A1 B 9,0 in A with A,C € ObN, we have B € ObN.

Suppose that A and B are additive and that F': A — B is a functor. The kernel of F'is
the full subcategory of A defined by Ob(Ker(F')) := {4 € ObA: F(A) = 03 in B}.

Suppose given a functor F': A — B. The opposite functor F°P: A°® — B°P is defined by
FoP(A) = F(A) for A€ Ob A and F°P(f°P) = F(f)° for f € Mor A. Cf. [14, rem. 1.(g)].

A diagram A%B with transformations e: 14 = G o F and n: F o G = 15 such that

(Fxe)-(n*xF)=1p and (e xG) - (G*1n) = 1 is called an adjunction, written F' 4 G or

F
—

A 1L B.
<~

G

F L poGoF G =5 GoFoG
N S N
F G

In this case, the functor F'is called left adjoint to G, the functor G is called right adjoint
to F', the transformation ¢ is called a unit of the adjunction and the transformation 7 is
called a counit of the adjunction.
Note that if (F, G, e,n) is an adjunction, then (G°P, F°P n° ¢°P) is an adjunction as well.
In particular, we have F' 4 G if and only if G°P 4 F°P.

F

Now suppose given an adjunction A 3 B with unit e: 14 = G o F' and counit

G
n: FoG= 1z

For X € ObA and Y € Ob B, let

5+ Homp(F(X),Y) = Homa(X, G(Y)): s = ex - G(s).



44.

15

This is a bijection with inverse

(@) Homa(X,G(Y)) — Homg(F(X),Y): t = F(t) - ny .
For X'~ X in A, Y —25Y" in B and F(X)—>Y in B, we have

(F(f) s 9) %!y =ex - (GoF)(f) - G(s)-Glg) = fex G(s) - Glg)
= [ (s) Xy - G(g).

A diagram

ALB
g !/

C D

Q

|

in A is called a pullback if for T—— B and T —- C in A with s¢’ = tf’, there exists
T —— A in A such that uf = s and ug = t.

The dual notion of a pullback is called a pushout.

In diagrams, we often denote pullbacks by

A
g

C

I

D

fg: |-

and pushouts by

s
Sy

Q
«—
5

L

Q



Chapter 1

Preliminaries

1.1 Miscellaneous

Lemma 1.1.1. Suppose given an abelian category A and AL B9 ,0in A
Suppose given a kernel K —5 A of f, a kernel L——A of fg and a kernel M—%—B of g.

Suppose given a cokernel B—4—P of f, a cokernel C’—?—>Q of fg and a cokernel C——R of
g. Then there exist unique morphisms a, b, ¢, d, e such that the diagram

M—FP

N
L . A/ \QJC H Q
AN

K

commutes. Moreover, the sequence

0 K-t <P 2,0 3R——0

1s exact.

Proof. See [2, prop. 8.11] and [13, prob. 13.6.8]. ]

Lemma 1.1.2. Suppose given an abelian category A and a commutative diagram

K54 B—$sC

RPN

K-A.p L p_<i¢c
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in A such that k is a kernel of f, k' is a kernel of f’, ¢ is a cokernel of f and ¢ is a cokernel of f.
Note that u is the induced morphism between the kernels and that v is the induced morphism
between the cokernels.

(a) The diagram

ALB
g g

CLD

is a pullback if and only if w is an isomorphism and v is a monomorphism.
(b) The diagram
f
A—— B

g g

C’LD

is a pushout if and only if u is an epimorphism and v is a isomorphism.

Proof. See [7, lem. 134]. O

Lemma 1.1.3. Suppose given additive categories A and B and a functor F': A — B. The
following four statements are equivalent.

(a) The functor F' is additive.
(b) For a direct sum A<Ti_>A @ B<%—>B in A, the morphism
(Fp) Fa)) : F(A® B) — F(A) ® F(B)
is an isomorphism with inverse

(F@ ) . F(A)® F(B) - F(A® B).

F(5)

(c) We have F'(04) = 0p in B and for a direct sum A#A ® B%B in A, the morphism

(Fip) F(9)) : F(A® B) — F(A) @ F(B) is a monomorphism.

(d) We have F'(04) = 0 in B and for a direct sum A#A ® B%B in A, the morphism

(%%) : F(A)® F(B) — F(A® B) is an epimorphism.
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Cf. [3, th. 3.11].

Proof. Ad (b)=-(a). Suppose given A%&B in A. Choose a direct sum A ; A®B L B
in A.
We obtain
F(f +g9)=F((i+95)pf +q)) = F(i+gj) F(pf +q)
= F(i+gj) (Fo) F@) 5((]))) F(pf +4q)

= (F(1) Fla)) (?E{)’)

VRS

=F(f)+ F(g).
(F) F(a) )ﬂ( " )/
F(A)® F(B F(f)
(F(1) F(e))* F(A) © F(B) (F(l))

Ad (a)=(b). See [14, prop. 4].

Moreover, we have F'(04) = Og in case (a) or (b) are true by loc. cit.

Now suppose that F(04) = 0z . Note that for a direct sum A<—:+>Ae§ B<%—>B in A, we

always have
F(i) _ ( FG)F(p) F@)F(q) \ _ ( F@p) FGiqg) \ _ ( FL) FO)\ _ (10
<F<j)> (£ F@)) = <F<j>F(p> F(j)F(q>> = <F<jp> F(jq>> = (F(O) F<1>> =(01)-
Thus the statements (b), (¢) and (d) are equivalent as well. O

Lemma 1.1.4.
Suppose given an additive category A and a short exact sequence A—4-+C—5B in A. The
following three statements are equivalent.

(a) The sequence A——C——B is split short exact, cf. convention 38.
(b) The morphism ¢ is a retraction.
(¢) The morphism i is a coretraction.

Proof. By definition, (a) implies (b) and (c).

Ad (b)=(a). So there exists C——A in A such that ip = 1. We conclude that i(1 — pi) = 0.

Since ¢ is a cokernel of i, there exists B—2C in A such that qj = 1 — pi. Moreover, we
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have ¢jg = (1 — pi)¢g = 1 = ¢l and thus jq = 1 since ¢ is epimorphic. We conclude that

A—+C—15B is split short exact.

Ad (c)=-(a). This is dual to (b)=-(a). O

Lemma 1.1.5. Suppose given additive categories A and B and functors F,G: A — B. If
F = G in BA, then Ker(F) = Ker(G), cf. convention 41.

Proof. Since F' = G in B, there exists an isotransformation a: F = G.
In particular, F(A)—2+G(A) is an isomorphism in B for A € Ob.A. Thus F(A) = 05 if and
only if G(A) = 0p for A € Ob A. O

Lemma 1.1.6. Suppose given an abelian category A. A sequence X—2yv-2Z in Ais
short exact if and only if XY, Z =04 in A.

Proof. If X,Y,Z =204 in A, then X527 is short exact.

Conversely, if X —25y-—%.7 is short exact, then Z = 04 since y—257 is epimorphic and

X,Y =04 since X—"5Y has to be an isomorphism as kernel of Y257, O

Lemma 1.1.7.

Suppose given an abelian category A and a short exact sequence X—e—Y —+—7 in A. We
have Y = 04 if and only if X, Z = 04 in A.

Proof. This is a consequence of lemma 1.1.6. n

Lemma 1.1.8. Suppose given an additive category A and a full additive subcategory B of A.

Suppose given K %347 ,B in B such that k is a kernel of f in A. Then k is a kernel of f
in B.

Proof. Suppose given t: T — B in B with tf = 0. Since tf = 0 also in A, there exists
u: T — A in A such that uk = t. Since B is a full subcategory, we have u € Mor B. The
induced morphism is unique since it is even unique in A. [
Remark 1.1.9. Suppose given a category C and an additive category A.

Suppose given F—*—G in AC.

(a) Suppose that C is an additive category. Suppose that « is an isotransformation. If F' is
an additive functor, then G is an additive functor as well.
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For X € ObC, suppose given a cokernel G(X)——C(X) of ay in A.

For X— -V inC , we have the commutative diagram

F(X) 25 G(X)
F(f)l lam
F(Y)25G(Y)

in A. Let C(f) be the induced morphism between the cokernels cx and cy.
This yields a functor C' € Ob(A) and a transformation ¢ = (cx)xeconc: G = C.
The morphism c is a cokernel of o in A.
Consequently, the following four statements are equivalent.
— « is an epimorphism in A°.
— c¢=01in A°.
—c¢x =01in A for X € ObC(.
— ay is an epimorphism in A for X € ObC.
Suppose that C is an additive category. If G is an additive functor, then C is additive as
well.

As usual, the dual statements for kernels are also true.
Suppose that A is an abelian category. Then A€ is abelian as well.

Suppose that A is an abelian category and C is an additive category. Suppose given a
cokernel G—"H of a in AC. If G is an additive functor, then H is additive as well.
As usual, the dual statements for kernels are also true.

Suppose that A is an additive category. The zero objects of A¢ are additive functors. If
I and G are additive functors, then F' & G is additive as well.

Suppose that A is an additive category. Let Add(C,.A) denote the full subcategory of A€
whose objects are the additive functors from C to A. The full subcategory Add(C,.A) is
a full additive subcategory which is closed under isomorphisms.

Suppose that A is an additive category. Suppose given K S F—25G—$C in A€ such

that k is a kernel of o and ¢ is a cokernel of a.. If « is additive, then k& and ¢ are additive
as well.

Suppose that 4 is an abelian category. Kernels and cokernels of morphisms in Add(C, .A)
formed in AC lie again in Add(C,.A) by (g). In particular, the category Add(C,.A) is
abelian.
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Cf. [14, rem. 5].

Definition 1.1.10. Suppose given a category C and a functor F': C — Set. A tuple
(G(A))acobe with G(A) C F(A) for A € ObC such that G(f) = F(f)|g,) exists for all

A—L B defines a functor G: C — Set. Such a functor is called a subfunctor of F.

Definition 1.1.11. Suppose given a category C. Let C := Set(©™) denote the functor category
with objects being functors from C°? to Set.

Suppose given a ring R. Let RC = (Mod-R)©*") denote the functor category with objects being
functors from C° to Mod-R.

Definition 1.1.12. Suppose given categories A, B and C and a functor L: A — B.
We obtain a functor L¢: A® — B¢ by setting

LC(F=2=G) = (Lo FE% Lo G)

for F=2=>@G in AC.
We also write Leop := LC.

In this way, we obtain the functor gY¢: Ré —C , cf. convention 37 and definition 1.1.11.

Remark 1.1.13. Suppose given a ring R, a set S and an R-module M.

The set Homsget (S, gL' (M)) carries an R-module structure, where addition and multiplication
are defined pointwise using the R-module structure on M. Note that M and gY (M) are the
same, viewed as sets.

So for f,g € Homge (S, gY(M)), r € R and a € S, we have (s)(f +g) := (s)f + (s)g and
(s)(fr):=(s)f -1
We obtain the functor .777: Set°® x Mod-R — Mod-R by setting

(S, M) := Homge (S, gY (M)) and (f) (o n):=0fu

for (S, M)— """ (T N in Set® x Mod-R and f € Homset (S, #T(M)).

1.2 Yoneda functors

Lemma /Definition 1.2.1.
(a) Suppose given a category C and an object A € ObC.

For C—%B in C, let

YC,A(B) = I—IOH/IC(B7 A)
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and
Vea(fP): Home(B, A) — Home(C, A): b fh.

This defines a functor y. 4: C°? — Set. So yc 4 € Ob C. We call Ye,a the Yoneda functor
of Ain C.

(b) Suppose given a preadditive category C and an object A € ObC. Recall that for B € ObC_,
Home¢ (B, A) is endowed with a Z-module structure, cf. convention 8.

For C’LB in C, let
zYc,A(B) := Home (B, A)
and
zve.a(fP): Home(B, A) — Home(C, A): h— fh.

This defines an additive functor zye 4: C°* — Mod-Z. So zy; 4 € Ob C. We call z¥e.a the
Z-Yoneda functor of A in C.

Moreover, zye 4 preserves kernels.

By construction, we have zYc(zye 4) = zX © zVe a4 = Ye.a , cf. definition 1.1.12.

Proof. Ad (a). Suppose given D—2sCc—sBiinC Forhe Home(B, A), we have

(h)(yea(1%)) =1ph=h
and
(h) Yc,A(fOp) 'YC,A( P) = (fh) ye A( P)=gfh = (h) Yc,A((gf)Op) = (h) Yc,A(fOp90p)7
50 Yea(15) = Lye 48 and ye a(fP) - ye a(9) = yea(fPgP).
Ad (b). Suppose given C——B in C and h, k € Home(B, A). We have
(h+ k) zyea(fP) = f(h+k) = fh+ fk = (h) z5c A(f") + (K) zye.a(f7),
80 z¥e,4(f°P) € Mor(Mod-Z).

The same calculation as in (a) now shows that zy. 4 is a functor. We show that it is additive.

f
Suppose given C’?B in C. For h € Hom(B, A), we have

(h) zye, a(fP +g7) = (h) z¥e.a(

(f+9)®)=(f+9)h=fh+gh
:(h)ZYC,A(f )

(h) zve,4(9%) = (B)(zYe,a(f7") + z¥c.a(97")).
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Thus zye A(f" + 9°°) = 2¥c,a(fP) + 2¥e,a(9°F)-
Suppose given a right-exact sequence 2 9,y X in C. We have to show that the sequence

Homy (X, A) el Homy (Y, A)

zve, a(g°P

) Homy(Z, A)

is left-exact in Mod-Z. The morphism gy 4(f°?) is monomorphic in Mod-Z since f is epimorphic
in A. Moreover, for b € Hom4(Y, A), we have (h) zyz 4(9°") = gh = 0 if and only if there exists
u € Hom 4 (X, A) such that (u) zye 4(f°P) = uf = h since f is a cokernel of g. O

Lemma 1.2.2 (Yoneda).

(a) Suppose given a category C, an object A € ObC and a functor F': C°® — Set. Recall
that Homg(ye 4, F') denotes the set of transformations from y 4 to F.

The map

Yr.a: Home(ye 4, ) — F(A)
o+ (1,4)&,4

is a bijection with inverse

F(A) = Home(ye a, F)

z — (af: Home(B, A) — F(B): f— (2) F(fOP))BGObC.

(b) Suppose given a preadditive category C, an object A € ObC and an additive functor
F: C°° — Mod-Z.

The map

ZIFA" Homzé(ZYC,Aa F)— F(A)
a (1,4)&,4

is an isomorphism in Mod-Z with inverse
F(A) — HomZ@<ZYC,A7 F)
z — (af: Home(B, A) = F(B): f ~ (z) F(fOP))BE%C :
Proof. Ad (a). Suppose given x € F(A). We show that a” := (a}) gecobc is natural.
Suppose given D— B inC. For h € Home(B, A), we have
(h)af - F(f) = (x) F(h*?) - F(f°) = (x) F((fh)*) = (fh)ap = (h) ye (/) - ab,

so ap - F(fP) =yea(fP) - af .

It remains to show that the maps are mutually inverse.
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Suppose given o € Homg(ye 4, F), B € ObC and f € Home(B, A).
We have

(£) alg?™ = (La)aaF (fP) = (1a) yea(f*) as = (f)as
and therefore ala)oa = ¢,
Conversely, suppose given 2 € F(A). We have (14)0% = (z) F(19) = z.
Ad (b). Suppose given z € F(A) and B € ObC. We show that o% is Z-linear.
For f,g € Hom¢(B, A), we have
(f +9)af = (2) F((f + 9)%) = (2) F(f* + g°°) = (x) (F(f) + F(g°"))
= () F(f°) + () F(g) = (f)a; + (9)ah.

The same calculation as in (a) now shows that zyr 4 is a bijection. We show that it is Z-linear.
For o, 8 € Hom,_4(zYe, 4, F), we have

(a+B)gyra = (1a)(a+ B)a= (1a)(aa + Ba) = (la)aa + (14)Ba = (@) zyra + (B) 2yra -
O

Lemma /Definition 1.2.3.
(a) Suppose given a category C. For A € ObC, let y(A) :=yc 4 -

For A— B in C and D € ObC, let (yo(f))p: Home(D, A) — Home(D, B): h+— hf.

Let ye(f) = ((Yc(f))D)DEObci Yea = Ye,B -
This defines a full and faithful functor y.: C — C.

(b) Suppose given a preadditive category C. For A € ObC, let zy-(A) := zy¢ 4 -

For A—'-B in C and D € ObC, let (4yp(f))p: Home(D, A) — Home(D, B): h v hf.

Let zyc(f) == ((zYc(f))D)DGObC3 zYe,A = zYe,B -
This defines a full, faithful and additive functor zy,: C — 2C.

By construction, we have zY¢ o zy, =y .
ve 4
_c.c
zlc

- /4

A

Suppose given AL B2 e

The sequence AL B9 ,C is left-exact in C if and only if the sequence

2o (A) 2 (B)ZXY v (C) s left-exact in zC.
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Proof. Ad (a). Suppose given A—L5B in C. We show that ve(f) is natural.

Suppose given E——D in C. For h € Yea(D) = Home(D, A), we have

(R) (ve(f)p - ye5(g™) = (hf) ye5(9) = ghf = (gh) (yc(f))E
= (h) Yc,A(QOP) ) (Yc(f))E

and therefore (yo(f))p - ve.5(97) = vea(9™) - (ve(f))E -

(ye(F))
Yc,A(D> MYC,B(D)

YC,A(QOP)J/ lYC,B(QOP)
(ye(ME
Yc,A(E) E— YC,B(E)

The functor y, is faithful:

For A—-B and A—2~B in C with ve(f) =ye(g), we obtain
f=014) (ve() 4 = (1a) (vel9) , = 9-

The functor y, is full:

Suppose given a: ye 4 = ye p for A, B € ObC. Write f := (14)aa € ye 5(A) = Home(A, B).
We claim that o = y.(f).

For D € ObC and h € y 4(D) = Home(D, A) we have

(M) (ve())p=hf =h-(La)aa = (La)(aa) - ye s(h) = (La) yea(h*) - ap = (h)ap,
SO ap = (yc(f))D . This proves the claim.

YC,A(A) — YC,B(A)
YC,A(hOp)l lyc,s(h"")

YC,A(D) — YC,B(D)

Ad (b). Suppose given AL B in C and D € ObC. We show that (zye(f))p is Z-linear. For
h,k € Home(D, A), we have

(h+ k) (zve(/))p = (h+ k) f = hf +kf = (h) (zye(f))p + (k) (z5c(f))p -

The same calculation as in (a) now shows that 4y, is a full and faithful functor. We show that
it is additive.
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f
Suppose given A?B in C. For D € ObC and h € Hom¢(D, A), we have

(h) (zve(f +9))p = h(f +9) = hf +hg = (h) (zyc(f))p + (R) (z¥e(9))D
= (h) (zye(f) + z¥e(9))p -

Thus zye(f +9) = zve(f) + zve(9)-

Suppose given AL B2 0 me.

Note that the sequence ZyC(A)ZyC—m>ZyC(B)ZYC—@>ZyC(C) is left-exact in zC if and only if the

sequence

e g ome (X, B) =29 Home (X, O))

is left-exact in Mod-Z for all X € ObC(C.

Suppose that the sequence A—L B9 .0 is left-exact in C. Suppose given X € ObC and
h € Home (X, B) such that hg = (h) (zy:(9))x = 0. Since f is a kernel of ¢ in C, there exists a
unique k& € Home (X, A) such that (k) (zve(f))x = kf = 0.

Thus the sequence Home (X, A)MHomc(X , B)MHomC(X ,C) is left-exact in

Mod-Z.

Conversely, suppose that the sequence ZyC(A)MZyC(B)MZyC(C) is left-exact in zC. Sup-

pose given X —"=B in C such that (h) (zy(9))x = hg = 0. Since (zy¢(f))x is a kernel of
(zve(9))x in Mod-Z, there exists a unique k£ € Home (X, A) such that kf = (k) (zy.(f))x = h.

Thus the sequence AL B2 . is left-exact in C. O]

Lemma/Definition 1.2.4.
(a) Suppose given a category C and an object A € ObC.

For B—C in C, let
y“4(B) := Home (A, B)
and
yoA(f): Home(A, B) — Home(A,C): h+ hf.
This defines a functor y©4: C — Set. We call y“4 the hom-functor of A in C.

(b) Suppose given a preadditive category C and an object A € ObC. Recall that for B € ObC,
Hom¢ (A, B) is endowed with a Z-module structure, cf. convention 8.



27

For B—1C in C, let
2y“(B) := Homc(A, B)
and
2o A(f): Home(A, B) — Home (A, C): h — hf.

This defines an additive functor ,y©*: C — Mod-Z. We call ,y%4 the Z-hom-functor of
Ain C.

Moreover, ,y“4 preserves kernels.

By construction, we have zY¢(zy¢4) = 2zY 0 zy&4 = y&4 | cf. definition 1.1.12.

Proof. Ad (a). Suppose given B—'C—2-C in C. For h € Home(A, B), we have
(h)(y**(1p)) =1ph=h
and
(h) Y& (f) -9 (9) = (hf) 9 (g) = hfg = (h) y**(f9),
so yO4(1p) = lycacp and yo4 (f) - y©4(g) = y©4(fg).
Ad (b). Suppose given B—'—C' in C and h, k € Home(A, B). We have
(h+k)zyS(f) = (h+ k) f = hf +kf = (h) 2y (f) + (k) 2y (F),
s0 zvSA(f) € Mor(Mod-Z).

The same calculation as in (a) now shows that zy©4 is a functor. We show that it is additive.

f
Suppose given B?C’ in C. For h € Hom¢(A, B), we have

(h) 2y (f+9) = h(f +g) = hf +hg = (h) 2y (f) + (R) 2v°"(9)
= (W) (zy*(f) + 25" (9)).

Thus zy54(f + g) = zvSA(f) + zv°2(g).

Suppose given a left-exact sequence X Y97 in C. We have to show that the sequence

c,A c,A

Hom4(A, X) AN Hom4(A,Y) AN Hom(A, Z)
is left-exact in Mod-Z. The morphism zy“*(f) is monomorphic in Mod-Z since f is monomor-
phic in A. Moreover, for h € Homy4(A,Y), we have (h) zy©“(g) = hg = 0 if and only if there

exists u € Homy(A, X) such that (u) zy©4(f) = uf = h since f is a kernel of g. O

Remark 1.2.5. Suppose given an abelian category A and P € Ob.A. The functor ,y*7 is
exact if and only if P is projective in A, cf. convention 31.
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1.3 Adjoint functors

Lemma 1.3.1. Suppose given an additive category .A.

Suppose given diagrams A = (Ag—"—41), B = (Bo—>b Bi) € Ob(A) and an isomorphism
n = (1m0,m) € Hom 4a, (A, B).

(a) Suppose that K—%$—A, is a kernel of a in .A. Then kr is a kernel of b in A.

K —%5 Ag—% A,

nOlN m lN
kno

K—HBOLBl

(b) Suppose that A;—F—C is a cokernel of a in A. Then 7, 'c is a cokernel of b in A.

A0L>A1—?—)C

—1
moc

BoLBl—l—)C

(c) Suppose that the diagram

K —%— A, “ A —=C
J

is a kernel-cokernel-factorisation of a in A. Then the diagram

—1
o €
Il
T

K-, B, b B, C
776}\ /m
is a kernel-cokernel-factorisation of b in \A.
F
Lemma 1.3.2. Suppose given an adjunction Aglg with unit €: 14 = G o F' and counit
G

n: FoG = 1z, cf. convention 43.
(a) If A and B are additive categories, then F' and G are additive functors.

(b) If A and B are additive categories, then F' preserves cokernels and G preserves kernels.
So if A and B are abelian categories, then F is right-exact and G is left-exact.
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(¢) Suppose that A is abelian and B is additive. Suppose that F' preserves kernels and G is
full and faithful. Then B is abelian and, consequently, F' is exact and G is left-exact.

Suppose given YLy inB. Suppose given a kernel k of G(f) and a cokernel ¢ of G(f).
A kernel of f is given by F(k) - ny and a cokernel of f is given by 1y - F(c).
Moreover, the counit 7 is an isotransformation with G(n;!) = eq(y) for Y € Ob B.

Cf. [10, prop. V.5.3] and [13, cor. 16.6.2].

Proof. Write ®xy := <I>§;77Y for X € ObA and Y € Ob B, cf. convention 43.

Ad (a). We want to show that F' is additive.
We have Homg(F(04), F(04)) = Hom4(04, (G o F)(0,4)) in Set via Pg, p( ,)-

Since 04 is a zero object in A, both sets contain precisely one element. So 1p(,) = Op(,) and
therefore F(04) = 0p .

For X € ObA and Y € Ob B, we have

(0px)y) Pxy = Opx) - Opx)y) Pxy = (F(0x) - Opx)y - 1y) Pxy

=0x - (Opx)y) Pxy - Loy = Ox.aov)

Suppose given X, X’ € Ob.A. Write i := L{(’X/, j o= Lf’X/, p = pf’X/ and ¢ := p;" . So

j J
X#X &5 X’?X’ is a direct sum in A, cf. convention 15.

It suffices to show that (?8) F(X) @ F(X') — F(X @ X') is epimorphic, cf. lemma 1.1.3.

Suppose given F(X & X')——=Y in B with 0 = <§((;))> = (11:((;))2>

We have
0 = (0) (I)X,y = (F(Z) . u) CI)X’Y = Z . (u) CI)X@X’,Y
and similarly

0 = (0) (I)XI,Y = (F(j) . U) (I)X’,Y = j . ('U/) (I)XEBX’,Y-

So (]‘) - (u) Pxaxy = 0 and thus (u) Pxexy = 0 = (0) Pxex/y. Therefore u = 0 since

®xgxy 1s a bijection.

We conclude that F' is additive. Dually, G is also additive.

Ad (b). We want to show that F' preserves cokernels.

Suppose given a morphism X X' in A with cokernel X'—¥—C.
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Suppose given F(X')—=T in B with F(f)-t=0.

We have f - (t) Px 7 = (F(f) -t) ®x71 = (0) Dx 1 = 0. Since ¢ is a cokernel of f, there exists
C——=G(T) in A with (t)Px/7=c-u.

We have

(F(c) - (u) (IDE}T) Oxip=c- ((u) (IDE}T) Qor=c-u=(t) Pxr
and therefore F(c) - (u) @y = t.
It now suffices to show that F'(¢) is epimorphic.
Suppose given F(C)——=Y in B with F(c)-v = 0.
We have

c-(v)Pey = (F(c) - v)Pxy =(0)@xy =0.

Since ¢ is epimorphic, we conclude that (v) @y =0 = (0) Pcy. So v = 0.

Dually, GG preserves kernels.

Ad (c).
We claim that the counit 7 is an isotransformation.

Suppose given Y € ObB. Since G is full, we may choose YL(F o G)(Y) in B such that
G(f)=¢caw): GY) = (Go FoG)(Y).

We have
G(fny) =ecr) Gny) = law) = G(ly).

Since G is faithful, we conclude that fny = 1y .
We have

ny [ = (FoG)(f)nwrec)v) = Fleaw)) nrec)v) = Liroa)v)-
So my is an isomorphism with inverse f. This proves the claim.
Suppose given y—L.v"in B.
We will use the fact that (Y—f>Y’) and ((Fo G)(Y)M(F o G)(Y")) are isomorphic
in Ob(B21) via (ny, ny).
Since A is abelian, the morphism G(f) has a kernel-cokernel-factorisation as follows.

G(f)
) &
I—=-J
f

K—4$5G(Y V') ——C




31

The functor F' preserves kernels by assumption and cokernels by part (b). So the diagram

(k) (FoG)(f) F(c)

F(K)—= (FoG)(Y) (FoG)(Y')—=F(C)
F(p) %
F(I) ﬁF(J)

is a kernel-cokernel-factorisation of (F'o G)(f) where the induced morphism F'(f) is an isomor-
phism.

By lemma 1.3.1.(c), the morphism f also has a kernel-cokernel-factorisation where the induced
morphism is an isomorphism.

Moreover, a kernel of f is given by F(k) -y and a cokernel of f is given by 1y - F(c). Cf.
lemma 1.3.1.(a,b).

We conclude that B is abelian. ]

1.4 Direct limits

Definition 1.4.1. A non-empty category Z is called filtering if it satisfies the following two
conditions.

(F1) For i,j € ObZ, there exist (i——k), (j—p>k) € MorZ.

(F2) For a diagram

in Z, there exist (k%ﬁ), (k’L%) € MorZ such that oA = ¢’\ and 7A = 7'\,

AN
N

l

S

o_/

/

o
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Definition 1.4.2. Suppose given a filtering category Z and a category C. A functor A: Z — C
is called a system over Z in C.

We usually write A; := A(7) for i € ObZ and a, := A(o) for o € MorZ.

Suppose given systems A, B: Z — C. A transformation £: A = B is called a morphism of
systems.

Lemma 1.4.3. Suppose given a non-empty poset category I. Then [ is filtering if and only if
(F1) holds.

Proof. 1f I is filtering, then (F1) holds by definition.

Conversely, suppose that (F1) holds. For i,j € Ob [, write i < j if (i—j) € Mor I.

/ ]T

i J

\ g,
in [ translates to ¢ < k, 7 < k, ¢ < k' and j < k. We may choose ¢ € Ob [ with & < ¢ and
k' < ¢ by (F1). Soi < ¢ and j < ¢ by transitivity. Since moreover morphisms between fixed

A diagram

objects in I are unique, we conclude that (F2) holds. O

Definition 1.4.4. Suppose given categories Z and C. Suppose given M € ObC. We obtain
a constant functor C]IV’[C: Z — C by setting Cﬁc(z’) := M for i € ObZ and Cf;[c(a) := 1, for
o € MorZ.

Definition 1.4.5. Suppose given a filtering category Z and a category C. Suppose given a
system A over Z in C and M € ObC. A morphism of systems £: A = Cff is called a
compatible family for A. So & = (&;)iconz such that a,&; = §; for i—"—j in Z.

Definition 1.4.6. Suppose given a filtering category Z and a category C. Suppose given a
system A over Z in C. Suppose given L € Ob(C and a compatible family w: A = Cf’c for A.

The pair (L,w) is called a direct limit of A if for each M € ObC and each compatible family
A= Cgf for A, there exists a unique morphism (L—“>M ) € Mor C such that w;u = &; for
1€ 1.
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Lemma/Definition 1.4.7. Suppose given a filtering category Z.

(a)

Suppose given a system A over Z in Set.

For (x,4),(y,7) € Ueonz Ar = Useonz(Ae X {£}), let (x,i) ~ (y,j) if there exist
(i—”>k;), ( j%k) € MorZ such that za, = ya,. This defines an equivalence rela-
tion on | e,z A Let lim A := (Lseonz Ae) /~ denote the factor set. Let [z, i] denote
the equivalence class of (z,7) € | |,cqp 7 Ar-

Let w: A; — lim A: 2 — [z,i] for i € ObZ.

VA

This defines a compatible family w? = (W#)icobr: A = Chgj for A. Moreover,

(liny A, w?) is a direct limit of A.
Suppose given a ring R. Recall that g : Mod-R — Set denotes the forgetful functor, cf.
convention 37.

Suppose given a system A over Z in Mod-R. We use the construction in (a) and define an
R-module structure on the set hgn( rIoA) as follows and denote the resulting R-module by
lim A. So @(RTOA) and lim A are the same, viewed as sets, i.e. RT(liAq A) = hﬂ(RToA).

For [z,i],[y,j] € lim A, we may choose (i—g>k),(j—p>k) € MorZ by (F1). Let
[z,4]+[y, j] := [xa,+ya,, k]. This definition is independent of the choice of representatives
and of the choice of ¢ and p.

For r € R and [z,i] € lim A, let [x,i]r := [zr,i]. This definition is independent of the
choice of representatives.

The maps w;! := WA A; — li%wA are R-linear for ¢ € ObZ and we obtain a compatible

1

family w? = (w)iconz: A = C% gd'R for A. Moreover, (hﬂ A, w?) is a direct limit of A.

Proof. Ad (a). Write U := | |,c, 7 Ae-

We show that ~ defines an equivalence relation.

Suppose given (z,7) € U. The identity on i shows that ~ is reflexive.

By definition, ~ is symmetric.

Suppose given (z,7), (y, ), (z,p) € U with (z,7) ~ (y,j) and (y,j) ~ (z,p). We may choose
(i%k), (jiﬁc), (j L 6), (p u 6) € Mor 7 such that za, = ya, and ya, = zay.

For the diagram

p

/1
N



34

in Z, we may choose (k—)‘>m), (E—M>m) € MorZ such that pA = nu by (F2).
We obtain
Ty = TAeQx = YQpax = Ylpx = Ylp, = Yapa,, = 2090, = 20y,
so (z,i) ~ (z,p) and therefore ~ is transitive.
We show that w is a morphism of systems and therefore a compatible family for A.

Suppose given i——j in Z and x € A;. We have (za,, j) ~ (x,1) since (zao)ar, = (vas)1a, =

za,. Therefore za,w; = [xay, j] = [z,i] = 2w;. S0 a,w; = w;.
We conclude that w? is a morphism of systems.
It remains to show that (hg A,w?) is a direct limit of A.
Z,Set

Suppose given M € Ob(Set) and a compatible family £: A = C;7°".

For u: @A — M with wyu = & for i € ObZ, we necessarily have z§; = zw;u = [z,i]u for
T € AZ

Therefore, let u: lim A — M: [z,1] — x&. This is a well-defined map since in case [z,i] =

ly,]] € lim A, we may choose (i—==k), (4 4 k) € MorZ such that za, = ya, and obtain
r&; = Tae&k = Ya,p = Y& .

Suppose given i € ObZ and x € A;. We have xw;u = [z, i]u = x&;, so wu = &;.

We conclude that (hgl A,w?) is a direct limit of A.

Ad (b). Suppose given [z,i] = [¢',7], [y, j] = [y, j]] € lim A and r € R.

/

So there exist (i—=(), (/—2=0), (j 0 ), (j’i%’) € MorZ with za, = 2'a, and
yag = y'ag.

Suppose given (z—”>k), (i'Lﬂ{:’), (j#k;), (j’Lk’) € Mor 7.
We want to show that [za, + ya,, k| = [va, + ya,y, k'] and that [zr,i] = [2'r,].

By (F1), we may choose (E—’\>m), (E’Lﬂn) € MorZ.

v
N

m

For the diagram

1
BN

@
|

in Z, we may choose (k‘Lm), (mLm) € MorZ such that oy = aAd and py = BNJ by

(F2).
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'\
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n
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in Z, we may choose (k' : p), (n ¢ p) € Mor Z such that o’ = o/A0¢ and p'e = '\ ¢ by

(F2).
Using kLp and k'—=—p in Z, we obtain

(Tar + yap)aye = Tagy¢ + Yapyc
= ZAarsp + Yaprs¢
= XQaQx5p + Yagaysc
= 2'agans, + Y'agays
= 2'awrsp + Y apnsc
= 2'ansp + Y ag v
=25 + Y ay.

(2'ag +y'ay)ac.

So [za, + ya,, k| = [za, + ya,y, K]

/

Using kv—gm and k'—=—p in Z, we obtain
(xr)ag = xaq -7 =2'ap -7 = (2'1)ay

So [xr,i] = [2'r,7].

We verify the axioms for R-modules.
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Note that since Z is non-empty, there exists an object i € Z. We have [0,:] = [0, j] for all
j € ObZ since we may choose (z—oﬂc), (jiﬂc) € MorZ by (F1) and obtain Oa, = 0 = 0Oa,.

Suppose given [z, 1], [y, ], [z, {] € hﬂA. We may choose

in Z by (F1).
Suppose given r, s € R.
We have

(2,4 + [y, 7] = [za, + ya,, k| = [ya, + za,, k| = [y, j] + [z, ],
[z, 1] + [0,1] = [zay, + Oay,,i] = [z,1],
(2,4 + [—x,i] = [zar, — xay,,i] = [0,1],

([ZL‘, Z] + [yaj]) + [2, ﬂ = [l‘aa + Yyap, k] = [(JZCLU + yap)a)\ + 2y, m] = [xaa)\ + Yapy + ZQy, m]
= [wapx + (ya,n + za,)an,,, m] = [z,i] + [ya,n + za,,m]

= [ZL’,Z] + ([y,j] + [Z,f]),
[z,i]lg = [x1Rg,i] = [z,1],
([x,i]r)s = [xr,i]s = [(xr)s,i] = [x(rs),i] = [z,i](rs),

([z, i + [y, jDr = [vac + ya,, klr = [(zas + ya,)r, k] = [(zr)as + (yr)ae, k] = [xr,i] + [yr, j]
and

[z,8)(r 4+ s) = [x(r + s),i] = [ar + xs,i] = [(xr)a, + (x8)ay,,i] = [zr,i] + [zs, ]

= [z, d]r + [z, 1]s.

The maps w;* are R-linear by definition. The calculation in (a) shows that w” is a compatible
family for A.
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It remains to show that (lim A,w?) is a direct limit of A. We adapt the proof in (a) for

given M € Ob(Mod-R) and a compatible family ¢: A = CTM°™ It remains to verify that
u: lim A — M: [x,i] — x&; is an R-linear.

Suppose given [z, ], [y, j] € lim A and r € R. We may choose (i—=k), (jL)k) € MorZ by
(F1).

We have
([z d]r)u = [zr,iJu = (zr)§ = (x&)r = ([z,i]u)r

and

([.l’, Z] + [yv.]])u = [xaa + Yyap, ]{Z]U - (CL’CLU + yarh0>§k - xaogk + yapgk = Ifz + ygj
= [, iu + [y, jlu. O

1.5 Exact categories

Definition 1.5.1. A pair (A, £), where A is an additive category and & C Ob(A%2) is a set
consisting of short exact sequences of A, is called an exact category if the following axioms
(E1-7) are satisfied.

Let
Em = {(ALB) € Mor A: there exists (BLC) € Mor A

such that (ALBLC’) € 5}
and let

E = {(BLC) € Mor A: there exists (ALB) € Mor A

such that (ALBLC’) € 5}.

(E1) Suppose given S,T € Ob(A%2). If S € £ and S 2T in A*?, then T € £.
(E2) For A € Ob A, we have 14 € &, .
(E3) For A € Ob A, we have 14 € &, .
(E4) For f, f' € En, we have ff' € &, .
(E5)

E5) For g, g € &, we have g¢’ € &, .
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(E6) Suppose given a diagram

ALB
4
C

in A with f € £, . Then there exists a pushout

ALB

g !
ng

in A with f' € &, .
(E7) Suppose given a diagram

C
Jg
AL.pB

in A with f € & . Then there exists a pullback

in A with f' € &, .

A short exact sequence S € & is called £-pure or just pure if unambiguous.

A monomorphism f € &, is called £-pure or just pure if unambiguous. In diagrams, we often
denote pure monomorphisms by A48

An epimorphism g € &, is called £-pure or just pure if unambiguous. In diagrams, we often
denote pure epimorphisms by B—-C.

We also say that A is equipped with the exact structure £ if (A, £) is an exact category.

We write A = (A, £) if unambiguous.

Remark 1.5.2. Suppose given an exact category (A,€). We obtain an exact category

(AP E°P) if we let £°P consist of the short exact sequences 2B A in A°P where

(A—1sB—sc) e€.
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Definition 1.5.3. Suppose given exact categories (A,€) and (B,F). An additive functor
F: A — Bis called (€, F)-exact if we have F(S) € F for S € £. We shortly say that F' is
exact instead of (&, F)-exact if unambiguous.

We say that F' detects (€, F)-exactness if F(S) € F implies S € £ for a sequence S € Ob(A%2).
We shortly say that F' detects exactness instead of (&€, F)-exactness if unambiguous.

Definition 1.5.4. Suppose given an additive category A. Let éjpht consist of the split short
exact sequences in A. Then (A, Si{)ht) is an exact category and we call Ej{)ht the split exact

structure on A.

Remark 1.5.5. Suppose given an additive category A and an exact category (B,F). Every
additive functor F': A — B is (EF™, F)-exact.

Definition 1.5.6. Suppose given an abelian category A. Let £3' consist of all short exact

sequences in A. Then (A, £3) is an exact category and we call £4' the natural ezact structure

on A. We equip an abelian category with the natural exact structure unless otherwise stated.

Definition 1.5.7. Suppose given an exact category (A,E), an abelian category B and an
additive functor F': A — B.

The functor F is called £-ezact or just exact if it is (£, EgY)-exact.
The functor F' is called E-left-exact or just left-exact if F'(S) is left-exact for S € £.
The functor F is called E-right-ezact or just right-exact if F'(.S) is right-exact for S € £.

The functor F is said to detect €-exactness or just exactness if it detects (£, £al)-exactness.

Definition 1.5.8. Suppose given an exact category (A,E), an abelian category B and an
additive functor F': A — B.

The functor F is called an E-immersion if it is full, faithful, £-exact and detects £-exactness.
Moreover, we call an E-immersion F' closed if the essential image Imeg(F') of F' is closed under
extensions.

We shortly say that F'is an immersion instead of an £-immersion if unambiguous.

Definition 1.5.9. Suppose given an exact category (A,€) and an object P € Ob.A. We
say that P is E-relative projective if the functor ,y**: A — Mod-Z is £-exact, cf. defini-
tion 1.2.4.(b). We shortly say that P is relative projective instead of E-relative projective if
unambiguous.

The dual of an (E-)relative projective object is called an (€-)relative injective object.

Definition 1.5.10. Suppose given an exact category (A, E).

(a) We say that A has enough E-relative projectives or just enough projectives if for each
object A € Ob A, there exists an £-relative projective object P € Ob A and an £-pure

epimorphism P—Y5A i A
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(b) We say that A has enough E-relative injectives or just enough injectives if for each ob-
ject A € Ob A, there exists an E-relative injective object M € Ob.A and an E-pure
monomorphism A—%—=M in A.

Lemma 1.5.11. Suppose given an exact category (A4, E).

(a) Suppose given pure epimorphisms P—Y A and Q—?—>B in A.
Then (8 2) : P®Q — A® B is purely epimorphic as well.

(b) Suppose given pure monomorphisms A—+—M and B—s—N.
Then (79%): A® B — M @ N is purely monomorphic as well.

Proof. Ad (a). The diagram

(1)

PoQ—2AdQ

w o ®

P—t+—— A

is a pullback by the kernel-cokernel-criterion lemma 1.1.2.(a). By (E7), the morphism (£ 9) is
purely epimorphic.

Similarly, the diagram

Q—+——B
is a pullback by the kernel-cokernel-criterion lemma 1.1.2.(a). By (E7), the morphism (§J) is
purely epimorphic.
Therefore the composite (f)’ 2) ((1) 2) = (‘8 2) is purely epimorphic.

Ad (b). This is dual to (a). O

Proposition 1.5.12. Suppose given an abelian category B. Suppose given a full additive
subcategory A of B that is closed under extensions.

Let £ C Ob(A”2) be the set of short exact sequences in B whose objects lie in A. So elements
of £ are short exact sequences (ALBLC’) in B with A, B,C € Ob A.

Then (A, £) is an exact category.

Proof. Note that if a sequence (ALBLC’ ) in A is short exact in B, then it is short exact
in A as well.
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Note that A contains the zero objects of B since it is a full additive subcategory closed under
isomophisms.

We verify the axioms (E1-7).

(E1) Suppose given S,T € Ob(A??) with S = T. If S is short exact in B, then T is short

(E2)

(E3)
(E4)

(E5)

(E6)

exact in B as well.

The sequence (Ainél—ﬂ)) is short exact in B, so 14 € &, .

The sequence (0—>AL>A) is short exact in B, so 14 € &, .

Suppose given f, f' € £, . Cokernels of ff’ lie in A since A is closed under extensions,
cf. lemma 1.1.1.

Suppose given g,¢" € &, . Kernels of g¢’ lie in A since A is closed under extensions, cf.
lemma 1.1.1.

Suppose given a diagram

A—J:—>B
g

C
in A with f € £, . Choose a pushout

A

g

C

B

!

D

Q

f
— e
|
—
f/

in A. Then f’ is a monomorphism with cokernel in A by lemma 1.1.2.(b). Since A is
closed under extensions, we conclude that ' € &, .

Suppose given a diagram

Q

<—
Q

i:

A
in A with f € & . Choose a pullback

DLC’

l r

g g
f

A—+— B

in A. Then f’ is an epimorphism with kernel in A by lemma 1.1.2.(a). Since A is closed
under extensions, we conclude that [’ € &, .



42

Proposition 1.5.13 (Obscure axiom). Suppose given an exact category (A, E).

(a) Suppose given AL B2 in A Tt f has a cokernel and fg is purely monomorphic,
then f is purely monomorphic.

(b) Suppose given ALB 20 in A T g has a kernel and fg is purely epimophic, then
g is purely epimorphic.

Proof. See [2, prop. 2.16]. O

1.6 Homologies and exact functors

Suppose given an abelian category B.

Definition 1.6.1. Suppose given a sequence X Ty Y7 in B. A commutative diagram
x—1!r y_ ¢ Z
k c
¢ d
K L D C
A
H

in B is called a homology diagram of XLy 9.7 in Bif kis a kernel of f, £ is a kernel of

g, d is a cokernel of f, ¢ is a cokernel of g and L—2%5H-24D is an image of /d in B.
Remark 1.6.2. Suppose given a sequence X Y7 in B and homology diagrams

A
T

and

/ /\ AN
\/
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of X1y 9.7 By the universal properties of kernels, cokernels and images, the diagrams
are isomorphic. In particular, we obtain K 2 K', H = H' and C = C" in B.

Also note that there exists a homology diagram of X Ty 9.7 since B is an abelian cate-
gory.

Definition 1.6.3. Suppose given a sequence x4 .7 B

The sequence X Iy 2.7 is called semi-ezact in B if there exists a homology diagram

TN
N, A

of XLYLZ such that H = 0 in B.

Lemma 1.6.4. Suppose given a sequence xLov 4.7 inB

The sequence X Y947 is exact if and only if it is semi-exact with fg = 0.

Some use the term exact in the middle for what we call exact, cf. convention 33.

Proof. Suppose that X L.y .7 is exact. Choose a kernel K—5-X of f and a cokernel
Z—%—=C of g. Choose an image X5 L—45Y of f and an image Y—45D—%.7 of g. The

sequence L—5Y —%5D is short exact and thus the diagram
x—1 .y L Z
k c
¢ d
K L /D C
05

is a homology diagram of X Ly 27 in B. So XLV 2.7 is semi-exact. Moreover,

we have fg = uldv = 0.

Suppose that XL v .7 is semi-exact with fg=0.
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So we may choose a homology diagram
X—7r sy Z
k c
¢ d
K L /D C
05

of XL)YLZ in B. Note that ¢d = 0.

Lemma 1.1.1 yields morphisms X —*—L and D—"—Z in B such that the diagram

L—>D

1
5 Z
C
commutes and such that the sequence K Lk 2D +7-—1 7 is exact. Thus u is

epimorphic and v is monomorphic.

We conclude that X — V247 is exact since X—¥—+L—%-Y is an image of f,

Y—45D—%57 is an image of g and L—5Y %D is short exact. O

Lemma 1.6.5. Suppose given a sequence XLy .7 in B such that fg = 0 and a ho-

mology diagram
X ! Y g Z
k c
¢ d
K L D C
A
H

of XLYLZ in B

The sequence XLYLZ is short exact if and only if K =2 05, H = 0z and C' = 03 in B.

Proof. Suppose that X .y % .7 is short exact. Then K = Op since f is monomorphic

and C' = 0 since g is monomorphic. Since X Ly Zisin particular exact, lemma 1.6.4
yields that H = 05 .
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Conversely, suppose that K =2 0z , H = 0 and C = 05 .

By loc. cit., the sequence X .y 9,7 is exact. Since K = O , we may choose the image
X—tax—doy of f. Since C' = 0 , we may choose the image Y7457 of g. We
conclude that X~ Y27 is indeed short exact. O

Corollary 1.6.6. Suppose given an additive category A and an additive functor F': A — B.

Suppose given a sequence X L>YL>Z in A such that fg = 0 and a homology diagram

X)) — " pyy 19

v

—F(2)

AN
e

)F(g)

of F(X)2pvy 29 1 (2) in B.

F(f) F(g)

The sequence F(X)
C= OB in B.

F(Y) F(Z) is short exact if and only if K = 05 , H = 0p and

Corollary 1.6.7. Suppose given an exact category (A, ) and an additive functor F': A — B.

The functor F'is £-exact if and only if for all pure short exact sequences (X Ly 1.z ) eé,
there exists a homology diagram

F(

Ea /T\
S A

F(f)

F(Y) F(g)

of F(X) F(Z) in B such that K =05, H =2 0g and C = 05 .

Lemma 1.6.8. Suppose given an abelian category A and an exact functor F': A — B.
The functor F' preserves homology diagrams. More precisely, we have the following statement.

Suppose given a sequence X iy ' Zin A and a homology diagram
x— 71 Ly g Z
k c
¢ d
K L D C
oA
H
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of X vz A.

Then the diagram

(k) F(c)
£(0) F(d)
F(K) F(L) (D) F(C)
N
F(H)
is a homology diagram of F(X)ﬂF(Y)MF(Z) in B.

Proof. This follows from the fact that an exact functor between abelian categories preserves
kernels, cokernels and images. O]

Corollary 1.6.9. Suppose given an abelian category A and an exact functor F': A — B.

Suppose given a sequence X oy Y ZinAand a homology diagram

SN
B

of X vz A.

(a) The sequence F(X)ﬂF(Y)MF(Z) is semi-exact if and only if F'(H) = 0z in B.
(b) Suppose that fg =0 in A. The sequence F'(X) ) F(Y) 19) F(Z) is short exact if and

only if F(K) =0, F(H) = 0g and F(C) = 0 in B.

Definition 1.6.10. Suppose given an exact category (A, €E) and a sequence X L>YL>Z

in A.

A commutative diagram

NN
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in A is called an E-purity diagram of X vy ! Zin A if

(K—4-X—=L), (L—=Y—{5D), (D3%+2—-C) € €.

The sequence X Ly 7 is called E-pure exact if there exists an E-purity diagram of
XL vz in A

We say pure exact instead of E-pure exact and purity diagram instead of E-purity diagram if
unambiguous.

Lemma 1.6.11. Suppose given an exact category (A, €) and an E-exact functor F': A — B.

Suppose given a sequence X L>YL>Z in A.

Suppose given an £-purity diagram
x—"r Ly Z
k c
e ¢ d m
K L D C

of XLYL)Z in A.

Then the diagram

F(k) F(c)
F(6) F(d)
F(K) F(L) F(D) F(C)
S A
05
is a homology diagram of XLy 7inB
In particular, if XLy .7 s E-pure exact, then F(X) il F(Y) o) F(Z) is exact in

B.

Proof. The morphism F (k) is a kernel of F'(e) since F' is E-exact. Note that F(e)F(¢) = F(f)
and that F'(¢) is monomorphic since F' is E-exact. Thus F(k) is also a kernel of F/(f). Similarly,
F(¢) is a kernel of g. Dually, F(c) is a cokernel of F(g) and F(d) is a cokernel of F'(f).

Moreover, we have F(¢)F(d) = F(¢d) = F(0) = 0. O



Chapter 2

Sheaves

2.1 Sieves

Suppose given a category .7 .

Example

For the sake of illustration, we want to show how sheaves on topological spaces fit into the picture
of the general theory of sheaves on sites. Throughout this chapter, we translate the general terms
into the language of topological spaces in centered paragraphs like this. None of this will be
relevant to the general theory. The arguments in this illustration are often only sketched.

Suppose given a topological space X in the centered paragraphs throughout this chapter. We
consider the poset .“x of open subsets of X as a category.

Suppose given open subsets V C U C X. We write 13: V' — U for the inclusion morphism. Every
morphism in .#x is of this form.

Definition 2.1.1. Suppose given an object A € Ob.¥. A subset S C Mor.? is called a sieve
on A if the following two conditions hold.

(S1) We have cod(f) = A for f € S, cf. convention 3.
(S2) Suppose given c—2sBLsAin2 It f €8S, then gf € S.
The set of sieves on A is denoted by Sieves(A).

Example (cont.)

Suppose given an open subset U C X. For an open subset V' C U and a sieve S on U, we identify
the inclusion i{} with V itself, i.e. we often write V € S instead of i{} € S.

So a sieve on U is a set S of open subsets of U, such that given V' € S and an open subset W C V|
we have W € S.

Informally speaking, sieves are closed under taking open subsets.

48
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Lemma /Definition 2.1.2. Suppose given an object A € Ob.7.
We call max(A) := {f € Mor.?: cod(f) = A} the mazimal sieve on A.

The subset max(A) C Mor.¥ is in fact a sieve on A.

Proof. By definition, we have cod(f) = A for f € max(A). So (S1) holds. Suppose given

C—B—L A in.7 with f € max(A). We have cod(gf) = A and therefore gf € max(A).
So (S2) holds. .

Lemma/Definition 2.1.3. Suppose given an object A € Ob.¥ and a sieve S on A.
For B—1A in <, we set

f7(S) :={g € Mor.: cod(g) = B and gf € S}.
The subset f*(S) C Mor. is a sieve on B, called the inverse image of S along f.

Proof. By definition, we have cod(g) = B for g € f*(S). So (S1) holds.

Suppose given D—"+C—>B in .7 with g € f*(S). We have cod(hg) = B. Since S is a sieve
on A and since gf € 5, we conclude that (hg)f = h(gf) € S and therefore hg € f*(S). So
(S2) holds. O

Example (cont.)
Suppose given an open subset U C X and a sieve S on U.

For an open subset V C U, we have (i,)*(S) = {W CV: W € S}.

Remark 2.1.4. Suppose given an object A € Ob.¥ and sieves S, S" on A with S C S’. Suppose
given B——A in .. Then f*(S) C f*(S").

Proof. For (C’LB) € f*(S), we have gf € S C 5", s0 g € f*(95). O

Remark 2.1.5. Suppose given an object A € Ob.¥ and a sieve S on A.
For C—~+B—1 A <, we have (¢gf)*(S) = g*(f*(9)).

Proof. For h € (gf)*(S), we have hgf € S, so hg € f*(S) and, consequently, h € g*(f*(S)).
For h € ¢g*(f*(S)), we have hg € f*(S), so hgf € S and, consequently, h € (gf)*(5). ]

Lemma/Definition 2.1.6. Suppose given B A in.#. Let
Sy := {g € Mor.?: there exists h € Mor.# such that g = hf}.

We call Sy the sieve generated by f. The set Sy is in fact a sieve on A.
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Proof. By definition, (S1) holds. For D——+C—"%B in .7, we have k(hf) = (kh)f. So (S2)
holds as well. H

Lemma/Definition 2.1.7. Suppose given an object A € Ob.¥ and a sieve S on A.
Let

FS(B) =5N HOHIy(B,A)
and let

Fg(fOP)Z Fs(B) — Fs(C) h— fh

for CLB in .7.

This defines a subfunctor Fg: #°P — Set of the Yoneda functor y 4 , cf. definitions 1.1.10
and 1.2.1.

Proof. Suppose given C—LsBin.7andh e Fs(B). Then fh € S since S is a sieve. Therefore
Fg(f°P) is well-defined.

So Fs is a subfunctor of y, 4 by definition. O
Remark 2.1.8. Suppose given an object A € Ob.. Then Faxa) = Yy 4 -

Lemma /Definition 2.1.9. Suppose given an object A € Ob.% and sieves S, S on A with
SC¥s.

Let (¢3)p: Fs(B) = Fs/(B): h+ h for B € Ob.7.

This yields a transformation 13 := ((Lgl)B)BeObY: Fg = Fo .

ax(

Moreover, let tg 1= tg Y. Fy = VoA -

Proof. For C—L3Bin.# and h € Fs(B), we have

(h) Es(f?) (:3)c = (fh) (i§)e = fhi=f-(h) (:§ ) = (B) (:3 ) Fs:(fP). O
Remark 2.1.10. Suppose given A € Ob.¥ and sieves S,5’,S” on A with S C 8" C S”. Then
S/ S// S//
LS LS/ == LS .

2.2 Sites and sheaves

Suppose given a ring R, cf. convention 36.

From after definition 2.2.1 on, we will suppose given a site . = (., J).
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2.2.1 Definitions

Definition 2.2.1. Suppose given a category .. A tuple J = (Ja)acon.» with J4 C Sieves(A)
for A € Ob.¥ is called a Grothendieck topology on . if the following three conditions hold.

(G1) We have max(A) € J4 for A € Ob.7.

(G2) Suppose given B—LiAin.o ForSe Ja , we have f*(S) € Jp .

(G3) Suppose given A € Ob.¥ and S € J4 . Suppose given a sieve T on A such that f*(T') € Jg
for (BL)A) €S. Then T € Jy .

The set Jy is called the set of coverings of A for A € Ob.. We say that S covers A (or that
S is a covering of A) if S € J, for A € Ob.¥.

A tuple (&, J) consisting of a category .# and a Grothendieck topology J on .7 is called a
site. We often abbreviate . = (., J) if unambiguous.

For a way to obtain Grothendieck topologies in practice, see section 2.2.4.

Example (cont.)

For an open subset U C X, let the set of coverings Jy; of U consist of sieves S on U with | S =U.

We want to show that (.x,J) is a Grothendieck topology.

(G1) For an open subset U C X, we have max(U) = {V C U: V open}. So |Jmax(U) = U and
therefore max(U) € Jy .

(G2) Suppose given open subsets V C U C X and a covering S of U.
We have (iV)*(S) ={W CV:WeS}={WnV:W eS8}
So UG () =UW' nV: W' e S} = (U{W': W € S})NV =UNV =V and therefore
(iy)*(S) € Jv .

(G3) Suppose given an open subset U C X and a covering S of U. Suppose given a sieve T on U
such that (i¥)*(T') covers V for each V € S. We have to show that T" covers U.
For each V € S, we have V = ()" (T) = U{WnV: WeT}CU{W: WeT} =UT.
Thus U=US={VCU:VeSCUTCU.
We conclude that YT =U and thus T € Jy .

Suppose given a site . = (., J) for the remainder of this section 2.2.

Definition 2.2.2.

(a) A functor P: .#°? — Set is called a presheaf on ..
The functor category .7 := Set”™") is called the category of presheaves on ..

(b) A functor P: .#°? — Mod-R is called an R-presheaf on ..
The functor category z.7 := (Mod-R)"”*") is called the category of R-presheaves on .7

Cf. definition 1.1.11.
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Definition 2.2.3. Suppose given an object A € Ob.¥ and a covering S € Jy4 .

(a) Suppose given a presheaf P on .. A transformation £: Fg = P is called a matching
family for P on S in ..

So €5 P(f°P) = Fy(fP) éc for C—'—B in 7.

(b) Recall that gY: Mod-R — Set denotes the forgetful functor, cf. convention 37. Suppose
given an R-presheaf P on .. A matching family for g o P on S in . is called a matching
family for P on S in ..

Definition 2.2.4. Suppose given an object A € Ob.¥ and a covering S € J4 . Suppose given
a presheaf P on .. Suppose given a matching family £: Fg = P for P on S. A transformation
C: Yy a = P with 15¢ = ¢ is called an amalgamation of &.

Fg— > . p

‘| /

Y. A

So ¢ P(f) = vy 4(f?) (o for C—LB in .7

vy 4(B) <2 P(B)

¥, A<f°p>l lP(f"P)
¢
¥z,4(C) == P(C)

Cf. also remark 2.2.6.

Remark 2.2.5. Suppose given an object A € Ob.% and a covering S € J4 . Suppose given
an R-presheaf P on ..

Note that a matching family £ for P on S in .¥ is a matching family for g o P on S in .% by
definition, so we can speak of an amalgamation of £, being a transformation ¢: y, 4 = gl o P
such that tg( = &.

Remark 2.2.6. Suppose given an object A € Ob.¥ and a covering S € J, . Suppose given a
presheaf P on .. Suppose given a matching family & for P on S.
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By the Yoneda lemma 1.2.2, we have the bijection vp4: Hom ;(yy 4, P) = P(A): ¢ = (14)Ca

Under this bijection, the amalgamations of & correspond to the elements x € P(A) with

() P(f*®) = (/)¢ for (B——A) € 8.

We will use this correspondence from now on usually without comment.
So we will identify an amalgamation ¢ of & with (14)(a € P(A).

Proof. Suppose given ¢ € Hom ;(yy 4, P).
For (BLA) € S, we have

(vp.a(Q)) P(f7) = ((14)Ca) P(fP) = (1a)(Ca P(f*)) = (1a) (¥, a(f?) C8) = ()C -

So if 15 ¢ =&, then (ypa(C)) P(f?) = (f)¢s = (f)(ts ()p = (f)&p for (BLA) €es.
Conversely, if (yp4(C)) P(f?) = (f)¢p for (B——=A) € 5, then
(f)es Qs = (f)Cs = (vpa(Q)) P(f") = (f)ép

for (BLA) € S and, consequently, ts( = £.

Definition 2.2.7.

(a) A presheaf P on .7 is called separated if for each matching family £ for P on each covering
of each object in ., there exists at most one amalgamation of .

(b) An R-presheaf P on .7 is called separated if for each matching family & for P on each
covering of each object in .7, there exists at most one amalgamation of .

Definition 2.2.8.

(a) A presheaf P on . is called a sheaf on .7 if for each matching family ¢ for P on each
covering of each object in ., there exists a unique amalgamation of &.

The full subcategory 7 of .% whose objects are the sheaves on .7 is called the category
of sheaves on .&.

Let Eo: % — % denote the inclusion functor. We abbreviate E = E o if unambiguous.
(b) An R-presheaf P on .7 is called an R-sheaf on . if for each matching family £ for P on
each covering of each object in ., there exists a unique amalgamation of &.

The full subcategory 1 of p.? whose objects are the R-sheaves on .7 is called the
category of R-sheaves on .&.

Let gE o~ Rj — Rj denote the inclusion functor. We abbreviate E = rE o if unam-
biguous.
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Definition 2.2.9. Recall that gI': Mod-R — Set denotes the forgetful functor, cf. conven-
tion 37.

Let fYy = gT™): . — . cf. definition 1.1.12.

RrRI*Q

So we have RTy(PLQ) = (RT o P——p oQ) for P—%=(Q in RCY?.
Remark 2.2.10. Suppose given an R-presheaf P on ..

The R-presheaf P is separated if and only if the presheaf gY»(P) = gY o P is separated.
The R-presheaf P is an R-sheaf if and only if the presheaf gY o (P) = gY o P is a sheaf.

Example (cont.)

We illustrate the previous definitions with the example of the presheaf of continuous real-valued
functions on X.

For an open subset U C X, let O(U) = {¢: U — R: ¢ is continuous}.
For open subsets V C U C X, let (’)((ig)‘)p) :0WU) = O(V): o= |y -
This yields a presheaf O € Ob(&’?X). Our aim is to prove that O is a sheaf.

Suppose given a covering S on an open subset U C X.
Suppose given a matching family £: Fg = O.

The matching family £ consists of maps &y : S N Hom g, (V,U) — O(V) for each open subset
V C X. Note that SNHom o, (V,U) = (0 if V' is not an open subset of U contained on S, and that
S NHomy, (V,U) = {iY} if V is an open subset of U contained in S. So for V. C U with V € S,
the image of &y contains precisely one element 1y € O(V). The tuple (¢v)vcu,ves carries the
information of £ and the naturality of £ translates into (Yy )|w = Yw for W C V, where W,V € S.

An amalgamation of ¢ is a function ¢ € O(U) with |y =y for V € S, cf. remark 2.2.6.
Suppose given amalgamations ¢ and ¢’ of £. We want to show that o = ¢’.

Suppose given u € U. Since |JS = U, we may choose V € S such that u € V.

We have

/

(w) o = (u) plv = (u) v = (v) ¢'|v = (u) ¢".
So ¢ = ¢’. Thus the presheaf O is separated.

We want to construct an amalgamation ¢: U — R of £&. For u € U, we may choose V € S such
that w € V since |JS = U. Let (u) ¢ := (u) ¢y . This definition is independent of the choice of V'
since in case u € VNV’ for V, V' € S, we have

(w) v = (W) Yv|vav: = (W) Yvav: = (W) Py [vav: = (u) Py
So ply =y for V € S.
It remains to show that ¢ is continuous. Suppose given an open subset I C R.
For V € S, we have V N~ Y(I) = ¢;,* (I), which is an open subset of V' since 4y is continuous.
We obtain

e D)= ' MNU =" | v cU:Vest=J{Vne '(I): VeS}
=o' (n: v e sy
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So ¢~ Y(I) is a union of open subsets of U and therefore ¢~*(I) is open as well.

We conclude that ¢ has a unique amalgamation. Thus O is a sheaf.

2.2.2 Elementary facts on the category of sheaves

Lemma 2.2.11.

(a) The full subcategory of sheaves & C .7 is closed under isomorphisms: Suppose given an
isomorphism P—*=P’ in .. If P € Ob.¥, then P’ € Ob.¥.

(b) The full subcategory of R-sheaves e C R&’? is closed under isomorphisms: Suppose
given an isomorphism P—*=P’ in p.7. If P € Ob(z.¥), then P’ € Ob(r.¥).

Proof. Ad (a). Suppose given A € Ob.¥ and S € J4. Suppose given a matching family
¢ Fs = P’. We want to show that there exists a unique amalgamation of £’

Let £ :=¢& -a™!: Fg = P. So £ is a matching family for P.

Let Ac € Hom ;(yy 4, P) denote the set of amalgamations of {. Let Ag¢ C Hom ,(yy 4, P')
denote the set of amalgamations of &'.

We claim that the map
It Af = A (= Ca
is a bijection with inverse
J: Ag = Ae: (' (o™l
The map [ is well-defined since for ¢ € A¢, we have 1g (o =Ea =¢'.
The map J is well-defined since for ¢’ € Ag/, we have 15 ('a™! = a™ =¢.

The maps I and J are mutually inverse by construction. This proves the claim.

If P is a sheaf, then the set A contains precisely one element. So the same is true for Ag ,
thus P’ is a sheaf.

Ad (b). By remark 2.2.10, P’ is an R-sheaf if and only if gL (P’) is a sheaf. The result now
follows from (a) since gYs is a functor and therefore preserves isomorphisms. O

Remark 2.2.12. Recall that Oyqr denotes a zero object in Mod-R and that ()R # denotes a
zero object in rY with ORKV;(A) = Omoar for A € Ob .Y, cf. convention 15.

The R-presheaf 0. is an R-sheaf.

Proof. The presheat 0_ is separated since the set ORyz(A) = Omoqr contains precisely one
element for A € Ob.7.
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Suppose given A € Ob.% and S € J4. Suppose given a matching family {: Fs = gY' o0 _; .
Note that £z has target ORy:(B) = Opmodr for B € Ob.7.

The zero element 0 € Onoar = 0, #(A) is an amalgamation of £ since we have

(0)0,(f°) = 0 = (f)&p for (B—A4) € 5.

We conclude that 0_ is an R-sheatf. O
Proposition 2.2.13. The category of R-sheaves p.¥ is a full additive subcategory of IR ,

which is closed under isomorphisms, cf. convention 17.

Proof. By lemma 2.2.11.(b), the category of R-sheaves R is a full subcategory of # which
is closed under isomorphisms. By remark 2.2.12, g%’ contains a zero object. It remains to
show that a direct sum of two objects in r.¥ lies in g.7.

Suppose given R-sheaves P, Q € Ob( IRz ).
A direct sum of P and Q in 5. is P ® Q: .¥°? — Mod-R with

("5 )

(PoQ)(A15B) = <p<,4> & Q(A) (B) @@<B>>

for B—+A in.7. Cf. [14, rem. 5.(f)]. We want to show that P & @ is an R-sheaf.
Suppose given A € Ob.¥ and S € J4. Suppose given a matching family £: Fg = gYo(P® Q).
Write (¢4 ¢2) :=¢p: Fs(B) — P(B) ® Q(B) for B € Ob.7.
We have
(Estem)el Fstemeg ) = Fs(g™) - (¢£ ¢2) = Fs(9™) - &c = & - (P ® Q) (9°)

= (ehe2)- (P(goop) Q(gop)> = (&5 P™) 2aw™))

for C——B in . since ¢ is natural.

Fo(B) 2 %), p(p) @ q(B)

FS(gop)l (¢2€2) KP(%OP) a)
Fs(C) ——— P(C) & Q(C)

The equations for each component show that & := (£5)geobs and €9 1= (£9)gcops are
natural as well. So ¥ is a matching family for P and £9 is a matching family for ). Suppose
given (p,q) € P(A) ® Q(A) = (P & Q)(A).

For (BLA) € S, we have

(.9) (P& Q) = (1) ("5 ooy ) = ((0) PU™), (0) Q)
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and

(F)és = (f) (5 €2) = ((F)Eh, (£)ED).

So (p,q) is an amalgamation of ¢ if and only if p is an amalgamation of £ and ¢ is an
amalgamation of £¢. We conclude that P @ @) is an R-sheaf. O

2.2.3 Elementary facts on coverings

Lemma 2.2.14. Suppose given an object A € Ob.% and coverings S,S’ of A, ie. 5,5 € Ju .
Then SN S’ is a covering of A, i.e. SNS" € Jy .

Proof. Suppose given 2B A in .7 with fesSnS’. Then gf € S since S is a sieve
and gf € S since S’ is a sieve. So gf € SN S'. We conclude that S NS’ is a sieve, cf.
definition 2.1.1.

Suppose given (BLA) es.

We claim that f*(SNS") = f*(S"). We have f*(SNS") C f*(S'), cf. remark 2.1.4.

For (C’LB) € f*(5’), we have gf € " and gf € S since f € 5,50 g € f*(SNS).

This proves the claim. By (G2), we have f*(S’) € Jg , thus f*(SNS") = f*(5') € Jp .

By (G3), we conclude that SN S’ € Jp . O

Lemma 2.2.15. Suppose given an object A € Ob.¥ and a covering S € J4 . Suppose given
a sieve T'on A with S CT. Then T covers A, i.e. T € Jy4 .

Proof. Suppose given (BLA) € S. Then f*(S) = max(B) since gf € S for g € max(B).
By remark 2.1.4, we have max(B) = f*(S) C f*(T). We conclude that f*(T) = max(B) € Jp
by (G1). Now (G3) yields T" € Ju . O

Lemma 2.2.16. Suppose given an object A € Ob.¥ and a covering S € J4 . Suppose given
coverings 1y € Jp for (BLA) €S. Then {gf: fe S,geTs} e Ja.

Proof. Write U :={gf: f € S,g € Tf}.

The set U is a sieve on A since for D—C—2B—_ Ain 7 with f € Sand g € Ty , we
obtain hg € Ty and therefore hgf € U.

Suppose given (BL)A) € 5. We have f*(U) 2 Ty since gf € U for g € Ty . Therefore
[*(U) € Jg by lemma 2.2.15.

So U € J, by (G3). O
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2.2.4 Reduced topologies

For possible practical purposes, we present a way how to obtain Grothendieck topologies.
However, we will not use the results of section 2.2.4 in the sequel.

Lemma/Definition 2.2.17. For A € Ob.%, let Cod(A) := {f € Mor.¥: cod(f) = A}. The
power set of Cod(A) is denoted by Z(Cod(A)).

A tuple K = (K4)acob.s with Ky C Z(Cod(A)) is called a reduced topology on . if the
following three conditions hold.

(RTl) {1A} € K4 for Ae Ob.Y.

(RT2) Suppose given A € Ob .7, U € K4 and (BLA) € Mor .. Then there exists V € Kp

such that for all (D—2=B) € V, there exist (C—-+A) € U and (D—2~C) € Mor.#
such that df = gc.

D—4.B
g f

C—5 A

(RT3) Suppose given A € Ob.#, U € K4 and V, € K¢ for (C%A) € U. Then there exists
W € K 4 such that for all (E%A) € W, there exist (C’%A) elU, (DCL)C) eV,

and g € Mor . such that e = gdc.
/T
A

D, —>C—>

A reduced topology K gives rise to a Grothendieck topology JX = (JX)icon.» on .7 by setting
JK .= {S € Sieves(A): there exists U € K4 with U C S} for A € Ob.7.

Proof. Ad (G1). For A € Ob.¥, we have {14} C max(A) by (RT1). Thus max(A4) € J¥. So
(G1) holds.

Ad (G2). Suppose given B A .7 Suppose given S € JE. We may choose U € K4
with U C S. By (RT2), we may choose V' € Kp such that for all (DLB) € V, there exist
(C%A) € U and (DLC) € Mor.¥ such that df = gc. Since ¢ € U C S and S is a sieve,
df = gcisin S and therefore d € f*(S). So V C f*(S) and thus f*(S) € J&. So (G2) holds.

Ad (G3). Suppose given A € Ob.” and S € J§¥. We may choose U € K4 with U C S.
Suppose given a sieve T on A such that f*(T) € JX for (BLA) € S. For (C’%A) eU,
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we may choose V, € K¢ with V, C ¢*(T). By (RT3), we may choose W € K4 such that for
all (E——A) € W, there exist (C——A4) € U, (DCLC) € V. and g € Mor.¥ such that
e = gdc. Since gdc € T for c € U, d € V., C ¢*(T) and g € Mor.¥, we have W C T. Thus
T € JE. So (G3) holds. O

Example 2.2.18. A prétopologie in the sense of [5, Exposé II, Def. 1.3] and a basis in the
sense of [9, ITI. 2. Def. 2] are examples of reduced topologies.

Example (cont.)

We want to show that the Grothendieck topology (-#x,J) from above can be obtained from the
following reduced topology K = (Ky)ucx open 01 #x. For an open subset U C X, let Ky consist
of the sets of open subsets of U whose union is U. So

Ky :={C C2({U): UC’ = U, C consists of open subsets of U}.
e Ad (RT1). For an open subset U C X, we have (J{U} =U.

e Ad (RT2). Suppose given open subsets V' C U C X. Suppose given a family of open subsets
C ={U;:i € I} € Ky, where I is some index set. So U; C U fori € I and |J,.;U; = U.

ier Vi
Then {(VNU;:i €I} € Ky since J;c; VNU; =V N, Ui =V NU=V. Moreover, we
have the following inclusions for i € I.

VnUu,——V
U, —U.

e Ad (RT3). Suppose given an open subset U C X. Suppose given a set of open subsets
C = {U;:i € I} € Ky, where I is some set. So U; C U for i € I and {J;;U; = U.
For ¢ € I, suppose given a family of open subsets D; = {V; ;: j € J;}, where J; is some
set. So V;; C U; for j € J; and UjEJi Vij=U;. Then {V, :i € I,j € J;} € Ky since
Uier Ujes, Vij = Uier Ui = U. Moreover, we have the following inclusions for i € I and
jed;.

Vi
Vi, 4 U

By construction, JX = J.

2.3 Sheatfification

Suppose given a ring R.
Suppose given a site (., J).

In this section, we construct the sheafification functor, which is left-adjoint to the inclusion
functor from the category of (R-)sheaves into the category of (R-)presheaves on .. We will
use this adjunction to prove that the category of R-sheaves is abelian.
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2.3.1 Construction of the sheafification functor

We will proceed in two steps. At first, we construct a functor that maps a presheaf P to a
separated presheaf PT. Then we show that P™* is a sheaf.

Remark 2.3.1. Suppose given an object A € Ob ..

We consider the set of coverings J4 , ordered by inclusion, as a poset category. So Jy° is a
poset category as well. Note that for S,S" € J, , there exists a morphism (S—>S’)0p in JP if
and only if S C 5.

The category J3 is filtering, as we show using lemma 1.4.3:

e The category J3" is non-empty since max(A) € Ju by (G1).

e For 5,5 € Jy, we have SN S" € J4 by lemma 2.2.14. So (F1) holds since SN S" C S
and SNS CS".
Lemma/Definition 2.3.2. Suppose given an object A € Ob ..
(a) Suppose given a presheaf P on ., i.e. P € Ob .

The functor Py: J3® — Set shall be defined as follows.

— For S € Ju , let P4(S) := Hom ;(Fs, P).
— For §—8" in Jyu , let P4((S—S')™): Hom ,(Fs, P) — Hom ;(Fs, P): £ — 13 &.

So P4 is a system over J3” in Set. Let PT(A) := lim Py € Ob(Set), cf. definition 1.4.7.(a).

(b) Suppose given an R-presheaf P on .7, i.e. P € Ob(Ry).
The functor P4: J3® — Mod-R shall be defined as follows.

— For S € Ju, let Py(S) := Hom ;(Fg, gY o P), equipped with the following R-module
structure.

Suppose given £, {" € Hom 4 (Fs, g o P), r € R and B € Ob.””. To define £ + ¢’ and
&r, we use the R-module structure on Homg,,(Fs(B), (g o P)(B)), cf. remark 1.1.13.

Let (§+¢&)p:=Ep+ &z and (§r)p:=E&pr =Ep 1.
— For S—5" in Jy, , let

Pa((S—S)"): Hom ,(Fg, gY o P) — Hom ;(Fs, gL 0 P): £ = 13 &.

So P, is a system over Jgp in Mod-R and we have gY o P4 = (gf o P)4 by construction.
Let PT(A) := lim Py € Ob(Mod-R), cf. definition 1.4.7.(b).

We have gY(P*(A)) = RT(I;IIE Py) = lign(R'f o Py) = liﬂ(RT oP)y = (gl o P)"(A) by
loc. cit.



Proof. Ad (a).
We show that P, is a well-defined functor. Suppose given S—S5"—S" in Jy .

For ¢ € Hom ;(Fs, P), we have (£) P4((S—S)”) = 3¢ = ¢ and thus
PA((S_)S)OP) = 1Hom5,;(FS,P) .

For £ € Hom ;(Fsr, P), we have

(&) Pa((S—S")"(S—5)") = (

13 €) Pa((S—5S")")
O Pa(('—8")") Pa((S—5")"),

s0 Py((S'—=8")" (58—8)) = Pa((S"—S")™") Pa((5—S")).

Ad (b).

Suppose given S € J, .

Suppose given &, & € Py(S) = Hom ,4(Fg, gY o P) and r € R.

We show that £ + ¢ and &r are elements of P4(.S), i.e. that they are natural.

For C’LB in ., we have

E+&)p - (R o P)(fP) = (§p +&p) - (RY o P)(fP)
=&p - (RY o P)(fP) + &5 - (rY o P)(fP)
=Fs(f) - e + Fs(f) - &
= Fs(f") - (§c + &)
=TFs(f?) - (£+¢)c

and

(&) - (RL o P)(f?) = (€7) - (rY o P)(f)
= (- (RT o P)(fP)) -1
= (Fs(f")-&c) - r

cf. remark 1.1.13.

We verify the axioms for R-modules for P4(S).
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The zero element in P4(S) is
0= (OB)BGOby: FS = RT oP

with 0 = OHoms., (Fs(B),(zroP)(B)) for B € Ob .. It is natural since for CLB in ., we have
OB . (RT O P)(fOp) = 0 = Fs<f0p> . OC .

Suppose given £, &', " € Pa(S), B € Ob.¥ and 1,7’ € R.

We have
E+E)p=E+E =+ =(+ s,
(+0)p=Ep+0p=_Ep,
E+E&- (1)=& +&p-(—1) =0p
and

(E+&8)+ =+ )+ =8+ + =8+ +)p=(+ (' +E")B.
Sof+¢ =&+ £+0=¢ {+&-(-1)=0and (+&)+" =5+ (' +&").
We have

- )p=¢s-1=¢B,
&) =& (rr') = (Ep-r)r' = (&r)p 1" = ((§r)r)s,

(E+8)rp=E+)p-r=Ep+&)r=Ep-1+&-1=(Er)p+(r)p = (r+E&T)p

and
(€0 +7))s =€ (4 1) = 7+ 61" = (6 + ).

So&-1=¢, &(rr')y=(E&r)r', (E+&)r=E&+&rand E(r+1") =Er+ &0
Suppose given S—S" in J4 . We show that P4((S—S")°P) is R-linear.
Suppose given £, & € Pa(S’) and r,r" € R.
We have

(&r+&7") Pa((S—8)P) = i3 (ér + &) =5 € r+15€ o

= (§) Pa((S—=5")P) - r + (&) Pa((S—5")P) -1,

cf. remark 1.1.13.

The same calculation as in (a) now shows that P, is a functor. [
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Remark 2.3.3.

(a) Suppose given an object A € Ob.% and a presheaf P on .. The set PT(A) = li_n>nPA
consists of elements of the form [, S], where S € J4 and £ € Hom ;(Fg, P).

For [¢, S],[¢, S'] € PT(A), we have [£,S] = [¢/, 5] if and only if there exists T' € J4 with
T C SN S such that 3¢ = 15¢.

Cf. definitions 2.3.2.(a) and 1.4.7.(a).

(b) Suppose given an object A € Ob.¥ and an R-presheaf P on .. The set P*(A) = lim Py
consists of elements of the form [, S], where S € J4 and £ € Hom ;(Fs, gY o P).

For [£,5],[¢, 5] € PT(A), we have [, S] = [¢/, 5] if and only if there exists T' € J4 with
T C SN S such that 15& = 1€, Moreover, for T € J, with T C SN S’, we have
(€, 9]+ [¢,8] = 13 €4 15¢,T). Forr € R, we have [£,S]-r = [¢r, 5],

Cf. definitions 2.3.2.(b) and 1.4.7.(b).

Lemma/Definition 2.3.4. Suppose given a presheaf P on .. Suppose given B Ay ,
a covering S € J4 and a matching family £ € Hom ;(Fg, P) for P on S.

Let &) Fr)(C) — P(C): b (h)EL = (hf)ée for C € Ob.7.
We obtain a matching family ¢/ := (fé)CEOby: Ffe(sy = P for P on f*(S).

Proof. We need to show that ¢/ is natural.
Suppose given D—"—C' in . and h € Fj(5)(C) € Hom(C, B).
We have
(WL P(g™) = (hf)so P(g) = (Bf) Fs(9™) ép = (ghf)ép = (gh)E],
= (h) Fres)(9™) &,
50 & P(g°) = Fr-(s)(9°) &1, -

éf

)
Fpe(s) (9"")1 lP(g"P)
38 )

Ff-(s)(D) ———— P(D O

Remark 2.3.5. Suppose given a presheaf P on .. Suppose given c—sBt A S a
covering S € J4 and a matching family £ € Hom ;(Fg, P) for P on S.

We have ) = (¢/)? as matching families for P on (gf)*(S) = ¢*(f*(5)), cf. remark 2.1.5.

Proof. For D € Ob.% and h € F45)+(s)(D), we have

(R = (hgf)ep = (hg)eh = (R) (€13, O
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Remark 2.3.6. Suppose given P—2—~@Q in .#. So we have presheaves P and Q on .# and a
transformation a: P = Q.

Suppose given B—lsAiny , a covering S € J4 and a matching family £ € Hom ;(Fs, P) for
PonS.

We have &/a = (£a)/ as matching families for Q on f*(95).
Proof. For C € Ob. and h € Ff(5)(C), we have

(W) (& a)e = (WEL ac = (hf)éc ac = (hf)(Ea)e = (h)(Ea)L,. O

Lemma /Definition 2.3.7. Suppose given a morphism (BLA) € Mor.7.
(a) Suppose given a presheaf P on .. Let

PH(fP): PT(A) = P*(B): [¢,S] = [¢7, f*(9)].
This is a well-defined map.

(b) Suppose given an R-presheaf P on .. Let

P (f): P*(A) = PT(B): [¢, 8] = [¢, [*(9)].

This is a well-defined R-linear map.

We have gY' (P (f°P)) = (gY o P)"(f°P) by construction, cf. definition 2.3.2.

Proof. Ad (a).

Suppose given [¢, 5], [¢', 5] € PT(A) with [¢, 5] = [/, 5].
So there exists T € J, with T'C SN .S’ such that 13 ¢ = 15¢.

Thus for C € Ob. and g € Fr(C), we have (9){c = (9)&. as elements of P(C).
We have to show that [¢/, f*(S)] = [¢", f*(S")].
Note that f*(T') € Jp with f*( ) C f*(S)N f*(S") by (G2) and remark 2.1.4.

It suffices to show that L T) ff ji i)) ¢": Frory = P.

Suppose given C' € Ob.¥ and h € Fp()(C). So (C’LBLA) eT.
We have
(W) (D) &L = (hf)ee = (W) (5 e = ()5 ) = (hf)gL = (W) (7)) o &

Thus (¢f-() &) = (177 €7)c -
Ad (b).
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The same calculation as in (a) shows that P (f°P) is well-defined. We show that it is R-linear.

Suppose given r, 7' € R and [£, S],[¢, 5] € PT(A). Write T :=SNS" € Ja, cf. lemma 2.2.14.
Note that f*(T") € Jg with f*(T) C f*(S) N f*(S’) by (G2) and remark 2.1.4.

We have

(6. 8] r+[g8T-r) PH(fP) = ([6r. S + [, 8) PT ()
Z([éé’:(&)ﬂTﬁ ); ])P+ f)

and
([ S PE(f) - r+ ([, ST PH(fP) o' =[5, f7(S)] - r + [€7, 17 ()] -
=[e/r, ()] + ['fT' f (9
= [ (&) + 7 (€7r"), f1(T)).
So it suffices to show that (i3 (&7) + 5 (&'r"))F = o3 (&Fr) + 5 (€71).
Suppose given C' € Ob.¥ and h € Fp () (C).
We have
(W) (e (&r) + o7 (€))L = ()i (§r) + i3 (€7))e
= (hf)éc -1+ (hf)sc -7
= (h)fc r+ (el
= (h)(&:r) + (h) (&)
= (W) (7 (€7r) + (€7 O

Lemma/Definition 2.3.8.
(a) Suppose given a presheaf P on .. The constructions given in the definitions 2.3.2.(a)
and 2.3.7.(a) yield a presheaf Pt on ..
(b) Suppose given an R-presheaf P on .. The constructions given in the definitions 2.3.2.(b)
and 2.3.7.(b) yield an R-presheaf on ..

We have gYo(PT) = g o Pt = (gf o P)" = (g (P))" by construction, cf. defini-
tion 2.2.9.

Proof. Ad (a). Suppose given P € Ob . Suppose given c—2sBt A Suppose given
£, 5] € PF(A).

We have

[, 8] PH(AZF) = [6'4, (14)"(S)] = [€, 8] = &, S] Lp+()
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and

£ SIPH(f7 - g) = [6 ST PH((9h)) = [€97, (a7 (S)) "7 (€1 07 (7 (9))]

= [¢7, F(S)] P (g™)

=& S| PT(fP) - PT(g™).

So Pt (14) = 1p+(ay and PH(fP - g°P) = PH(fP) - P*(g°P).

Ad (b). The same calculation as in (a) shows that P* is a functor. O

Lemma/Definition 2.3.9.
(a) Suppose given P——@Q in .. So we have presheaves P and @ on .¥ and a transformation

a: P= Q.
For A€ Ob.%, let a: PT(A) = QT (A): [¢,5] — [¢,S]a} = [£a, S].
This is a well-defined map.

+

We obtain a transformation o := (a} Pt = Q7.

)AeOb 7

(b) Suppose given P—"—(Q in 7. So we have R-presheaves P and () on .¥ and a transfor-
mation a: P = Q.

For A € Ob.%, let al: PT(A) — Q" (A): [£,5] — €, S]af := [¢- kLo (), 5],
where gYo (o) = gY * o = (gY(va)) € Hom 4 (gY o P, gY 0 Q), cf. definition 2.2.9.

This is a well-defined R-linear map.

AeOb”

We obtain a transformation a® := (aA)AeOby Pt = Q"

We have g (a™) = (g o ()™ by construction, cf. definition 2.3.8 and lemma 2.3.7.(b).

Proof. Ad (a). We want to show that a is well-defined.
Suppose given [, 5], [¢/, 5] € Pt(A) with [¢, 5] = [¢/, 5]
So there exists T € J4 with T'C SN .S’ such that 15 ¢ = 15¢.
We have (5 (£a) = 15 a = 13 ¢a = 15 (€'a), so [€a, S] = [€a, ).
We want to show that o™ is natural.
Suppose given B—14Ain 7. For €, S] € PT(A), we have

& 8)a - Q7(/*7) = 60, S| Q" (1) = [(6) . *(S)) "7 [l v, £7(S)) = (6. /" (9)] o

= (&S] PT(f?) - a5
ay - QF(fP) = PH(f?) - aj

(—
O
+
~
]
=
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Ad (b).
The same calculation as in (a) shows that o is a well-defined map. We show that it is R-linear.
Suppose given [, 5], [¢, 5] € PT(A) and r,7’ € R. Write T := SN S € Ju , cf. lemma 2.2.14.
Write & := gYo(a). We have
([6,9)-r+[€,9 ")k = (13 &r + 15 Tt
= [(:P&r+ 7 €10, T
= 15 Ear + 15 €an', T
=[¢a,S]-r+[a, S
=1 Slal-r+1§ 5 a7

LS ~
Fr TP Yo P25 T oQ

Now the same calculation as in (a) shows that a™ is natural. O

Lemma/Definition 2.3.10.
(a) The functor (—)*: . — . shall be defined as follows.

— For P € Ob.7, let (=)*(P) := P+, cf. definition 2.3.8.(a).
— For a € Mor.#, let (=)*(a) := o, cf. definition 2.3.9.(a).

(b) The functor (—=)*: z.¥ — g shall be defined as follows.
— For P € Ob(i.%), let (=)*(P) := P, cf. definition 2.3.8.(b).
— For a € Mor(g.), let (=) (a) := ™, cf. definition 2.3.9.(b).
We do not distinguish between (—): . —.% and (=)": . — z.% in notation.
We have (—)* o gly = gl o (—)7, cf. definitions 2.3.8 and 2.3.9.

Moreover, the functor (=): . — r.7 is additive.

A~ )+ A~
ws

RYs l lRTy
+

{5,2 (=) )

Proof. Ad (a). Suppose given P%QLN in.7.
For A€ Ob.¥ and [¢, S] € PT(A), we have

€.51(15) , = [€-1p, 5] =&, 5] = ¢S] (1p+)
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and

(€. S (0BT )a = [€, Sl By = [€a, S] B = [§aB, S] = [€, ST (af) -
So 15 =1p+ and (afB)T = ™37,
Ad (b). The same calculation as in (a) shows that (—)" is a functor.
We show that it is additive. Suppose given P%;Q in p.7. It suffices to show that (a+ )" =
at + Bt
Suppose given A € Ob. and [¢, S] € PT(A).
We have

£, S](a+B); = [6- fXs(a+B), 5]

and

€, S)(a™ + BT)a =€ RLo (@), S]+ [§ - RY.#(B), 5] = [€ - RLo (@) + & - RY#(B), S].
So it remains to show that £ - gYo(a+ 5) =& - gLy (a) + & - gL (0).

Suppose given (BLA) € S. We have

(N Rlo(a+0), = (fip- (Xr(a+8)),
= (f)s-(a+B)sp
B - (aB + BB)
) - ap+ (f)ép - Br
) (& - Yo (a)s +Ep - R (B)B)
)(f'RTy(Oé)‘Ff'RTy(ﬁ))B- L

Proposition 2.3.11.
(a) Suppose given a presheaf P on .. The presheaf PT is separated, cf. definition 2.2.7.(a).

(b) Suppose given an R-presheaf P on .. The R-presheaf P is separated, cf. defini-
tion 2.2.7.(b).

Proof. Ad (a).
Suppose given an object A € Ob., a covering S € J4 and a matching family ¢: Fg = P+.

Suppose given amalgamations [(,U],[n, V] € PT(A) of &, cf. definition 2.2.4, remark 2.2.6
and remark 2.3.3.(a). So U,V € Js, (: Fy = P and n: Fy, = P. We have to show that

[, Ul =[n, V1.
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For (BLA) € S, we have

[T (U] =[G UIPH(fP) = (£)es = [0, VIPT(fP) = [n, f*(V)]
since [(, U] and [n, V] are amalgamations of &.
So we may choose W/ € Jp with W/ C f*(U) N f*(V) such that L{;J(CU) ¢f = LQ&V) n.
We have T := {gf: f €S, g€ W/} € Js, cf. lemma 2.2.16. Note that T CUNV.
Now it suffices to show that % ¢ = ¥ 7.
Suppose given C—5B-T A in .7 with feSandge W/ ie gf eT.
We obtain

9h)e = (9 = @) () o &= () (L) o nk = (9l = (9 f)ne -

Thus & ¢ = 7.

Ad (b).
It suffices to show that gY o Pt = (gY o P)" is separated, cf. definition 2.3.8 and remark 2.2.10.
The result now follows from (a). O

Proposition 2.3.12.

(a) Suppose given a separated presheaf P on .. The presheaf PT is a sheaf, cf. defini-
tion 2.2.8.(a).

(b) Suppose given a separated R-presheaf P on .. The R-presheaf P* is an R-sheaf, cf.
definition 2.2.8.(b).

Proof. Ad (a).
Suppose given an object A € Ob., a covering S € J4 and a matching family ¢: Fg = P+.
Write (f)&p =: [£f,TYy] for (BLA) €S.SoTy € Jpand &: Fr, = P.

Suppose given C—2-B in ..
We observe that

[(62)7, 97 (Ty)) = [65, Te] PT(9™) = (f)E P (9™) = (f) Fs(9™) §c = (9f)éc = [&or> Tyy]

in PT(C) since ¢ is a transformation.

Fs(B) ————— P*(B)

Fs (9°p)l llﬁ (9°P)

Fs(C) —— P+(C)
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So we may choose Qg5 € Jo with Q7 C ¢*(Ty) N Ty such that LQ (ff) ng Sof >
remark 2.3.3.(a).

The presheaf P* is separated by proposition 2.3.11.(a). Thus it suffices to show that there
exists an amalgamation [, U] € PT(A) of &, where U € J4 and (: Fy = P.

Let U:={gf: f€S, geTs}. We have U € J4 by lemma 2.2.16.
For C' € Ob ., we define (¢: Fy(C) — P(C) as follows.

For C—2~+B—L5A in.7 with f € S and g € T}, let (9.f)Co = (9)(&5)c € P(C).

We want to show that (¢ is a well-defined map. Suppose given CLB’ f—,>A in . with
fres ¢geTlpandgf=4gf =u.
We have Q) := Qg,f N Qg/7f/ € Jo by lemma 2.2.14.

So we have the following diagram of inclusions in Jy .

g* (Tf) N Tu gl*(Tf/) M Tu
CQg,f \ /Qg’,f/
Q

We claim that (9)(&r)c € P(C) and (¢')({p)c € P(C) are amalgamations of the matching
family Lg“ &u: Fo = P.

Suppose given (DLC) € Q.

B
N
C = A
N
The naturality of {; yields

(9)(Er)c P(B*P) = (9) Fr, (h°P) (&5)p = (hg)(&7)p = ()((E))p = (W) (.77, ((€9)7),,
= (h)(1”,)p (Eor)p = (W) (¢

o3
SN—"
-l
™
IS
S—
-l
I
=
—~
~
o5
I
IS
SN—
S}



71

Fr, (C)—2% p(c)
Pr, (hop)l P(hoP)
Fr, (D) —22 ., p(D)

Similarly, the naturality of & yields
(9)(€r)e PUP) = (9') Fr, (hP) (65)p = (hg) )0 = (B)((£0)" )
= W) (€)= (e ) Esdn = (D)5, (€0
= (h)(bgu&JD‘
This proves the claim.

So (9)(&f)e = (¢')(&f)c since P is separated.

We need to show that ¢ = ((¢)ceob.s is natural.

Suppose given D—C in .7

Suppose given 2B A in .7 with feSandgeTy, ie gf €U.
We have

(9f)¢e P(hP) = (9)(&r)c P(RP) = (g) Fr, (h) (&)p = (hg)(&r)p = (haf)Cp
= (gf) Fu(h*®) (p .

Fi(C) —< . P(C)

(C
FU(hOP)l lP(hOP)
(@5}

Fy(D) ———— P(D)
Suppose given (B——A) € S.
We verify that [¢, U] P*(f°?) = (f)¢p, cf. remark 2.2.6.
We have Ty C f*(U) since g € Ty implies gf € U, i.e. g € f*(U). Moreover, if. " ¢/ = ¢ since
for (C——B) € T} , we have
(9)(¢Ne = (9£)6e = (9) (e -
We conclude that
[CUIPH(fP) = [, fH(U)] = &5, TY] = (f)éa-

Ad (b).

It suffices to show that gY o PT = (gY o P)" is an R-sheaf, cf. definition 2.3.8 and remark 2.2.10.
The result now follows from (a) since gY o P is separated by loc. cit. [
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Definition 2.3.13.

(a) Recall that S is the category of presheaves on .¥, .¥ is the category of sheaves on .
and E = Ey: . — .7 is the inclusion functor. Cf. definitions 2.2.2.(a) and 2.2.8.(a).

Propositions 2.3.11.(a) and 2.3.12.(a) show that we may define the sheafification functor
(=)~ as follows.

Let

So Eo(—=)~ = (—)*".
Suppose given P—2+Q in .¥.
We write (P—2=Q) := (=)~ (P—2=Q) = (P**LQ**).
(b) Recall that R is the category of R-presheaves on ., .7 is the category of R-sheaves

on.Z and E = pEy: p¥ — Rﬁ’? is the inclusion functor. Cf. definitions 2.2.2.(b) and
2.2.8.(b).

Propositions 2.3.11.(b) and 2.3.12.(b) show that we may define the sheafification functor
(=)~ as follows.

Let

(=) = (=) o ()N)[* : g = nT.
So Eo(—)~ = (=)*+.
We write (P—25Q) := (=)~ (P—25Q) = (PH—22 Q+).

Note that RTy maps R-sheaves to sheaves by remark 2.2.10. Thus we may restrict
RTy| Ry — y

We have RTy’fj o (=)~ = (=)~ o0 gYy, cf. definition 2.3.10.(b).

R’r§"|§jl RTyl lRTy |§y
7 E & (=)~ 7

2.3.2 Adjunction
2.3.2.1 Unit

Definition 2.3.14. Suppose given a presheaf P € Ob 7, an object A € Ob.¥ and an element
x € P(A).
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Let 5% := (:r;)’yg,g: Fiax(a)y = P, cf. lemma 1.2.2.
For an object B € Ob.¥, we have %: Homy (B, A) — P(B): f — (f)B% = (z) P(f°P).

Note that z is an amalgamation of 5%, cf. remark 2.2.6. We will use this fact in lemma 2.3.27.

Remark 2.3.15. Suppose given an R-presheaf P € Ob(g.%), an object A € Ob.% and an
element x € P(A). Since x € (gY o P)(A), we have %: Fyaxu) = gl o P.

For x,2' € P(A) and r,7’" € R, we have % - r + B Ll = gertelr’,

Proof. For Bt Ainy , we have
()Y (B r+ 57 ) g = () B -+ (f) B 1" = () P(f) - v+ (') P(f) -
= (zr +27') P(f) = (f) B+ O

Lemma /Definition 2.3.16.
(a) Suppose given a presheaf P € Ob .

For an object A € Ob., let (ep)a: P(A) = PT(A): x — (x) (ep)a := [#*, max(A)], cf.
remark 2.3.3.(a).

This yields a morphism of presheaves ep := ((ep)A)AEOby: P = PT.

(b) Suppose given a R-presheaf P € Ob( %7 ).

For an object A € Ob., let (ep)a: P(A) = PT(A): x — (x) (ep)a := [#*, max(A)], cf.
remark 2.3.3.(b).

This yields a morphism of R-presheaves ep := ((ep)A)AEoby: P = PT.
We do not distinguish between the morphism ep of presheaves and the morphism ep of R-
presheaves in notation.

Proof. Ad (a). Suppose given B—1sAin >
We want to show that (ep)a Pt(fP) = P(f°P) (ep)p -
Note that f*(max(A)) = max(B).
For x € P(A), we have
() (ep)a PT(f7) = [B7, max(A)] P*(fP) = [(87)7, f*(max(A))] = [(67)!, max(B)]
and
(z) P(f) (ep)p = [ﬁ(x)P(fop), max(B)].

So it suffices to show that (3%)f = @), Frax(B) = P.
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Suppose given C—2-B in ..
We have

(9) ((B)) o = (9)BE = () P((9)™) = (&) P(f) P(g) = (g) (BP"U™) ..
We conclude that ep is natural.

P(A) — A pra)

)
P(f"p)l lPﬂfOP)
P(B)

Ad (b). We show that (ep) is R-linear.
Suppose given z,z’ € P(A) and r,7" € R.
We have

() (ep)a -+ (2') (ep)a - ' = [B%, max(A)] - v + [, max(A)] - ' = [6* - 7 + B -1/, max(A)]
and

(zr + 2'7") (ep)a = [B* "™, max(A)]

By remark 2.3.15, we have 3% - r + g% . ¢/ = perte’’,
Thus [5* - r 4+ 8% -/, max(A)] = [f**+*" max(A)].
The same calculation as in (a) now shows that ep is natural. O

Lemma /Definition 2.3.17.
(a) The tuple e := (ep)pcqy, . is a transformation e: 1, = (—)*.

(b) The tuple e := (ep)PGOb(Ry) is a transformation e: 1, = (—)*.

We do not distinguish between e: 1, = (—)" and e: 1_, = (=) in notation.

Proof. Ad (a). Suppose given P—*-Q in ..
For A € Ob.¥ and x € P(A), we have
() (epa’)a = (2) (ep)aa) = [B", max(A)] af = [3a, max(A)]

and
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So it suffices to show that f%a = f@aa . Frnax(a) = Q.

For B—15A in <, we have

(f) (B"a)s = (f) B ap = (x) P(f™) ap = (z) aa Q(f) = (f) B5"*.
|
Q

Ad (b). The same calculation as in (a) shows that e is natural. O

ep

__ " . pt

at

P
eQ Q+
Remark 2.3.18.

(a) For a presheaf P € Ob.¥, we have (ep)™ = eps: Pt = P+
(b) For an R-presheaf P € Ob(z.%), we have (ep)t = eps: P+ = Pt+,
Moreover, ep+ is a monomorphism in R,E’? :

Proof. Ad (a). Suppose given A € Ob.¥ and [£,S] € PT(A).
We have [¢, 5] (ep)] = [€ep, S| and [¢, 5] (ep+)a = [B16%), max(A)].

So it suffices to show that £ep = L?aX(A)B[&S} : Fg = PT.
For (BL)A) € S, we have
(f) (€ep)p = (f)&p (ep)p = [B)%7, max(B)]
and
(D) (5™, = () (8°) , = (€SI PH(P) = (6,1 ()
So it suffices to show that L?fé(f)ﬁ(f)fl? =¢&l: Fpag) = P.

For (C’L)B) € f*(S), we have
(9) (2P B0) . — (g) (BD)6 = (£) €6 P(g™) = () Fs(g) éc = (9)€c = (9) (€)c-

Ad (b). The same calculation as in (a) shows that (ep)t = ep+ .

To show that ep+ is a monomorphism in 7., it suffices to show that (ep+)4: P+(A) — Pt (A)
is a monomorphism in Mod-R for A € Ob.¥ by remark 1.1.9.(b).

Suppose given A € Ob.¥ and [¢,S] € PT(A) with [, S] (ep+)a = 0. We have to show that
[€,5] = 0.
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Since [B&5], max(A)] = €, 5] (ep+)a = 0, we may choose T' € J4 with i1 85 = 0.

So for (BLA) € T, we have [¢/, f*(S)] = [£,S] PT(f°P) = (f) E’S] = 0. Therefore we may
choose Uy € Jp with Uy C f*(S) such that Lg;(s) & =0.

By lemma 2.2.16, we have V := {gf: f € T,g € Us} € J4 . Moreover V C S since Uy C f*(5)
for felT.

For (BLA) € T and (C’LB) € Uy , we have (gf)éc = (g)f}_; = 0. We conclude that
1€ = 0 and therefore [¢,S] = 0. So (ep+)a is a monomorphism in Mod-R. O

Corollary 2.3.19. Suppose given an R-presheaf P: .#°? — Mod-R.
We have PT 220 in pA if and only if P 20 in pA.

Proof. Suppose that P+ = 0 in g A. Then P = P+t =~ 0 in pA since (—)*: R — pS is
additive, cf. definition 2.3.10.(b).

Conversely, suppose that P 2 0 in rA.  Since PP s a monomorphism in RS by
remark 2.3.18.(b), we conclude that PT = 0 in gA. O

Remark 2.3.20.

(a) By convention 24, we have
exe=(exly) - ((=)"*e)=e-((=)"*e): 1= (=) o (=)"
and
exe=(1yxe) (ex(—)") =e-(ex(=)"): 15 = (=) o (=),

soe-((—)txe) =e-(ex(—)").
Remark 2.3.18.(a) shows that even (=)t *xe = ex(—)" since ((—)" xe)p = (ep)™ and
(ex(—)") =ep+ for P € Ob.7.

(b) By convention 24, we have
exe=(exl ;) ((—)T*e)=c-((-)Txe): 1 _; = Eo(-)
and
exe= (1, ;xe) (ex(—)") =e-(ex(=)"): 1, 5= Eo(-),

soe-((—)txe) =e-(ex(—)").
Remark 2.3.18.(b) shows that even (—)T xe = ex(—)" since ((—)" xe)p = (ep)™ and
(ex(=)")p = ep+ for P € Ob(z.?).
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Definition 2.3.21.
(a) Recall that (=)™ = (=)" o (=)" = Eo(=)~: . — .7, cf. definition 2.3.13.(a).
Let e :=exe: 1, = Eo(—)™.
For a presheaf P € Ob 5’?, we have ep = ep-ep+ =ep-(ep)t: P = P,
Cf. convention 24 and remark 2.3.20.(a).

(b) Recall that (—)** = ()T o (=) =Eo(=)~: p.¥ — r?, cf. definition 2.3.13.(b).
Let e :=exe: 1 ;= Eo(—)™.
For an R-presheaf P € Ob(z.%), we have ep = ep-epr = ep-(ep)T: P = P+,

Cf. convention 24 and remark 2.3.20.(b).

We do not distinguish between €: 17 = Eo(—)~ and e: 15 = Eo(—)~ in notation.

2.3.2.2 Counit

Lemma /Definition 2.3.22.
(a) Suppose given a sheaf P € Ob.¥ and an object A € Ob.¥.
For a covering S € J4 and a matching family ¢: Fg = P, let x¢ € P(A) denote the
unique amalgamation of &, i.e. (x¢) P(fP) = (f)&p for all B—L%AnS.
Let (np)a: PT(A) = P(A): [£,5] — [£, 5] (np)a :==x¢ .

This yields a morphism of presheaves np := ((np)A)AE()by: Pt = P.

(b) Suppose given an R-sheaf P € Ob(z.) and an object A € Ob.¥.
For a covering S € J4 and a matching family {: Fg = gY o P, let x, € P(A) denote the
unique amalgamation of &, i.e. (x¢) P(fP) = (f)&p for all B—2Ams.
Let (np)a: PT(A) — P(A): [£,5] — [€, 5] (np)a :=x¢ .

This yields a morphism of R-presheaves np := ((np) A) AcObF Pt = P.

We do not distinguish between the morphism np of presheaves and the morphism np of R-
presheaves in notation.

Proof. Ad (a). We show that (np)4 is well-defined.
Suppose given [¢, 5] = [¢/, 5] € PT(A). We may choose T C S N .S’ such that 13 & = 3¢

The element x¢ is an amalgamation of 17 € since we have (x¢) P(fP) = (f)ép = (f) (15 €)p for

(B—Lsa)eTCs.



78

Similarly, the element x¢ is an amalgamation of 13 &' since we have
o ! f
(x¢r) P(fP) = (£)€p = ()17 €)p for (B——A) €T C 5.
So x¢ and xg are amalgamations of (5. & = L*;/f/ . We conclude that x; = x¢ since P is a sheaf.

We show that np is natural.

Suppose given B Ain.7.
For [¢,S] € PT(A), we have

[€, 5] (np)a P(fP) = (x¢) P(f*)
and
(€, S1PF(fP) (np)p = €, F*(S)] (np)p = Xer -
So it suffices to show that (x¢) P(f°P) is an amalgamation of &7,

For (C’LB) € f*(S), we have gf € S and thus

(x¢) P(f°?) P(g°) = (x¢) P((9f)) = (9.f)éc = (9)€L.-

We conclude that (np)4 P(fP) = PT(f°?) (np)p -

prA) U4 p(a

)
P*(f"p)l lP(fOP)
PH(B) """ P(B)

Ad (b). The same calculation as in (a) shows that (np),4 is well-defined.
We show that (np), is R-linear.

Suppose given coverings S, S" € J4 , matching families £: Fg = gY o P, &¢': Fg = gl o P and
r,r’ € R. Write T := SN S".

We have
([6S) -7+ (€8T -7") (p)a = [FE-r+ € 1", TI(0p)a = X560y,
and
(€, S](np)a-r+[£, ST (np)a- 1" =x¢r +x¢ 7"

So it suffices to show that x¢ -7 + x¢ -7’ € P(A) is an amalgamation of
L%S-T—J—L?f’-r’: FT:>RTOP.
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For (BLA) € T, we have

(x¢ 7 +xg1") P(fP) = (x¢) P(fP) -7+ (x¢) P(fP) - 7" = (/)ép-r+ ([)Ep -7
=GO+ (N =) r+5¢ 5.

The same calculation as in (a) shows that np is natural. ]

Lemma/Definition 2.3.23.

(a) The tuple n:= (np)pcqy 7 is a transformation n: (—)+|§ =1;.

(b) The tuple n:= (np)pcop(,s 18 @ transformation n: (—)*!2; =1 5.
We do not distinguish between n: (—)ﬂﬁ = 1, and n: (—)ﬂZ; = 1_ in notation.

Proof. Ad (a). By proposition 2.3.12.(a), (—)* maps S 10 L.
Suppose given P—2-Q in .¥.
For A€ Ob.¥ and [¢, S] € PT(A), we have

€, 5] (npa)a=[£,S] (np)aca = (x¢) aa

and
€, S] (@™ ng)a = [¢, S]aj (ng)a = [£a, S] (nQ)a = Xea -

So it suffices to show that (x¢) @4 is an amalgamation of {o: Fs = Q.

For (B%A) € S, we have

(x¢) aa Q(f?) = (x¢) P(f?)ap = (f)Epas = (f) (§a)s.

pt—2 . p

N

Qt ——
Ad (b). By proposition 2.3.12.(b), (=)* maps . to z.¥. The same calculation as in (a)
shows that n is natural. O

Remark 2.3.24.
(a) For a sheaf P € Ob.%, we have (np)t = nps: Pt = Pt

(b) For an R-sheaf P € Ob(Rj), we have (np)t =np+: PTT = PT.
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Proof. Ad (a). Suppose given A € Ob.¥ and [£,S] € PT1(A), where {: Fs = PT.

We have [£,5] (np)} = [Enp, S| and [€, 5] (np+)a = x¢ . Write [(,T] := x¢ € PT(A), where
C: Fr= P

So it suffices to show that [ np, S] = [(,T] in PT(A).

Suppose given (BLA) € SNT. We have

(f) (€np)s = (f) € (np)p = (x¢) PT(f) (np)p = [, T) PT(f®) (np)p = [¢7, f*(T)] (np)s
= XCf € P(B)

So we have to show that x.,; = (f)(p , ie. that (f)(p € P(B) is an amalgamation of

In fact, for (C’LB) € f*(T), we have
()¢5 P(g*) = (£) Fr(g™) G = (af) Cc = (9) ¢
Ad (b). The same calculation as in (a) shows that (np)* = np+. O

Remark 2.3.25.

(a) By convention 24, we have

nxn = ((=)"%+n) - (nxly) = (=) %+n) n: (=) %o (=)*

4

and

nxn = (nx(=)*1%) - (1yxn) = (nx(=)*%) n: (=)*
so ((=)*%*n) n=(nx(—)*%) -n.

Remark 2.3.24.€a) shows that even (=) |‘/*n = n*(— )ﬂf; since ((—)+|§*n) = (np)™"
and (nx(—=)*|%), =np+ for P € Ob.7.

(b) By convention 24, we have
nxn = (( ) \ ~*n> .(n*lR‘ ;) = (( ) ‘ ~*n> ‘n: (_)+|§§O(_)+’2; _ 1RY7
and

nxn = (n*(—)ﬂg’;) . (1R5;*n) = (n*(—)ﬂi;) ‘I (‘)ﬂiﬁo (_)+|2§ =1,

S0 (( )t |R‘y*n>-n:<n*( )t |i) -1
(=
*(—

Remark 2.3.24.(b) shows that even (—)* |RV *n =nx*(—)" |R since

()27 n) = (p)* and (ne(=)* |Rj§)P:nP+ for P € Ob(p.7).
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Definition 2.3.26.
(a) Recall that (=)*|Z o (=)*7 = (=)~ 0 E: ¥ — .7, cf. definition 2.3.13.(a).
Let p:=n#*n: (—)"ocE=1,.
For a sheaf P € Ob.¥, we have np =np+ -np = (np)* -np: Pt = P.
Cf. convention 24 and remark 2.3.25.(a).

(b) Recall that (—)*|%7 o (<)*|*7 = (=)~ 0 B: g7 — p7, cf. definition 2.3.13.(b).
Let n:=nxn: (=)"oE=1 ;.
For an R-sheaf P € Ob(Rj), we have np =np+ -np = (np)* -np: P** = P.
Cf. convention 24 and remark 2.3.25.(b).

We do not destinguish between n: (=)~ oE =15 and n: (=)~ oE = 1_ in notation.

2.3.2.3 The sheafification theorem

Lemma 2.3.27.
(a) Suppose given a sheaf P € Ob.#. We have ep-np = 1p: P = P.

(b) Suppose given an R-sheaf P € Ob(g.#). We have ep-np = 1p: P = P.

Proof. Ad (a). Suppose given A € Ob.¥ and x € P(A).
We have

(#)(ep np)a = (z)(ep)a (np)a = 6%, max(A)](np)a = 2 = (2)(1r)a

since (z) P(f°P) = (f)5% for B~ A in . shows that = is an amalgamation of 3*.
Ad (b). The same calculation as in (a) shows that ep-np = 1p . O

Lemma 2.3.28.
(a) Suppose given a sheaf P € Ob . We have np-ep = 1p+: Pt = P+,

(b) Suppose given an R-sheaf P € Ob(R&Z). We have np-ep = 1p+: Pt = PT.
Proof. Ad (a). Suppose given A € Ob.¥ and [£,S] € PT(A).

Note that (f)(8%¢)p = (x¢) P(f?) = (f)&p for (BLA) € 5. So ™MW gre — ¢ and therefore
[, max(A)] = [€, S].

We obtain
€, 5] (np)a(ep)a = (x¢)(ep)a = [, max(A)] = [¢,5] =[¢, 5] (1p+)a.

Ad (b). The same calculation as in (a) shows that np-ep = 1p+. O
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Corollary 2.3.29.

(a) Suppose given a presheaf P € Ob .. The presheaf P is a sheaf if and only if ep is an
isomorphism in .¥.

(b) Suppose given an R-presheaf P € Ob(.#). The R-presheaf P is an R-sheaf if and only
if ep is an isomorphism in g.7.

Proof. Ad (a). If P is a sheaf, then ep is an isomorphism with inverse np by lemmata 2.3.27.(a)
and 2.3.28.(a). If ep is an isomorphism, then (ep)* is also an isomorphism since (—=)*: . — .&
is a functor. Consequently, P is a sheaf since it is isomorphic to the sheaf PT* via ep-(ep)™.
Cf. lemma 2.2.11.(a).

Ad (b). The same argument as in (a) shows that P is a R-sheaf if and only if ep is an
isomorphism. O

Theorem 2.3.30.

(a) Recall that .7 is a site, . is the category of presheaves on .# and .¥ is the category
of sheaves on .. Recall that E: . — .# is the full and faithful inclusion functor and
(—)~: ¥ — 7 is the sheafification functor. Cf. definitions 2.2.1, 2.2.2.(a), 2.2.8.(a) and
2.3.13.(a).

The diagram

with unit €: 1, = Eo(—)~ and counit n: (=)~ o E = 1 is an adjunction.
Cf. convention 43 and definitions 2.3.21.(a) and 2.3.26.(a).
So (=)~: .7 — .7 is left-adjoint to B: .9 — ..
(b) Recall that R is a ring, . is a site, R is the category of R-presheaves on . and p.¥
is the category of R-sheaves on .. Recall that E: ¥ — g% is the full and faithful

inclusion functor and (—=)~: p.¥ — . is the sheafification functor. Cf. definitions 2.2.1,
2.2.2.(b), 2.2.8.(b) and 2.3.13.(b).

The diagram

(=)~
R

E

with unit e: 1, = Eo(—)~ and counit n: (=) oE =1 _ is an adjunction.
R- R-

Cf. convention 43 and definitions 2.3.21.(b) and 2.3.26.(b).

So (—)~: RS = p s left-adjoint to E: n? = g



33

Proof. Ad (a). For P € Ob.¥, we have

(=) 5 )p - (% (=) )p = (Ep) - mpre = (ep-eps )™ -tipras -ps

R2.3.18.(a)
= (ep)Jr+ : (ep+)JrJr *Npt+++ - Np++ = €pt++ - €ptt++ F Np+++ - Np++

L2.3.27.(a) L2.3.27.(a)
= Cp++ - NN p++ - 1P++ s

so (=)~ xe)-(nx(=)7) =1~ .

For P € Ob.¥, we have

L2.3.27.(a) L2.3.27.(a)

(E*E)p'(E*n)p:Ep'npzep'eer'Her'Ilp = ep--Np = P,
o(exE) - (Exn)=1g.
E=Eo ~oE
\ﬂE*n
So (=)~ HE.
Ad (b). The same calculation as in (a) shows that (—)~ - E. O

2.3.3 The category of R-sheaves is abelian

Lemma 2.3.31. Suppose given a monomorphism P—2-+Q in p.¥. Then rLy(a): gL o P —
rI o () is monomorphic in . as well.

Proof. For A € Ob A, the morphism a4 is a monomorphism in Mod-R by remark 1.1.9.(b) and
therefore injective. So gl » ()4 = gY () is injective as well. Thus gY ¢ () is a monomorphism
in .77 [l

Lemma 2.3.32. Suppose given a monomorphism P—2+Q in z.%. Then P+Q_+>Q+ is
monomorphic in . as well.

Proof. Suppose given N—.ptin » with Bat = 0.
We want to show that g = 0.
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Suppose given A € Ob. and « € N(A). We have to prove that (z)54 =0 in PT(A).
Write [€, 5] := ()84 € PT(A).

We have [€ - glo(a),S] = [§,S]al = (z)Baal = 0. So there exists T € J4 with T C S such
that 17 ¢ - gls(a) = 0. Since g »(a) is a monomorphism by lemma 2.3.31, we conclude that
7€ =0 and thus [¢, S] = 0. O

Lemma 2.3.33. Suppose given KLP%Q in . such that k is a kernel of a. Then
rLo (k) has the following factorisation property in ..

Suppose given T——=3T o P in . with (2)ta - g¥s(a)s = 0 for A € ObA and z € T(A).
Then there exists a unique morphism T——gY o K in . such that u - gYo (k) = t.

RTOKLW)RTOPM)RTOQ

]

T

Proof. For A € Ob A, let L(A) := {z € P(A): (r)as = 0} be the usual kernel of as and

let L(A)Z—A>P(A) be the inclusion morphism. For B—15A i <, let L(f) be the induced
morphism between the kernels L(A) and L(B). This yields the functor L: .#°? — Mod-R and
the transformation [ = (I4)acop.v: L — P as in remark 1.1.9.(b). Moreover, [ is a kernel of «.

It suffices to show the factorisation property for gY»(l). Note that gY«(l) is monomorphic by
lemma 2.3.31.

For A € ObA and = € T(A), we have (x)ta s = (2)ta - gLy (a)a = 0 and therefore (x)ts €
L(A). Thus we may restrict uy := t|*“). So uyly = t4 by construction. It remains to show

that u := (ua)aeob.~ is natural. For B—L A in <, we have
ua L(fP) g =uala P(f°) =ta P(f?)=T(f")tg =T(f)uplp.
So ua L(f°P) = T(f°P) up since lg is monomorphic.
T(A) = L(A) —* P(4)

T(fov) lL(po)
T(B) -2 L(B) -2 P(B) O

Lemma 2.3.34. Suppose given KLPLQ in . such that k is a kernel of . Then k*
is a kernel of a* in ..

Proof. The morphism k" is a monomorphism by lemma 2.3.32.
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Suppose given T— Pt in R¢5’2 such that tat = 0.

K+ k. p+ o, QF

T

We have to find T—“+ K™ in z.% such that uk™ = ¢.

Suppose given A € Ob.¥. We want to define uy: T(A) — KT (A) as follows.

Suppose given x € T'(A). Write [¢,, S;] := (x)ta € PT(A), where S, € Jqand &, : Fs, = gYloP.
We have [¢, - glo (), S,] = [,fz, ook = (z)taal = 0. So we may choose U, C S, such that
Uy € Ja and ¢ & - gy (a) =

By lemma 2.3.33, there exists Fy, LRT oK in R,Sﬁ such that (, k = ng &

ok W yop 70 L yoQ

J

Ty, = Fs
'

T

Let (2)ua = [Co, U] € KT (A).
We have to show that u := (u4)acop.o is natural.

Suppose given B—lsAin ¥ and e T(A).

Since t is natural, we have, in P*(B),

[, 17 (S0)] = [y Su] PT(fP) = (2)ta PT(fP) = (@) T(f) ts = [@yr(sor)s Swyrson))-

So we may choose W/ C f*(S,) N Seyr(ser) such that W/ € Jp and
I (5a) ff S@rer) £

bt T(for)-
T(A) ——P*(4)
T(fP) l t(for)
T(B) — P*(B)
We have
(2)ua K¥(f) = [Cor U] K¥(f) = [¢L, f*(UL)]
and

() T(f) up = [C@yr(for) Uwyr(for))-
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Let V := WS N Ugyrsory N f*(Uy). So V € Jp, cf. lemma 2.2.14.

It suffices to show that of, ) ¢/ - gry (k) = Lg(I)T(fop) Cyr(sor) - RL# (k) since gL (k) is a
monomorphism by lemma 2.3.31.

For (C’LB) €V, we have

¢ R (R)e = (9f) (G - B0 (k))e = (gf) (157 &)
<sz>c = (9) () = () (I T e

S(a >T<f°P>
W g x)T fop))
U(z)T(fOP) S(ayr(op) 3
tv Uyr(sop)

U(z)T(fOP)
Ly )

(9) (YT o (k))e = (g)

L

(@)T(for))C

/\/\/;\ ~—
~F

We show that uk™ = t.
For A€ Ob.¥ and = € T(A), we have

(@)ua b} =[G, U kX = [Go - /Lo (K), Us] = [177 €a, Us] = [€, Sa] = (2)ta O
Theorem 2.3.35. Recall that R is a ring, .% is a site and r is the category of R-sheaves on
. Cf. definitions 2.2.1 and 2.2.8.(b).

The category of R-sheaves r7 is abelian.

Recall that . is the category of R-presheaves on ., E: r — p is the inclusion functor
and (—)~: ¥ — g is the sheafification functor. Cf. definitions 2.2.2.(b) and 2.3.13.(b).

The inclusion functor E is left-exact and the sheafification functor (—)~ is exact.
We give formulas for kernels and cokernels in . in remark 2.3.36.

Proof. We use lemma 1.3.2.(c) to prove the assertions. The diagram

(=)~
S

E

with unit e: 1_, = Eo(—)~ and counit n: (=)" o E = 1_5 is an adjunction, cf. theo-
rem 2.3.30.(b).
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The category R = (Mod-R)”*") is abelian since it is a functor category with values in an
abelian category, cf. remark 1.1.9.(c).

The category #-7 is additive and the inclusion functor E: p.% — . is full and faithful, cf.
proposition 2.2.13 and definition 2.3.13.(b).

It remains to show that (—)~ preserves kernels.

Suppose given f € Mor(z.¥) and a kernel k € Mor(p.¥) of f in .. By applying lemma
2.3.34 twice, we conclude that &+ is a kernel of f*+ in p.¥. By lemma 1.1.8, kt+ = k is also
a kernel of f*+ = f in p.. O

Remark 2.3.36. Recall that the diagram

(=)~
S

E

with unit e: 1_, = Eo(—)™ and counit n: (=)Y o E = 1_5 is an adjunction, cf. theo-
rem 2.3.30.(b).

Suppose given PLQ in po. Suppose given a kernel K SLEN N fin RQY? and a cokernel
Q——C of f in p.~.

A kernel of f in . is given by k.
A cokernel of f in RS s given by n(osl-é:sQ-E:c-sC =c-ec-ec+ .

Moreover, the diagram

commutes.

Proof. We show that a kernel of f in R is given by k. Choose a kernel L—t5p of fin r.
Then [ is a kernel of f in r as well since E is left-exact, cf. theorem 2.3.35. So L = K in
Rﬁ’? . Since p.¥ is closed under isomorphisms by proposition 2.2.13, we conclude that K is a
sheaf. Thus k is a kernel of f in p.¥ as well.

A cokernel of f in p.7 is given by 77{21 - ¢ = €q - € since we have 77{21 = E(nél) = epQ) = €q , cf.
lemma 1.3.2.(c). The formulas now follow from loc. cit. and from the fact that e: 1_5 = (—)*
is natural, cf. definition 2.3.17.(b). O
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2.4 Exact categories as sites

Suppose given a ring R.
Suppose given an exact category A = (A, E). Cf. definition 1.5.1.

We will endow A with a Grothendieck topology J¢ in definition 2.4.1 below. We will often
write A = (A, J?) for the resulting site.

So A can be viewed as an exact category or as a site, depending on the context.

2.4.1 Coverings

Lemma/Definition 2.4.1. For A € Ob A, let J§ := {S € Sieves(A): there exists p € NS}

The tuple J¢ := (Ji) is a Grothendieck topology on A.

AcOb A

Proof. For A € Ob A, we have 14 € & Nmax(A) by (E3). So max(A) € J§ and therefore (G1)
holds.

Suppose given B Ain Aand S e Jé . Choose (P—‘?—>A) € & NS. By (E7), there exists
a pullback

P'——B

N
P-4 A

in A with p' € & . We have p’ € f*(S) since p'f = f'p € S. So f*(S) € J§ and therefore (G2)
holds.

Suppose given A € Ob A and S € J§ . Suppose given a sieve T on A such that f*(T") € J& for

(BLA) € S. Choose (B—Iuj—>A) € & NS. Since p*(T) € J% , we may choose ¢ € E,Np*(T).
So qp € T and gp € & by (E5). We conclude that T € J§ and therefore (G3) holds. O

For the remainder of this section 2.4, we will work with the site A = (A4, J¢).

So for A € Ob A, a covering of A is a sieve on A that contains a pure epimorphism.

Remark 2.4.2. Suppose given a pure epimorphism P—Y A in A. The sieve generated by p
covers A, i.e.

Sy = {9 € Mor A: there exists f € Mor A such that g = fp} € Jé .

Cf. definition 2.1.6.
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Lemma 2.4.3. Suppose given an R-presheaf I’ € Ob(R.,Zl). Suppose given an object A € Ob A
and [¢, S] € F(A).

There exists a pure epimorphism (P—‘?—>A) € S with (p)&ép = 0 if and only if [¢, S] = 0.

Proof. Suppose given a pure epimorphism (P—Io)—>A) € S with (p)ép = 0.
Since S, C S, we have [¢, S] = [Lgpg, S,]. For B—1sPin A, we have

(fP)ss = (p) Fs(f*) & = (p)Ep F(f7) = (0) F(f*?) = 0.
So 1§ & = 0 and thus [1§ £, S,] = 0.
Conversely, suppose that [£,S] = 0 = [0,5]. So there exists a covering 7" C S of A with
L%f = 0. Choosing a pure epimorphism (P—Ir—>A) €T C S, we obtain (p)ép = 0. 0

2.4.2 Sheaves are quasi-left-exact functors

Definition 2.4.4. An R-presheaf F': A°® — Mod-R is called quasi-left-exact if and only if for
each pullback of the form

Q—2-pP
l r
q p
P A
in A, where p is a pure epimorphism, the sequence

F(p°P) F(g'°P)—F(g°P)

F(A)

F(P)

F(Q)

is left-exact in Mod-R.

We will see in lemma 2.4.7 that the quasi-left-exact R-presheaves are precisely the R-sheaves.

The term quasi-left-exact was chosen since in case F' is additive it means that F' is left-exact.
Cf. lemma 2.4.8 and proposition 2.4.13 below.

Remark 2.4.5. Thomason and Trobaugh [15, p. 400] use the term ”left exact” for what we
call quasi-left-exact.

Remark 2.4.6. An R-presheaf F': A°® — Mod-R is quasi-left-exact if and only if for each pure

short exact sequence B—»P—Y A in A, the sequence

YR (G 4 (C) i B

F(A)

is left-exact in Mod-R.
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Proof. Suppose given a pure short exact sequence B—4sP- Y Ain A

We show that the diagram

B P——P
.
P—%—A

is a pullback.
Suppose given z,y: T'— P in A such that zp = yp. So (y — z)p = 0.

For (st): T — B@® P with (st)({) =z and (st) (%) = y, we necessarily have ¢t = = and
st =y — x. Since ¢ is monomorphic, s is uniquely determined by x and y.

It now suffices to show that there exists a morphism (st): T — B@® P with (s¢)({) = and
(st) (1) =v.

Since i is a kernel of p, there exists w: T' — B with wi = y—z. The morphism (w=z): T — B&P
satisfies (wz) () =z and (we)(i)=y—ax+z=1y.

Now suppose given an arbitrary pullback

Q——P
1" b
g
Pt A
in A.
Since the diagram
(7)
Ba PP
(4) j :
P—4 A

is a pullback as well, there is an isomorphism (uv): @ — B @ P such that (uvv)({) = ¢ and
(vo) (1) =¢"

The diagram
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commutes since

FA) 2 pp) F(B® P)
is left-exact in Mod-R if and only if the sequence
F(A) F(p°P) F(P) F(g'°P)—F(g°P) F(Q)
is left-exact in Mod-R. [

Lemma 2.4.7. Suppose given an R-presheaf F': A — Mod-R.
The R-presheaf F'is an R-sheaf if and only if F' is quasi-left-exact.

Proof. Suppose that F'is quasi-left-exact.
Suppose given A € Ob A, S € J4 and £: Fg = gl o F.

We have to show that £ has a unique amalgamation x € F'(A).

Choose a pure epimorphism ( P—?—>A) € S and a pullback

Q—2-p
(A
g p
P-t,A

F(g'°P)—F(g°P)

The sequence F (A)F(pop)F(P)
We have

F(Q) is left-exact since F' is quasi-left-exact.

(p)ép (F(g'°P) — F(g°")) = (p)(Fs(9'") £ — Fs(9) £q) = (9')éq — (9p)éq
= (9p)q — (9p)§q@ = 0.

So there exists precisely one x € F(A) with (z) F(p°?) = (p)ép . In particular, there exists at
most one amalgamation of &.

It suffices to show that x is an amalgamation.

Suppose given (BLA) eS.
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Choose a pullback

&.}
+—
i
3 3
oy

~

We have

(x) F(f) F(p') = (x) F(p™) F(f"") = (p)&p F("7) = (p) Fs(f**°) & = (f'P)Sp
= (' N)ép = (f) FEs('®) &p = (/)& F(P'™).

The morphism F'(p'°P) is monomorphic since F' is quasi-left-exact. Thus (x) F/(f°P) = (f)¢s -

Conversely, suppose that F' is an R-sheaf.

Suppose given a pure epimorphism P—Y A and a pullback

Q P
P

— A
We have to show that the sequence F' (A)F(p F(P) F(Q) is left-exact.
Suppose given y € FI(P) with (y)(F(¢'*?) — F(¢°?)) = 0, i.e. (y) F(g'*") = (y) F(9°).
Recall that S, € J§ , cf. remark 2.4.2.

g
—
-

P) F(g"°P)—F(g°P)

We want to define §: Fg, = gY o F.
For Be€ Ob A, let £5: S,NHomu (B, A) — F(B): fp+— (y) F(f°).
This is well-defined since in case fp = f'p for f, f’ € Homy(B, P), there exists u: B — @ such
that f = ug and f’ = ug’ by the pullback property and so
() F(fP) = (y) F(g°") F(u®) = (y) F(g"") F(u) = (y) F(f'P).

For C—*—+B— P in A, we have

(/) F(g?) = (y) F(f*) F(9) = (y) F((9f)*) = (9/p)sc = (fp) Fs,(9) éc -

Thus ¢ is natural.

Since F is an R-sheaf, there exists a unique z € F(A) such that (z) F(p°®) = y since this
equation implies (x) F((fp)°) = (x) F(p) F(f*) = (y) F(f**) = (fp)és for B—L=P in A

F(p°P) F(g'°P)—F(g°?)

We conclude that the sequence F'(A)

F(P)

F(Q) is left-exact. O
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Lemma 2.4.8. Suppose given an additive R-presheaf F': A°® — Mod-R, i.e. suppose F' to be
an additive functor. The following three statements are equivalent.

(a) The R-presheaf F' is a sheaf.
(b) The R-presheaf F' is quasi-left-exact.

(¢) The R-presheaf F is left-exact.

Proof. The statements (a) and (b) are equivalent by lemma 2.4.7. We use remark 2.4.6 to show
that (b) and (c) are equivalent.

Suppose given a pure short exact sequence B—4>P—Y A in A

The diagram

FA) ") (P F(i°P) F(B)
()7 BJ@

F( 10) °p
F(B)

commutes.

Since F' is additive, we have

F((1)7)=F(()™) =F((§)™)-
The morphism F((§)*) is monomorphic since F/((§)*) - F((10)") = F(1°°) = 1.

Thus the sequence

F7) P(()")-+(()™)

FA) 2 p(p) F(B& P)

is left-exact in Mod-R if and only if the sequence

F(p°P) F(i°P)
— —

F(A) F(P) F(B)

is left-exact in Mod-R. O

Lemma 2.4.9. Suppose given an R-presheaf F': A°® — Mod-R. If F'is an additive functor,
then F'* is additive as well.
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Proof. At first, we want to show that F*(04) = Omoar in Mod-R.
Suppose given [£, S] € F*(04). Choose a pure epimorphism (P——04) € S.

Consider the commutative diagram

o4

Fs(04) —= F(0.4)

w0 | [

Fs(P) —2— F(P)

in Set. We have (0){p = (0) F5(0°?) £p = (0)&p,, F'(0°P) = 0 since F'(0°?) = 0 by assumption.
We conclude that [£,S] = 0 and, consequently, F*(04) = Oymoar in Mod-R.
Now suppose given A, B € Ob.A. Writei:=(10): A—-A® Bandj:=(01): B— A& B.

It suffices to show that (F*(or) Ft(or)) : FT(A@® B) — F*T(A) @ F"(B) is monomorphic in
Mod-R, cf. lemma 1.1.3.

Suppose given [£,S] € FT(A @ B) with [§,S] (F*+or) Fter)) = 0. So : Fs = F. We have to
show that [¢, S] = 0.

Since [¢, S] (#+6) FrGr)) = ([€7,i*(S)], [€7, 5 (S)]), we have [¢,7*(S)] = 0 and [¢/, j*(5)] = 0.
By lemma 2.4.3, we may choose pure epimorphisms (PA—pA|—>A) € 1*(S) and

(Ps—F=B) € j°(S) with (pa)h, = 0 and (pp)&h, = 0.

Choose a pure epimorphism (C’—T—>A S B) es.

By (E7), there exist pullbacks

Cp—4L A Cp—+t B
[m ot |7y

CA 7 CB J
C—S$—-AaB C—$%-AadB

in A with e4 and ep purely epimorphic.

Again by (E7), there exist pullbacks

QA—qAHCA QB—qOB—>CB
r r

o7 e
Pyt A Py B

in A with ¢4 and ¢p purely epimorphic.
By (E5) and lemma 1.5.11, the morphism (qAOeA
We have

Qa0Qp — A® B is purely epimorphic.

QBEB)

(qAOeAqBoeB)Z( Jgaeai—+ (§ )CIBeBJ—(( Ygaca+ (9 )chB>eES
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It suffices to show that (%44 (000 = 0 by lemma 2.4.3.

QABB )

Note that the morphism (F((10)®) F((01)™)) : F(Qa ® Qp) — F(Qa) ® F(Qp) is an isomor-
phism since F' is additive.

Since ¢ is natural, we have

Eoam0p (FU(10)P) F((01)P)) = (€00 F(10)) & a0 F((0 1))

= (Fs((10))éq, Fs((0 1)™)qp )

(Fs((10)°") Fs((0 1)°)) (5%“ &SB ) :

gQAEBQB

Fs(Qa® Qp) F(Qa®Qp)
(Fs((10)°?) Fs((0 1)°p))l (£QA 0 ) l(F((l 0)°P) F((0 1)°%))
0 ¢
Fs(Qa) ® Fs(Qp) ——2%5 F(Q.) & F(Qp)

We obtain

A o) (Fs((10)7) Fs((01)°7)) <£%A 553 )
quAO OQBEB))(gQOA EQ(Q)B)

qaeat,qpep ] ( 0 5Q3>

(9454 2 ) Equaan (F((10)®) F((

3
fapat, fBPB] ( %A oy

(fapai) 5QA, (f505)¢0s)

(pat) Fs( gQA?(pB]) Fs(f5) $as)
(pai) fPA ). (v )&y FOFF))
(
(

Pa 5PA > (pB) &hy F(FE))
0) F 0) F(f3))

("%
= ((
=
=
(
(
(
(
(
0.

Thus (%454 quB) €000, = 0. ]

2.4.3 Effaceable presheaves

Definition 2.4.10. An R-presheaf F': A°® — Mod-R is called effaceable if and only if for each
A € Ob A and each x € F(A) there exists a pure epimorphism P—Y A with (x) F(p°?) = 0.

Lemma 2.4.11. Suppose given an R-presheaf F' € Ob(gA).

The following five statements are equivalent.
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Proof. The equivalence of (ii) and (iii) was shown in corollary 2.3.19.

Since ep = ep - ep+ , the equivalence of (iv) and (v) follows from ep+ monomorphic, which was
shown in remark 2.3.18.(b).

Ad (i) = (ii).
Suppose given A € Ob A and [£,S] € F(A). So&: Fs = gl o F.

Choose a pure epimorphism (P—Inj—>A) es.

Since F' is effaceable, we may choose a pure epimorphism Q—7—>P for (p)¢ép € F(P) such that
(p)ép F(q*?) = 0.
Recall that S,, € J§ , cf. remark 2.4.2.

For ULQ in A, we have

(fap)év = (p) Fs((fa)®) &v = 0)&p F((f@)?) = (p)ép F'(¢°P) F'(f°F) = (0) F(f?) = 0.
So 1§ €= 0and therefore [¢, 5] =0 € F*(A).
We conclude that F7(A) 220 in Mod-R for A € Ob A.
Ad (i) = (iv).
The codomain of ef is a zero object by assumption.
Ad (iv) = ().
Suppose given A € Ob.A and « € F(A). We have [3%, max(A)] = (z) (ep)a = 0 € F*(A).

By lemma 2.4.3, there exists a pure epimorphism P—Y—A in A with
(z) F(p*?) = (p)Bp = 0. O
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2.4.4 An example: quasi-left-exact but not left-exact

Lemma 2.4.12. Suppose given an abelian category B. Suppose given the following commuta-
tive diagram in B.

X x 2

A 1 e

vy Loy Ly
gl lg Jg,,
Z/ Zl Z Z// Z//
Suppose that the rows and columns are short exact sequences, i.e. that

’ 7 y/ y” ’ 7 f’ g’
X =X =5 X", Y =Y YY" 727257 X ==Y =7,

XLov—237 and X" Ly Lz
are short exact sequences.

(9y")

The sequence X' "Iy Z ®Y" is left-exact.

Proof. Suppose given T——Y in B with ¢ - (gv") =0. So tg = 0 and ty” = 0. We conclude
that there exist T—*+X and T—2>Y” in B with af =t and by =t.

Since the diagram

X 2 x

f

Y'Y
is a pullback by the kernel-cokernel-criterion lemma 1.1.2.(a), there exists T—— X"’ such that
ux’ = a and uf’ = b.
Thus ux'f = af =t.

The induced morphism is unique since 2’ f is a monomorphism as composite of monomorphisms.

\

X’—o—>X—»—>X”

}f/ }f \{f/l

P e 44

g/ { {g }g//
7 "

AR -y O
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Example 2.4.13. Suppose given a field K. For (XLY), (X’f—/>Y’) € Mor(mod-K), let
XX ey ® Y’ denote the tensor product over K.
We consider the site (mod-K)°P, cf. definitions 2.2.1 and 2.4.1.

The K-presheaf F': mod-K — Mod-K defined by

F(xX—1ov) = (xexhyey)

for X— Y in mod-K is quasi-left-exact but not left-exact.

I learned this from Fernando Muro [11].

Proof. We show that F'is not left-exact. It suffices to show that F' is not additive.
If F' was additive, then

ke (r(3) ()

F(K)® F(K)

= (K®K)® (K& K)

(W) Q) | o0 o &)
would be an isomorphism in Mod-K, cf. [14, prop. 4]. Abbreviate f := ((§)2(§) (9)=(9)).

Since f is K-linear, we may argue by counting dimensions. In fact, dimyx (K@ K)Q(KGK)) =4
and dimg (K ® K) ® (K ® K)) = 2. So f can not be an isomorphism and thus F' can not be
left-exact.

We show that F' is quasi-left-exact.

Suppose given a short exact sequence C—~B—"5A in mod-K.

We have to show that the sequence

&F(B)

F(p1)-F(01)

F(C)

F(A® B)

—CC*2,B%B (p )®(p 1)—(0 1)®(0 1)

is left-exact in Mod-K, cf. remark 2.4.6.

(A B)® (A® B)

Note that
o myo(ass) — D@ W) Do) @) | 4o e e
and

(ARA)B(A®B)®(BRA)S(BRB) (A®B)®(A®B)
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are mutually inverse in Mod-K.
We have
()@ ()= (o1)@(01)) - ((Be(d) (B)a(9) (De(d) (9)a($) ) = (vowver 1ep0).

So it remains to show that 7 ® 7 is a kernel of

(p®p p1 18p 0) (A A)a(A®B)® (B A)® (B® B)

B® B

For X—'-Y in mod-K , let ker(f) C X denote the usual kernel.

Note that p@p=(1®@p)(p®1) = (p®1)(1 ®p), so ker(p @ p) 2 ker(p ® 1) Nker(1 @ p).
We have ker((»ep pe1 1@p0)) = ker(p ® p) Nker(p @ 1) Nker(1 ® p) = ker(p ® 1) Nker(1 ® p).
So it suffices to show that ¢ ® i is a kernel of (p21 10p).

This follows from lemma 2.4.12 applied to the diagram

CoCLc9B 00 A

i®1l li@l lz’@l

BoC 2 BB *,Bg A

p®1l lp@l lp@l

AC2 A0 B2 Ax A.

The rows and columns are short exact since for X € Ob(mod-K), the functors
— ® X: mod-K — Mod-K and X ® —: mod-K — Mod-K are exact. O

Remark 2.4.14. If we compose the K-presheaf F': mod-K — Mod-K from the preceding
example 2.4.13 with the forgetful functor T: Mod-K — Mod-Z, we obtain the Z-presheaf
T o F': mod-K — Mod-Z which is also quasi-left-exact but not left-exact.

2.5 The Gabriel-Quillen-Laumon immersion theorem

Suppose given an exact category A = (A, E). Cf. definition 1.5.1.

Recall that we endowed A with the Grothendieck topology J¢ in definition 2.4.1. We will often
write A = (A, J?) for the resulting site.

So A can be viewed as an exact category or as a site, depending on the context.

2.5.1 The Gabriel-Quillen-Laumon category

Definition 2.5.1. Let GQL(A, &) be the full subcategory of z.A whose objects are the left-
exact functors from A% to Mod-Z. We call GQL(A, &) the Gabriel-Quillen-Laumon category
of (A, €).
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We abbreviate GQL(A) = GQL(A, £) if unambiguous.
For historical remarks, see e.g. [2, rem. A.4]. Some denote the Gabriel-Quillen-Laumon category
by Lex(A,E).

Theorem 2.5.2. Recall that A = (A, &) is an exact category, yielding the site A = (A, J¢) as
in definition 2.4.1. Recall that the category of Z-sheaves zA is abelian by theorem 2.3.35.

The category GQL(.A) is a full additive subcategory of zA and it is closed under isomorphisms.
Moreover, kernels and cokernels of morphisms in GQL(A) formed in zA lie again in GQL(A):

Suppose given K b F—%3G—55C in zA such that k is a kernel of a and ¢ is a cokernel of
ain zA. If F,G € Ob(GQL(A)), then K,C € Ob(GQL(A)).

In particular, GQL(.A) is an abelian category.
We give formulas for kernels and cokernels in GQL(.A) in remark 2.5.5.

Proof. By lemmata 2.4.7 and 2.4.8, the objects of GQL(.A) are Z-sheaves and therefore objects
of zA. So GQL(A) is a full subcategory of z.A. Moreover, an object F' € Ob(z.A) is an object
of GQL(A) if and only if F' is an additive functor. By remark 1.1.9.(e), GQL(.A) contains the
zero objects of zA and it contains F @ G for F,G € Ob(GQL(A)). Thus GQL(A) is a full
additive subcategory of zA. It is closed under isomorphisms by remark 1.1.9.(f).

Suppose given F——G in GQL(A). Suppose given a kernel K —k L F and a cokernel G——C
of o in z/l.
A kernel of f in zA is given by K—"F and a cokernel of fin zA is given by GLC’,
where : (=)“oE = 1_ is the counit of the adjunction
A (7)N ~
AT A

E

as in theorem 2.3.30.(b). Cf. remark 2.3.36.

The functors K and C are additive by remark 1.1.9.(b). By applying lemma 2.4.9 twice, we
conclude that C' is additive as well. So kernels and cokernels of morphisms in GQL(.A) formed

in z.A lie again in GQL(A).

The induced morphism in a kernel-cokernel-factorisation of « is an isomorphism in the abelian
category z.A and thus also in the full subcategory GQL(A) of zA. ]
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Remark 2.5.3. We have the following inclusion diagram of full subcategories of rA.

zA
T T

zA Add(A°, Mod-Z)
\ /

GQL(A)

Note that all these categories are abelian.

The inclusion functors from GQL(A) to z.A and from Add(A°, Mod-Z) to z.A are exact.
The inclusion functors from GQL(A) to Add(A°, Mod-Z) and from zA to zA are left-exact.
Cf. theorem 2.3.35 and remark 1.1.9.(h).

Definition 2.5.4. Suppose given AL BinA

For D € Ob A, we have the usual kernel Kf(D)%HomA(D, A) of (zy4(f))p in Mod-Z,
where K;(D) = {h € Homu4(D, A): hf =0} and (ks)p is the inclusion morphism.

Remark 1.1.9.(b) yields the functor Ky: A% — Mod-Z and the transformation

kp: K; = ,y4(A) such that k; is a kernel of 5y ,(f) in z.A.

For E—~D in A and g € K;(D), we have () K;(h°P) = hg.

(c}
For D € Ob A, we have the usual cokernel Hom 4 (D, B)#HomA(D, B)/Homyu(D, A) f
of (zy4(f))p in Mod-Z, where (c})p is the residue class morphism.
We abbreviate g := g + Homu(D, A) f for ¢ € Hom (D, B) if unambiguous.

Remark 1.1.9.(b) yields the functor C%: A° — Mod-Z and the transformation

¢t zya(B) = Cj such that ¢} is a cokernel of zy,(f) in zA. For E—"»D in A and
g € Homyu(D,B), we have C3(D) = Homu(D, B)/Homyu(D, A)f and g C}(h?) = hg €
HOIIl_A(E, B)/HOHlA(E,A)f

gy (B) ()T

Moreover, let (ZyA(B)LCf) = (ZyA(B) (C;)++)'

zya(B) ———C5

EZM(B)Jv \ JEC?

zya(B)*F ch



102

Remark 2.5.5. Recall that the diagram

(=)~
AT

E

~

with unit e: 1_; = Eo(—)~ and counit n: (-)
rem 2.3.30.(b).

oE = 1 ; is an adjunction, cf. theo-
Z

Suppose given F——G in GQL(A) C zA. Suppose given a kernel K—"5F of ain zA and a
cokernel G—<—C' of « in zA.

A kernel of a in GQL(A) is given by k.
A cokernel of a in GQL(.A) is given by 7751 C=eqg-C=C-Ec=C-€c-€c+ .

Moreover, the diagram

commutes.

Cf. remark 2.3.36 and theorem 2.5.2.

In particular, for AL BinAand a = zya(f), we may choose k = k; and ¢ = ¢} . Thus a
cokernel of zy,(f) in GQL(A) is given by ¢y = ¢} -ecs = ¢} -ece - e(cs)+ -

Cf. definition 2.5.4.

2.5.2 The immersion theorem

Definition 2.5.6.
Recall that for X € Ob A, the Z-Yoneda functor zy,(X) = zy4 x: A®? — Mod-Z is left-exact,
cf. definition 1.2.3.(b). Thus we may define

Yiae) = zya |99 A — GQL(A, €).
We abbreviate Y = Y4 = Y 4 ¢) if unambiguous.

Remark 2.5.7. Suppose given F——G in GQL(.A). Suppose given a cokernel G——C of a
in z.A. The morphism « is epimorphic in GQL(A) if and only if C is effaceable, cf. lemma 2.4.11
and remark 2.5.5. Recall that C' is effaceable if and only if for all X € Ob.A and all z € C(X),

there exists a pure epimorphism P—+—X in A such that (z) C(p°) = 0, cf. definition 2.4.10.
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In particular, suppose given AL B in A The morphism ,y,(f) is epimorphic in GQL(.A)
if and only if Cf is effaceable. Now Cf is effaceable if and only if for all X —" B in A, there
exists P—~—A and a pure epimorphism P—YX in A such that ph = uf, cf. definition 2.5.4.

P x

P
ul h
f
A——B

" ,B and a pure epimorphism P—"—X in A.

Proof. Suppose given A / B, X
Note that C3(X) = Homa(X, B)/ Homy(X, A)f.

We have (h) Ci(p®) = ph € Hom4(P, B)/ Homy (P, A)f.

So (h) C3(p°) = 0 if and only if there exists P—*—A in A such that ph = uf. O
Theorem 2.5.8. Recall that A = (A4,€) is an exact category and that the Gabriel-Quillen-
Laumon category GQL(.A) is the full subcategory of z.4 whose objects are the left-exact functors

from A°P to Mod-Z, cf. definition 2.5.1. Recall from theorem 2.5.2 that GQL(.A) is an abelian
category.

The functor Ys: A — GQL(A) is a closed immersion, i.e. it is full, faithful and exact, it detects
exactness and the essential image Imeg(Yy) is closed under extensions, cf. definition 1.5.8.

Proof. The functor Y4 is full, faithful and additive since it is the restriction of the full, faithful
and additive Yoneda functor zy,: A — zA. Cf. definition 1.2.3.(b).

We show that Y, is exact and that it detects exactness.
Suppose given AL B2 0 in A

Suppose that the sequence AL s pure short exact in A.

The sequence

(Ya(4) 25V (B)

Ya(g) (f) (9)
PEVUC) ) = (a2 pya(B) 224y, (C) )

is left-exact in zA, cf. definition 1.2.3.(b). Therefore this sequence is left-exact in GQL(A) as
well, cf. remark 2.5.5. We have to show that it is exact in GQL(.A). It suffices to prove that
zy(g) is epimorphic in GQL(A). Thus we have to show that the cokernel Cj of zy,(g) in zA
is effaceable, cf. remark 2.5.7.

Suppose given X 0 in A
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Choose a pullback

in A. So p is a pure epimorphism in A with ph = ug.

We conclude that C; is effaceable. Thus zy,(g) is epimorphic in GQL(A) and, consequently,

the sequence (YA(A)MYA(B)MYA(C)) is exact in GQL(A).

Conversely, suppose that the sequence

(Ya() ZENUB) HBNU(C) ) = () =22 g0 (B)—240 s ,(C) )

is exact in GQL(A). So it is left-exact in zA, cf. remark 2.5.3. Thus f is a kernel of g in A,
cf. definition 1.2.3.(b). It suffices to show that ¢ is a pure epimorphism. By remark 2.5.7, the

cokernel Cy of zy,(g) in 2 A is effaceable. So for C—<-C' in A, we may choose P—— B and
a pure epimorphism P—-—C' in A such that p = ple = ug. By the obscure axiom 1.5.13.(b),

we conclude that ¢ is purely epimorphic. Thus the sequence ALBLC is purely short
exact in A.

We show that Tmeg(Yy) is closed under extensions.

Suppose given A, B € Ob A and a short exact sequence ZyA(A)LFLZyA(B) in GQL(A).
We have to find X € Ob A such that F' = ,y,(X) in GQL(A).

For D € Ob A, we have the usual cokernel Hom (D, B)——=——Hom(D, B)/Im(gp) of fp
in Mod-Z, where cp is the projection morphism and Im(gp) is the set-theoretic image of the
map ¢gp . We abbreviate h := h + Im(gp) for h € Hom4(D, B) if unambiguous.

Remark 1.1.9.(b) yields the functor C': A°® — Mod-Z and the transformation c: zy,(B) = C
such that ¢ is a cokernel of g in zA. For E-—*5D in A and h € Homy (D, B), we have
C (D) = Homu(D, B)/Im(gp) and h C(k°?) = kh € Homy(FE, B)/Im(gx).

Since g is epimorphic in GQL(.A), the cokernel C' of g in zA is effaceable, cf. remark 2.5.7. So

for 15 € Hom(B, B)/Im(gp), we may choose a pure short exact sequence I——P—"-1 in
A such that

p= (1) C(p®) =0 € Homu(P, B)/Im(gp).
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Thus we may choose x € F(P) with (z)gp = p.

Let o := (2)gpp: zya(P) = F, cf. lemma 1.2.2.(b) and definition 1.2.3.(b). Note that
(Ip)ap = x and ag = zy,(p).
Choose a pullback

Q
Q
<
=
3

£
%

b
| —I\
N
=
B

in GQL(A). By the kernel-cokernel-criterion, lemma 1.1.2, the morphism ¢’ is epimorphic in
GQL(A) and we may choose a commutative diagram

2a(A) — L Q—L s yu(P)

] [7 Jew

ZYA(A> F . ZYA(B)

in GQL(.A) such that f’is a kernel of ¢'.

For 1, ,(p) and o, we may choose zy,(P)——Q in GQL(A) such that ug’ = 1,,,(p) and ug = a.

So the sequence zy A(A)LQLZy 4(P) is split short exact. Since 2y, is additive, we may
choose an isomorphism 2y (A @ P)——@Q in GQL(A) such that vg’' = 2y, (9).
Cf. convention 38.

Let r := vg. We obtain the pullback

24(1)

z2YA(A® P) ————— zya(P)

Tl " lZYA (p)

F > ZYA(B)

in GQL(A). Since 2y, is exact, zy4(p) is epimorphic. Hence r is epimorphic.
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Again by the kernel-cokernel-criterion, lemma 1.1.2, and by the fullness of ,y, , we may choose
a commutative diagram

zya(l) — zya(l)
zala b)l ) lzm(i)
2A
2y4(A & P) —— 2ya(P)
r
Tl JZYA(Z’)
F : zya(B)
in GQL(A) such that 2y, (ab) is a kernel of 7. Note that zy,(b) = zy4 (ab)-zv4 (V) = zya(?),
so b =1 by the faithfulness of zy 4.
Moreover, we have
(ai) - (01) (a9) (59)
(1—“ s aep)=(I Aol— A0 —2" L AqP)

in A, where (01) is purely monomorphic, (}9) is isomorphic with inverse ( 1, 9) and (§9) is
purely monomorphic by lemma 1.5.11.(b).

Thus (i) is purely monomorphic as composite of pure monomorphisms. Choose a cokernel

(¢)

A@® P—=X of (ai)in A. Since Yy is exact, zy4 (¢) is a cokernel of zy 4 (ai). Since 7 is also
a cokernel of 2y, (ab), we conclude that F' = ,y,(X) in GQL(A). O

2.5.3 An elementary description of cokernels in GQL(.A)

We shall give a description of cokernels in the Gabriel-Quillen-Laumon category GQL(.A) with-
out using the language of sheaves. This is possible but probably not very helpful.

We will not use the results of section 2.5.3 in the sequel.
k
For a pure epimorphism P—YAin A, let K,——P be a kernel of p.

Lemma/Definition 2.5.9. Suppose given an additive Z-presheaf F': A°® — Mod-Z.
Suppose given C' € Ob A.

Let Fi¥(C) denote the set of all pairs (z, P—ZO.QC), where p is a pure epimorphism in A and
x € F(P) such that (z) F(k?) = 0.

For (z, P——C), (<, P’—pn/—>C’) € FX0), let (z, P2=C) ~ (o, P’p—,>C') if and only if
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there exists a commutative diagram

N
N A

in A such that gp = ¢'p’ is a purely epimorphic and such that (z) F'(¢°?) = (2') F'(¢'°P).

This defines an equivalence relation on Fi=(C). Let F¥(C) := F;¥(C)/~ denote the factor set.
Let [z, P—4—C] € F¥(C) denote the equivalence class of (z, P——C) € FI¥(C).

We shall construct mutually inverse maps

FH(C) = F¥(C).
vc

Suppose given [£,S] € FT(C), cf. remark 2.3.3. Choose a pure epimorphism (P—LC’) €S
and let

[57 S]Ug = [(p)§P ) P_LO]
This definition is independent of the choice of the pure epimorphism.
Conversely, suppose given [z, P—%C] € F’¥(C). For X € Ob A, let
Pex: S,NHomy(X,0) — F(X): (X—2oP-"5C) v (2) F(g).
Let 2€ := (P¢x) xeopa and let [z, P—Z!)—>C’]vg = €, S,).

Suppose given D—L-C in A. We shall define FE(for): F*(C) — F*(D).

Suppose given [z, P—1—C] € F*(C).

Choose a commutative diagram

P XD

A

p-t.C

in A such that p’ is a pure epimorphism. This is possible since we may e.g. form the pullback
of f and p.
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Let [z, P—I—C]FE(f?) = [(z) F(f'°), P’—pnl—>D]. This definition is independent of the
choice of the commutative diagram.

By defining the Z-module structure on F*(C) via uf for C € Ob A, the maps uf, v and
F*®(f°P) become Z-linear for D—15C in A
We obtain a Z-presheaf F*¥: A°° — Mod-Z and an isotransformation

ul = (ug)cEObA: Ft= Fx,

Proof.
1. We show that ~ defines an equivalence relation on ¢ (C).

Using identities, we see that ~ is reflexive. By construction, ~ is symmetric.
Suppose given (z, P——C), (', P'—5—C), (2", P"5—C) € FE(C) such that
(z, P——C') ~ (¢!, P——C) and (¢, P'—+—C) ~ (2", P"5—C).
We may choose commutative diagrams
P/
R\ /C
"1

in A such that gp = ¢'p’ and r'p’ = r"p" are pure epimorphisms and such that
(0 P = (o) P wd o) ) = (o) oo
Choose a pullback

in A. Note that s and ¢ are purely epimorphic.
The diagram
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commutes in A since sqp = sq'p’ = tr'p’ = tr’p”, which is, moreover, purely epimorphic.

Moreover, we have (sq¢’ — tr')p’ = sq'p’ — tr'p’ = 0. So there exists S—— K,/ in A such
that uk, = sq’ — tr’ since k, is a kernel of p'.

We have
() F((5q)") — (2") F((tr")?) = (x) F(¢*) F(s°?) — (2") F(r"°) F(t*®)
) F(g") F(s) — (&') F(') F(t)
(sq' —tr')°)

thus (z) F((sq)) = (=) F((tr")°").

We conclude that ~ is transitive.

2. We show that uf. is a well-defined map.

Suppose given [£,S] € FT(C). Choose a pure epimorphism (P—LC) € S. We have

(p)ép F(EP) ) Es(kP) €k, = (kpp)Ek, = (0k,.c )¢k,

(p) Fs
(Ox,.c) Fs(0%) Ex, = (Ox,.0) §x, F(0%)
0
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since F' is additive.

Suppose given another pure epimorphism (P’ —p|—>C) es.

Choose a pure epimorphism ¢ € S,NS, . So there exist Q—*—=P and QLP’ such
that ap = ¢ = a’p’. So the diagram

P
X
Q—+—>cC
N
Pl
commutes, the morphism ¢ = ap = da'p’ is purely epimorphic and we have

(p)ép F(a™) = (p) Fs(a®®) &g = (ap)éq = (9)éq
(a'p)q = (p') Fs(a'?) &g
(p)p F(a"P).

Suppose given [¢’, S’ € F7(C) such that [, 5] = [¢/,S"]. We may choose a pure epimor-

phism (P—LC ) € SNS’. Since we already know that the definition is independent of
the choice of the epimorphism, we conclude that it is also independent of the choice of
the representative:

€, SJul. = [(p)ép , P—4—C] = ¢/, S'Ju..

. We show that v% is a well-defined map.
Suppose given [z, P—]TQC] € F¥(C). Suppose given X%&P in A such that gp = hp.

So (g — h)p = 0 and thus we may choose X——K,, in A such that uk, = g — h since k,
is a kernel of p. We have

(z) F(g°°) — (z) F(hP) = (2)(F(¢) — F(h°?)) = (z) F((g — h)®) = (z)F((uk,))
= (z) F(k?) F(u®) = (0) F(u°®) = 0.

We conclude that (x) F((¢°P) = (x) F(h°P).
Thus 2¢x: S, NHomu (X, C) — F(X) is well-defined.

Suppose given Y—"5X in A. For X—2>P in A, we have

(9p) 2x F(hP) = (2) F(g°7) F(h?) = (2) F((hg)*) = (hg) 3¢y = (9) Fs, (h*) 5éy -
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Thus ?¢ is natural.

Fs (hop)l lF hop

F(Y)

/—\

=

N—
J{S’d
oy

;

Suppose [z, r—c | =1[, P SN/ |. Then we have a commutative diagram

/\
\/

in A such that p,p’ are purely epimorphic, such that gp = ¢'p’ is purely epimorphic and
such that (z) F'(¢°°) = (') F(¢'°?). Note that S,, € S,NS, . For R——Q in A, we
have

(rap) 2&r = (x) F((rq)™) = ( = () F(¢'®) F(r**) = (') F((q'r)™)

K
S—
b
—

(=
@]
o
S——
kS
—

=
Q
L]
N——

We conclude that [P€,S,] = [Zl,f‘, Sy

So the definition is independent of the choice of the representative.
. We show that uZ and v} are mutually inverse.

Suppose given [£, S] € FT(C). Choose a pure epimorphism (P—If—>0) €Ss.
We have

(([& SDu)wt = ((p)ep, P—CIE = [ .S, |-
Note that S, € S. For X—2=P in A, we have
(99) (ex = (0)ér F(9) = (p) Fs(g™) éx = (gp)éx
Thus [¢, ] = [(p)&fg, sp] and, consequently, uZ - v = 1.
Conversely, suppose given [z, P——C] € F**(C). We have
(([v, P=Cvd)ug = (L€, Sp))ué = [(p) hép, P——C)]
and (p)26p = (z) F(1) = z.

Thus [(p) 2¢p, P—]TQC] = [z, P—?QC] and, consequently, v5 - uf = 1.
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5. We show that F'¥(f°P) is a well-defined map.

Suppose given D—15C in A and [z, P——C] € F¥(C).
Choose a pullback

O
S

3

«—

«——
~

fs 7%

o
Q

in A. For a commutative diagram

p/

P —S—D
f f
Pt

)

in A such that p’ is a pure epimorphism, we obtain P'——(@ in A such that ug = p’ and
ur = f’. Thus the diagram

Pl
X
P’ D
Q
commutes in A and ug = p’ is a pure epimorphism. We have

() F(fP) F(1P) = () F((ur)®) = (x) F(r") F(u™)

and, consequently, [(z) F(f'°"), P—5—D] = [(z) F(r°?), Qq——D]. We conclude that
this definition is independent of the choice of the commutative diagram.

Moreover, let Kp/LKp be the induced morphism between the kernels such that the
diagram

k‘p/ , p
Ky——P ——D

L, b

Kp—o'%P—]f—>C’

commutes. We obtain

(@) (S PV F (k) = (2) F((ky [)) = () F((Chy)*?) = (@) F(RP)F(£7) = (0)F(£7) = 0.
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So indeed [(z) F(f"°P), P’—p0,—>D] € F’¥(D).

Now suppose given |2/, P—+—C] € F¥*(C) such that [z, P——C] = [«/, P——C].
There exists a commutative diagram

P
X
Q C
N oA
P/
in A such that ¢p = ¢'p’ is purely epimorphic.
Choose a pullback

R——D
r
sl f
Q qp C
in A. Note that r is purely epimorphic. We obtain the commutative diagrams

R——D R——D
Sql Jf and sq’l lf
P—-C P—L—C

in A. Thus [(z) F((sq)°?), R——D] = [(2') F((s¢')°?), R——D].
We conclude that this definition is independent of the choice of a representative.
. We show that uf" is natural.

Suppose given D50 in A and [£,S] € F*(C). Choose a pure epimorphism
(P—LC) € S and a pullback

LA
f’l " lf
P—4-C
in A. Note that p’ is purely epimorphic and that p’ € f*(S) since p'f = f'p € S. We
have

€, S]ufl F¥(£°) = [(p)¢p , P—1—C) FE(f%) = [(p)ép F(f'°P), P/~ D]
= [(p) Fs(f'*) épr, P'—55D) = [(f'p)épr, P'—2s D]

= (0 f)ep, P—D] = [(p)eL , P—5—D]
— [, f(S)ufs = €, 5] FH(fP)uf,
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cf. definition 2.3.7.
Thus ul, F*(fP) = FH(f*)ul .

F*(f‘jp)l lF*(fop)
F

u

F*(D) ——2— F¥(D) ]
Lemma /Definition 2.5.10. Suppose given an additive Z-presheaf F': A°? — Mod-Z.

Suppose given C' € Ob A.

Let FO(C’) denote the set of all pairs (z, Q—?—)P—LC ), where p and ¢ are pure epimorphisms
in A and z € F(Q) such that the following two conditions hold. Let r denote the induced
morphism between the kernels K, and K, such that the diagram

ap C
)
.

kqp
—

K
K,

p

)

P

— O

g

kp
—
commutes in A.
o (1) F(kgp) =0

e There exists V——K,, in A such that vr is a pure epimorphism and such that
(2) F((vky)™) = 0.

For (z, Q——P——C), (<, Q’—qn/—>P’—1|)/—>C) e [H(C), let

(z, Q——>P—4—C) ~ (2, Q’—q|,—>P’—p»/—>C’) if and only if there exists a commutative diagram
Q
\q\‘
" P
\p\//
M C
A
\ Pl
A
Q/

in A such that mgp = m/¢’p’ is purely epimorphic and such that (z) F'(m°) = (2’) F'(m/°P).
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This defines an equivalence relation on Fy(C). Let F(C) := Fy(C)/~ denote the factor set.

Let [z, Qq——P——C] € F(C) denote the equivalence class of (z, Q——P——C) € Fy(C).

The map

By defining the Z-module structure on F(C) via sf , we obtain F*¥(C) = F(C) in Mod-Z.
By lemma 2.5.9, we have the isotransformations

Jaks
v O (“ N (PR 2, ik,

Thus

in Mod-Z.

Proof.

1. We show that ~ defines an equivalence relation on Fy(C).
Using identities, we see that ~ is reflexive.
By construction, ~ is symmetric.
Suppose given
(2, Q—1 P50, (o, @ -4 P B0, (o, Q" PP ) € Fy(O)
such that (z, Qq—P—150) ~ (2, @~ P 5C) and

(IL‘/, Q/ q P p C) -~ (x//’ Q// q p p C)
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We may choose commutative diagrams
Q
\q\‘
P
C and [ C

P/
m e//
Q/

in A such that mgp and ¢'¢’p’ are purely epimorphic and such that
(z) F(m) = (¢') F(m/°?) and (z') F(£'°?) = (2"") F(£"°P).

Let r denote the induced morphism between the kernels Ky, and K, such that the
diagram
k‘q/p/ q'p
Kq’p’ —— Q —t C
]
k: ’ p’

Lk

L phe
commutes in A. There exists V——K,,, in A such that vr is a pure epimorphism and
such that (z) F'((vkyy)°P) = 0.
Choose a pullback

S—isM

}r
t m'q'p’
Z///

in A. Note that s and t are purely epimorphic. We have (sm/q' —tl'q')p’ = 0. So we may
choose S—]>K in A such that sm'q' — tl'q’ = jk,

Choose a pullback

N SN
-

|

ur
—— K

.

<<

/

3

in A. Note that y is purely epimorphic. We have
(ysm' — ytl' — zvkyy)qd = ysm'q — ytl'q — 2vkypqd = y(sm'q — t0'q") — zorky
- yjkp’ - yjkp’ =0.
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So we may choose YLKQ/ in A such that ysm' — ytl' — zvkyy = kky , ie.
ysm' — ytl' = zvkyy + kky

We obtain
() F'((ysm')®) — () F((ytl)*?) = () F((ysm' — ytl")?) = (2") F((2vkgy + kky)P)
= (2') F((vkqp)™) F(2%) + () F (k) F(k?) = 0
and thus
() F((ysm)*?) = (x) F(m®?) F((ys)*) = () F(m'*?) F((ys)*)
= (2') F((ysm/)?) = (2) F((ytl')°") = (z') F(£'°?) F((yt)™)
= (") F(£"°P) F((yt)*) = (") F((ytl")°").

Moreover, the diagram
/ p
p
yte” /

commutes in A and ysmgp is purely eplmorphlc.
We conclude that ~ is transitive.
. We want to show that sf and ¢ are well-defined maps.

Suppose given Q——P—"-C in A such that ¢ and p are purely epimorphic. Suppose
given x € F(Q) such that (z) F (k) = 0.

Let r denote the induced morphism between the kernels £,, and £, such that the diagram

kqp qp
K,—=—Q——C

Tl fq ll
Kp—ka—LC’

commutes in A. By lemma 1.1.2.(a), the diagram

k:
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is a pullback and thus r is purely epimorphic.
We have [z, Q——P] F*(k$) = [(z) F(k®), K,p——K,].

So [z, Q—7—>P] FE(kP) = 0 if and only if there exists V——K,, in A such that vr is
purely epimorphic and such that (z) F((vk,,)°?) = 0.
Thus [[z, Q——P], P—1—C] € F¥¥(C) if and only if [z, Q—— P——~C] € F(C).

Now suppose given ||z, Q—q»—>P], P—‘?—>C’], ([, Q’—q|—>P’], P’—p|—>C’] € F®¥(C) such

that [z, Q——P], P10 = [, Q4= P'], P00,

So we may choose a commutative diagram

R/P\p\l(?
N_A

in A such that rp is purely epimorphic and such that
[, Q— 1= P] F2(roP) = [/, Q'+ P'| F¥(1'°P).
Choose pullbacks

S—31+R T—4t R
|7 b e "]
s’ 7“ and ¢ r!
Q—1-pP Q 34— p

in A. Note that s and ¢ are purely epimorphic. We have

() F(s'), S—=R] = [z, Q—s P F*(r*?) = [/, Q'—4— P'|F* (/")
= (&) F(t'*?), T——R].

So we may choose a commutative diagram
/ S\
U R
N A
T

in A such that us is purely epimorphic and such that
(z) F(s"P) F(u®?) = (2') (') F(u"P).
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We obtain the commutative diagram

s
~

us

U C

,
A
”

in A with us’'qp = usrp purely epimorphic and (z) F/((us')°?) = (2') F((u't')°P).

p/

u't!

So [z, Q—7—>P—LC’] = [, Q’—q|/—>P’—p|/—>C’].
Conversely, suppose given [z, Q—7—>P—I|)—>C], [z, Q’—qnl—>P’—pnl—>C] € 15(0) such that
[z, Q——P——C] = [/, Q’—q|,—>P’—p|l—>C].

We may choose a commutative diagram

/ \Q\’\a

M C

\ A
N A
.

in A such that mgp = m/¢’p’ is purely epimorphic and such that (z) F(m°) =
(@) F(m/°P).

We have [z, Q——P] F*((mq)°?) = [(z) F(m°?), M——M] and, similarly,

o, Q1P| P¥((mq ) = (o) F(m "), M1

!

Thus [[z, Q——P], P—4—=C] = [/, Q'—+P'], P’ A C'l.

3. The maps s and t£ are mutually inverse by construction. [



Chapter 3

Localisation

Suppose given an abelian category A.

From after remark 3.1.2 on, we will suppose given a thick subcategory N of A.

3.1 Thick subcategories

3.1.1 Definition and basic properties

Definition 3.1.1. A full non-empty subcategory N of A is called thick in A if for each short
exact sequence AL B 9,0 in A, we have B € Ob N if and only if A,C € ObN.
Remark 3.1.2. A full non-empty subcategory N of A is thick in A if and only if it is closed
under extensions, subobjects and factor objects. Cf. convention 40.

Suppose given a thick subcategory N of A for the remainder of this chapter 3.

Remark 3.1.3.
We use the term thick in the sense of [13, defn. 19.5.4]. Some use the ’Serre subcategory’
instead.

Lemma 3.1.4. Suppose given n € N and an exact sequence

ao al as an—2 an—1
AO Al A2 e — Anfl - ? An

in A.
Suppose that i € [1,n — 1] and that A; 1, A;41 € ObN. Then A; € Ob N as well.

120
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Proof. Choose images

A — A; A
I; Iiyy
in A. We have I; € ObN since A;_; € ObN and, similarly, I;,; € Ob A since 4;,; € ObN.
Thus Az € ObN since Ii7[i+1 € ObN ]

Lemma 3.1.5. The thick subcategory N of A is a full additive subcategory of A which is
closed under isomorphisms.

Proof. Choose an object A € ObN. The sequence 0 a—25A—L 4 A s short exact in A and,
consequently, we have 04 € Ob .

(7)

Suppose given objects A, B € ObN. The sequence AMA & B—15 B is short exact in A so
that we have A@® B € ObN. Thus N is a full additive subcategory of A.

Suppose given an isomorphism A—LB in Awith A € ObA. The sequence 0 ALA%B
is short exact in A and, consequently, we have B € ObN. [

Remark 3.1.6. Suppose given A—L.Bin N. Suppose given a kernel K —E A of fin A and
a cokernel B—“—C of f in A. Then k is a kernel of f in A and c is a cokernel of f in N as
well.

Thus N is an abelian category and the inclusion functor from N to A is exact.

Remark 3.1.7. The subcategory N°P of A° is a thick subcategory of A°°. So we may use
duality arguments.

Corollary 3.1.8. Suppose given an abelian category B and an exact functor F': A — B. Recall
that the kernel of F'is the full subcategory Ker(F") of A defined by

Ob(Ker(F)) :={A € ObA: F(A) = 0z in B},
cf. convention 41.
The kernel Ker(F') of F is a thick subcategory of A.
Cf. remark 3.2.19 below.

Proof. Since F is additive, we have F'(04) = 0 in B. Thus Ker(F) is non-empty.

Suppose given a short exact sequence A—43B15C in A. Since F' is exact, the sequence

F(A) ) F(B) il F(C) is short exact in B.
We have F(B) = 0g if and only if F/(A), F(C) = 03 in B by lemma 1.1.7.

Thus B € Ob(Ker(F)) if and only if A,C € Ob(Ker(F)). O
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3.1.2 Generating thick subcategories

We will not use the results of this section 3.1.2 in the remaining sections 3.2 and 3.3 of chapter 3.

Suppose given a full subcategory M of A.

3.1.2.1 Definition and basic properties

Remark 3.1.9. An arbitrary intersection of thick subcategories of A is thick. More precisely,
suppose given a set [ and thick subcategories £; of A for i € I. Then (\{£;: i € I} is a thick
subcategory of A.

Definition 3.1.10. Let
AM) = ﬂ{ﬁ: L is a thick subcategory of A such that M C L}

denote the thick subcategory generated by M in A. We write (M) := 4(M) if unambiguous.
Note that (M) is the smallest thick subcategory of A containing M. Cf. remark 3.1.9.

We present two ways of describing thick subcategories generated by a full subcategory in the
sections 3.1.2.2 and 3.1.2.3.

Remark 3.1.11. Suppose given an abelian category B and an exact functor F': A — B.
If M C Ker(F), then (M) C Ker(F).

So if F(M) = 0p for M € Ob M, then F(A) = 0p for A € Ob((M)).

Proof. By corollary 3.1.8, the kernel Ker(F') of F'is a thick subcategory of A.
So if M C Ker(F), then (M) C Ker(F) since (M) is the smallest thick subcategory of A
containing M. m

3.1.2.2 Recursive description

Definition 3.1.12. Suppose given a full subcategory L of A.
An object A € Ob A is called L-thick if one of the following three statements holds.

e We have A € Ob L.
e There exists a short exact sequence L—e—A——L' in A with L, L' € Ob L.

e There exists a short exact sequence B—e—L—+—B’ in A with L € Ob L and
Ae{B,B'}.
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Proposition 3.1.13. Let M, be the full subcategory of A defined by
Ob(My) :={A € ObA: A= M in A for some M € Ob M U {04}}.
For i € Z~g , let M; be the full subcategory of A defined recursively by

Ob(M;) :={A € ObA: Ais (M;_q)-thick}.

We have

iEZZO

Proof. By construction, Mg and, consequently, Ui€Z>0 M, are non-empty and we have
MC M, C UieZ>0 M, . Note that M; C M4 for j € Z>y .
Suppose given a short exact sequence A-LB2Cin A.

Suppose that B € Ob (Ui6Z>0 M;). So there exists j € Zso such that B € Ob(M;). By
definition, A and C are M;-thick and thus A, C' € Ob(M;4;) C Ob (U M;).

Suppose that A,C € Ob (UieZ>0 /\/lz) So there exists j € Z>o such that A,C € Ob(M;). By
definition, B is M -thick and thus B € Ob(M,,) € Ob (U M;).

We conclude that M, is thick.
Suppose given a thick subcategory L of A such that M C L.

iEZZo

iEZZO

iEZZO

By lemma 3.1.5, we have M, C L.

Now suppose that M; C £ for some j € Z>( . Suppose given an M -thick object A € Ob A.
Then A € Ob £ since L is a thick subcategory of £. Thus M, C L.

By induction, we conclude that | J JMi C L.

’iEZZ

So UiEZzo M, is the smallest thick subcategory containing M. m

3.1.2.3 Description using filtrations

We proceed in two steps. At first, we construct a subcategory (M) of A that is closed under
subobjects and factor objects. Then we use filtrations to construct a subcategory ({(M)q)gie of
A that is also closed under extensions and show that (M) = ((M))ai in case M is non-empty.
In case M is empty, the objects of (M) are precisely of the zero objects of A.

Definition 3.1.14. Suppose given M,C' € Ob . A. We say that C' is a subfactor of M in A if
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there exists a diagram

A—4sB-58 M

N

C

in A such that A—$—B—%—(C is short exact.

Lemma 3.1.15. Suppose given M, C € Ob A. The following three statements are equivalent.

(a) C'is a subfactor of M in A, i.e. there exists a diagram

A—4 B35 M

N

C

in A such that A—e—B—%—C is short exact.

(b) There exists a commutative diagram

‘B M 5 x
C

in A such that A—$+B—$+C and C—%X—{ Y are short exact.

A Y

(¢) There exists a diagram

M-t x-Yt.y

A

C
in A such that C—%—X—4—Y is short exact.
In particular, C' is a subfactor of M in A if and only if C' is a subfactor of M in A°P.

Proof. Ad (a)&(b). Note that (b) implies (a). Conversely, choose a cokernel M——X of ab
and a cokernel M—=—Y of b. By lemma 1.1.1, we obtain an exact sequence

0 c4.x Y.y 0

in A such that bx = cd.
Ad (b)<(c). This is dual to (a)<(b). O
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Lemma/Definition 3.1.16. Let 4(M)g be the full subcategory of A defined by
Ob(4(M)s) := {C € Ob A: there exists M € Ob M such that C is a subfactor of M in A}.
We have M C 4 (M) and (4(M)s)P = 400 (M) . Moreover, the subcategory 4(M)g of

A is closed under subobjects and factor objects.

Suppose given a thick subcategory L of A such that M C L. Then 4(M)g C L.
We abbreviate (M) := 4(M)g if unambiguous.

Proof. Suppose given M € Ob M. The diagram

0—— M- M

RN

M

in A shows that M is a subfactor of M. Thus M € Ob(4(M)).
We conclude that M C 4(M)g .

Suppose given C' € Ob A and M € Ob M. By lemma 3.1.15, C'is a subfactor of M in A if and
only if C is a subfactor of M in A°P. Thus (4(M)s)® = 4p (MP)g .

Suppose given M € Ob M and C' € Ob A such that C' is a subfactor of M. We may choose a

diagram

A—S$sB-3. M

N

C

in A such that A—e—B—¥—C is short exact.
Suppose given C—%5D in A, i.e. a factor object of C. Choose a kernel Z—s—B of cd. So we

obtain the diagram

7-3%sB-5%.M

bN

D

in A and Z—s—B—55D is short exact. So D is a subfactor of M as well.
Thus 4(M) is closed under factor objects.
Dually, we conclude that 4(M) is closed under subobjects.

Now suppose given a thick subcategory L of A such that M C L.
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Suppose given M € Ob M and C' € Ob A such that C' is a subfactor of M. We may choose a
diagram
A—%+B—43M
C
in A such that A—e—B—¥—C is short exact.

Since L is closed under subobjects, we have B € Ob L. Since L is closed under factor objects,
we conclude that C' € Ob L.

Thus A<M>Sf g L. ]
Definition 3.1.17. Suppose given X € Ob.A. For n € Z>, , a sequence

Tl T2 T3 Tn—2 Tn—1 Tn
X1 . X2 . X3 - . Xn—l —0—>Xn—'—>Xn+1

in A is called an M-filtration of X in A if the following two conditions hold.

e X; € ObM and X, = X.

e For i € [1,n], there exists a cokernel X,-+1—m»i—>Mi of z; in A such that M; € Ob M.

The object X is called M-filtering in A if there exists an M-filtration of X in A.

Lemma 3.1.18. Suppose given X € Ob A.
The object X is M-filtering in A if and only if X is M°P-filtering in A°P.

Proof. Suppose that X is M-filtering in A.
By duality, it suffices to show that X is M°P-filtering in A°P.

We may choose n € Z>; , an M-filtration

1

Xl d X2

T2 xrs3 ITn—-2 Tn—1

X3 . e . Xn—l _'_>Xn _m.n_> Xn+1

of X in A and cokernels Xi+1—moi—>Mi of z; such that M; € Ob M for i € [1,n].
We want to construct an M°P-filtration of X in A°P.

Let Yy := X, Y, := M, and ¢, := m,, . Note that X—q0"—>Yn is a cokernel of z,, .

For i € [1,n — 1], we choose a cokernel X—qni—>Yi of x;wiq- -, . Let y1 :=qq .
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By lemma 1.1.1, we obtain a commutative diagram

0

11—

M;_,
Xi li1
Xio1 . X 25,
\\%ﬁ
q;
Y;

Ti—1Tn
Zi_ i . .
in A such that the sequence Mi_1—01—>}/i_1—0y—>}/; is short exact for i € [2,n].

We obtain the sequence

op op
Y Yn—1 Yn—2 Y3
Y, ALy, ey, e

op op
Yo Y1

Y1 —— Yo

Y,

(xleA..xn)Dp

in A°°. We have Y,, = M,, € ObM and Y; = X. Moreover, X;———Y) is a cokernel of

yP = ¢ in A° such that X; € Ob M. Fori € [2,n], Y;_;——M,;_; is a cokernel of Y in
A°P such that M;_; € Ob M.

Thus X is M°P-filtering in AP. O

Lemma/Definition 3.1.19. Let 4(M)g; be the full subcategory of A defined by
Ob(a(M)gr) :={X € Ob A: X is M-filtering in A}.

We have (4(M)gi) = 400 (MP)gye by lemma 3.1.18.

If M contains a zero object of A, then M C 4(M)g; -

Suppose given a thick subcategory £ of A such that M C L. Then 4(M)g C L.
We abbreviate (M)gy, := 4(M)gy if unambiguous.

Proof. Suppose that Z € ObM is a zero object of A. Suppose given M € ObM. The

sequence M——M is an M-filtration of M in A since M—2—Z is a cokernel of 1,; . Thus
M € Ob({M)g1;). We conclude that M C (Mg .

Suppose given a thick subcategory £ of A such that M C L.
Suppose given X € Ob({M)gy).
We may choose n € Z>, , an M-filtration

1 9 xrs3 Tn—2 Tn—1 Tn
X1 . XQ . X3 - . Xn_l—HXn—HXn+1
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of X in A and cokernels XZ-H—m»i—>Mi of z; such that M; € Ob M for i € [1,n].
By definition, we have X; € Ob M C Ob L.

Suppose that X; € Ob L for some i € [1,n]. The sequence X; A %5 M; is short exact
such that X;, M; € Ob L. Since L is closed under extensions, we have X, ; € Ob L.

Inductively, we conclude that X = X,,.; € Ob L.
Thus 4 (Mg C L. O
Lemma 3.1.20. Suppose that M is non-empty and that it is closed under subobjects and

factor objects. Then M C (M)g, and (M)gy is closed under subobjects, factor objects and
extensions in A. Le. (M)g) is a thick subcatgory of A containing M, cf. remark 3.1.2.

Proof. Since M is non-empty and closed under subobjects, M contains the zero objects of A.
Therefore M C (M)gy , cf. definition 3.1.19.

We will use the kernel-cokernel-criterion lemma 1.1.2 repeatedly without comment.
We show that (Mg is closed under subobjects.

Suppose given a monomorphism W—s—X in A such that X is M-filtering.

We may choose n € Z>; , an M-filtration

1

X1 d XQ

T2 z3 Tn—2 Tn—1

X3 - ° Xn—l _’_>Xn _z.n_> Xn+1

of X in A and cokernels XHl—m»i—>Mi of z; such that M; € Ob M for i € [1,n].
We want to construct an M-filtration of W in A.
Let Wyiq := W and 2,1 := 2.

Recursively, choose pullbacks

Wy
Wi —e— Wi

-
Zi Zi41

z;
X’L — Xi-i—l

and cokernels I/Vi—ef—>Li of w; in A for ¢ € [1,n]. Note that the induced morphism between
the cokernels L; and M; is monomorphic and thus L; € Ob M for i € [1,n]. Moreover, we have
W, € Ob M since X; € Ob M.

Thus the sequence

w1

W1 g W2

w2 w3 Wn—2 Wn—1

Wn
Wy—e— ... — W, | —— W, —— W,

is an M-filtration of W. We conclude that W € Ob({(M)g;).
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Dually, (M)gy is closed under factor objects.

We show that (M)gy is closed under extensions.

Suppose given a short exact sequence X AN N A such that X and Z are M-filtering.

We may choose n € Z>; , an M-filtration

Z1 zZ2 z3 Zn—2 Zn—1
Zl -1 Z2 n n

ZS .- —e@ Zni1

Zn
Zn * ZnJrl

of Z in A and cokernels Zi+1—m0i—>Mi of z; such that M; € Ob M for i € [1,n].
Let Y11 =Y, gpr1:=g and f,11 = f.

Recursively, choose pullbacks

Yi
Y, —— Y

-
9i git+1

Z;
Zi ——) Zi+1 s

cokernels Y;—i—C; of y; and kernels X —J:—>YZ of g; in A for i € [1,n]. Note that the induced
morphism between the cokernels C; and M; is monomorphic and thus C; € Ob M for i € [1,n].

Note that Yl—g»1—>Zl is a cokernel of f; such that Z; € Ob M.

Since X is M-filtering, we may choose k € Z>; , an M-filtration

Z1

X1 ——= X

T2 T3 Tn—2 Tn—1

X3 - ° Xn—l _’_>Xn _z.n_> Xn+1

of X in A and cokernels Xi+1—ef—>L,- of z; such that L; € Ob M for i € [1,n].

The sequence

z2

z1 Tp—1 Ty f1 Y1 Y2 Yn—1 Yn
Xi—Xg—o— - —eo X, —= X, 1~ Y — Yy —e>. . — Y, — YV,

is an M-filtration of Y. We conclude that ¥ € Ob((M)qy). O
Proposition 3.1.21. Suppose that M is non-empty. Then we have (M) = (M) g1 -

Proof. By lemmata 3.1.16 and 3.1.20, ({(M))s1 is a thick subcategory of A containing M.
Suppose given a thick subcategory £ of A containing M.
We have (M) C L, cf. definition 3.1.16 and, consequently, ({(M)¢ ) C L, cf. definition 3.1.19.
Thus we obtain
((M)gr) e C ﬂ{L’: L is a thick subcategory of A such that M C L} C ((M)gt)gre
so that
({M)gt) s = ﬂ{ﬁ: L is a thick subcategory of A such that M C L} = (M). O
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3.1.3 MN-quasi-isomorphisms

Definition 3.1.22. Suppose given A—LBin A

The morphism f is called an N -quasi-isomorphism if and only if there exists a kernel K 554
of f and a cokernel B—¥—C of f in A such that K,C € Ob\.

Often we will denote an N -quasi-isomorphism by A-LeB.

Remark 3.1.23. Suppose given A—L.Bin A Since N C A is closed under isomorphisms by

lemma 3.1.5, the morphism f is an AN -quasi-isomorphism if and only if for all kernels K —$5A
of f and for all cokernels B—¥—C' of f in A, we have K,C € Ob\.

Example 3.1.24. Isomorphisms in A are N -quasi-isomorphisms since A contains the zero
objects of A by lemma 3.1.5. In particular, identities are N -quasi-isomorphisms.

A zero morphism A—2>B in A is an N-quasi-isomorphism if and only if A, B € Ob .

Lemma 3.1.25. Suppose given AL B4 Cn A. Suppose that K—%—A is a kernel of f
and that C——R is a cokernel of ¢g. If fg is an N-quasi-isomorphism, then K, R € Ob\.

Proof. Choose a kernel L—Y5A of fg, a kernel M—"-B of g, a cokernel B——~P of f and
a cokernel C——Q of fg in A.

Lemma 1.1.1 yields the commutative diagram

M———P

/ BN
L : A/ \QJC’ { Q
DA

K

in A, where the sequence

0 KL sM—<sP-4,Q0-—$+R—0

is exact. Since fg is an N -quasi-isomorphism, we have L, € ObN. Now L € ObN implies
K € ObN and Q € ObN implies R € ObN. O

Lemma 3.1.26. Suppose given AL .cin A. If two out of the three morphisms f, g
and fg are N -quasi-isomorphisms, then so is the third.

In other words:
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e If f and g are N-quasi-isomorphisms in A, then so is fg.
e If f and fg are N-quasi-isomorphisms in A, then so is g.
e If g and fg are N-quasi-isomorphisms in A, then so is f.

Proof. Choose a kernel K—%-A of f, a kernel L—~A of fg, a kernel M—%—B of g, a

cokernel B——P of f, a cokernel C’—?—>Q of fg in A and a cokernel C—+—R of g.

Lemma 1.1.1 yields the commutative diagram

M—FC P

EN
L . A/ XC
A

f9 ? @
: A

K

in A, where the sequence

0 KL sM—<spP-4,Q0-—$R 0
is exact. We will use lemma 3.1.4 repeatedly.

Suppose that f and g are N-quasi-isomorphisms. Then K, P, M, R € Ob\.
Now K, M € ObN implies L € ObA. Moreover, P, R € ObA implies Q € ObA. Thus fg is
an N -quasi-isomorphism.

Suppose that f and fg are N-quasi-isomorphisms. Then K, P,L,Q € Ob\N.
Now L, P € ObN implies M € ObN. Moreover, Q € ObN implies R € ObA. Thus g is an
N-quasi-isomorphism.

Suppose that fg and g are N -quasi-isomorphisms. Then L,Q, M, R € ObN.
Now M, @ € ObN implies P € ObN. Moreover L € Ob AN implies K € ObN. Thus f is an
N -quasi-isomorphism. O

Lemma 3.1.27. Suppose given an N-quasi-isomorphism A~Ls B in A.

(a) Suppose given a pullback

A’f—/>B

4]

A~~~ B

in A. Then f” is an N -quasi-isomorphism as well.
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(b) Suppose given a pushout

Avv{@B

I

A/T}B/

in A. Then f’ is an N-quasi-isomorphism as well.

Proof. Ad (a). Choose a kernel K—%+A of f, a kernel K5 A of f’, a cokernel B——C
of f and a cokernel B'—$-C" of fin A.

By the kernel-cokernel-criterion lemma 1.1.2, there exists an isomorphism K'——K and a

monomorphism C'—e—C'.
Now K € ObN implies K’ € ObN and C € ObN implies ¢’ € ObAN. Thus f’ is an
N-quasi-isomorphism.

Ad (b). This is dual to (a). O
Lemma 3.1.28. Suppose given A—LBin A. Suppose given an image

A—1 B

RNyt

The following three statements are equivalent.

(a) There exists an N-quasi-isomorphism Ba=~T in A such that ft = 0.
(b) We have I € Ob .
(¢c) There exists an N-quasi-isomorphism S~<~A in A such that sf = 0.
Proof. Ad (a)=(b). Choose a kernel K—%—B of ¢ in A. We have pit = ft = 0 and thus it = 0

since p is epimorphic. So there exists I ——K in A with uk = i. Moreover, u is monomorphic
since so is . Now K € Ob N implies I € Ob .
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Ad (b)=(a). Choose a cokernel B—¥—C of i. So I—s—B is a kernel of ¢ and C—2-0 is a
cokernel of c¢. We conclude that ¢ is an A -quasi-isomorphism with fc = pic = 0.

Ad (b)<(c). This is dual to (b)<(a). O

3.2 Construction of the quotient category

3.2.1 Definition and duality

Lemma /Definition 3.2.1. Suppose given A, B € Ob A.

Let ND(A, B) denote the set of all diagrams of the form AT S« B in A such that s is
an N -quasi-isomorphism. Given an element (ALS@SWB ) € ND(A, B), then f is called

its numerator and s is called its denominator. ND is short for numerator-denominator. For
(A5« B), (AT «A~B) € ND(4, B), let (A—=5«2xB) ~ (A>T« B)
if and only if there exist N'-quasi-isomorphisms Sa~~U and Ta~~~>U in A such that fu = gv

and su = tv.
S
an
A U B
NG P4
T

This defines an equivalence relation on ND(A, B). Let ND(A, B)/~ denote the factor set.

Let f/s denote the equivalence class of (ALS@SWB) € ND(A, B).

Proof.
Suppose given (ALS@SWB), (ALT@%B) and (A—h>W<é”wB) € ND(4, B).

™,
|

Using identities, we see that ~ is reflexive:

Ve
NEA

Cf. example 3.1.24.

By construction, ~ is symmetric.
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Suppose that
(ALo5e2B) ~ (A—T<AaB) and  (A—T<AxB) ~ (A—LoW<2<B).

So there exist A-quasi-isomorphism Sa~sU, Ta~lsU, Ta~4>X and T~~+X in A such
that fu = gv, su = tv, gr = hy and tx = wy.

Choose a pushout

d

v
A

—
H\

T
X

in A. The morphisms v’ and 2’ are N/-quasi-isomorphisms by lemma 3.1.27.(b). The composites

N

,U/

uz’ and yv’ are N -quasi-isomorphisms by lemma 3.1.26.

We have fuz’ = gvr’ = gaxv' = hyv' and suz’ = tvr’ = txv’ = wyv’. Thus ~ is transitive.

T P
h xﬁ
X w
y
W ]

Remark 3.2.2. Suppose given A, B € Ob A.
Suppose given (ALS@SWB), (ALT@@B) € ND(A4, B).

For an N -quasi-isomorphism Sa=~~>U in A, we have f/s = fu/su.

If (ALS «A~B) ~ (ALT@%B ), then there exist NV-quasi-isomorphisms S~%U and
Ta~~U in A such that fu = gv and su = tv. In this case, we have

f/s= fu/su=gv/tv = g/t.

Lemma/Definition 3.2.3. The quotient category AJN of A by N shall be defined as follows.

e Let Ob(AJN) := Ob A

e For A,B € Ob A, let Homy)n (A, B) := ND(A, B)/~, cf. definition 3.2.1.
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e Suppose given A L SetiB YT e in A, representing AL o AJN.

We want to define the composite f/s- g/t in AJN.

Choose a commutative diagram

g
—

B T
sS—2.p

in A such that s’ is an N -quasi-isomorphism. This is possible since we may e.g. form the

pushout of ¢ and s, cf. lemma 3.1.27.(b).

Let f/s-g/t:= fqg'/ts'. This definition is independent of the choice of the commutative
diagram and of the choice of the representatives of the equivalence classes.

C

~+

BT

ALS—)P

/

9
The identitiy morphism of A € Ob(AJN) is (ALA) € Hom 4z (4, A).

Proof. Suppose given A L et B Pt O U« D in A, representing
A g oM D i AN

Choose a pushout

BT
in A. For a commutative diagram
g
—

s

g/

W eA~~

|

T
P

in A such that ¢ is an N -quasi-isomorphism, there exists Q——P in A with §¢ = ' and
Jq = ¢'. Note that ¢ is an N -quasi-isomorphism by lemma 3.1.26.
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Thus fg'/ts' = fgq/tsq = [§/ts.

So the definition of the composite of f/s an g/t is independent of the choice of the commutative
diagram.

Suppose given A s edaB L in A, representing A%B%C in AJN with

f/s = f'/s and g/t = ¢'/t'. So there exist N-quasi-isomorphisms S~~>X S’wgflf%X,

T~4Y and T'~X~Y in A such that fz = f'a/, sz = s'2’, gy = ¢’y and ty = t'y’.

Choose a pushout

)~<

b

QA

B_%
Sl'g/ J
X—

in A. Note that b is an N-quasi-isomorphism by lemma 3.1.27.(b). Since the diagrams

0

a

ST B——

B T
sgé yb and s %/y’b
S S p

So the definition of the composite of f/s an g/t is independent of the choice of the representa-
tives of the equivalence classes.

We want to show that (f/s-g/t)-h/u= f/s-(g/t-h/u).



Choose commutative diagrams (e.g. pushouts)

g h

B——T C—U
sgg %/s’ tgé % and

52, p T,0

in A. So the diagram

D
oLy
tg/ 4
B-2.T- "0
Atl,s L.p R

commutes in A. Thus we have

(f/s-g/t) hju=fg'/ts' hju= fgh"[ut's" = f|s-gh'[ut’ = f]s-(g/t h/u).
We want to show that 14/14- f/s= f/sand f/s-1p/1p = f/s.

The diagram

commutes in A, thus we have 14/14- f/s= f/s= f/s-15/1p .

Remark 3.2.4. Suppose given A SeiiB—1Belt
We have

fls=f/1ls-1s/s, (s/ls) ' =1g/s
in AJN.

Suppose given A
We have f/1p-g/t = fg/t in AJN.

@\W

=

~

s

C in A.

=

O

=

LA
o

and f/s-1g/t = f/ts

BaA~B—2 3T« A~(C in A, representing AL B0 AJN.

137
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Proof. Suppose given A ! Set B Bata( in A

The diagram

commutes in A. Thus we have f/s = f/1g-1g/s.

The diagram

—

B——
S

§§
R

B—*.,5-1.g

S

[y

A InaAaan

1

commutes in A. Thus we have s/1g-1g/s=s/s=1p/1p and 1g/s-s/1g = 1g/1s .

The diagram

C

gt

B—1.B

! S

A1,

commutes in A. Thus we have f/s-1p/t = f/ts.

Suppose given A ! \BeA BT, C in A

The diagram

Q

D

~

B2,

1

ALBLT

1

QA

commutes in A, thus we have f/15- g/t = fg/t. O]
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Remark 3.2.5. Suppose given n € N and ALSKQ@B in A, representing AMB in
AJN fori € [1,n]. We may choose N-quasi-isomorphisms B~ X and S;~sX for i € [1,n]
in A such that f;/s; = fit;/x for i € [1,n].

So for a finite number of morphisms with same domain and codomain in A /N, we may choose
representatives such that they have a common denominator.

Proof. We use induction on n € N.
Suppose given ALSiéin in A for i € [1,n+ 1] and N -quasi-isomorphisms Ba~~~>X and

Si~~>X for i € [1,n] in A such that fi/s; = fit;/x for i € [1,n).

Choose a pushout

Sn+1 t
_

Snp1~5=>Y

in A. Then f,11/Sn41 = for12/Sns12 = for1z/xt and fi/s; = fit;/x = fit;t/xt fori € [1,n]. O

Lemma/Definition 3.2.6. The localisation functor Lay: A — AJN of A by N shall be
defined as follows.

e For Ac Ob A, let Lyn(A) := A.
e For (ALB) € Mor A, let Lan(f) = f/1p .

We abbreviate L := L 4 o if unambiguous.

Proof. For AL 2C i A, we have L(fg) = fg/lc = f/1-g/1c = L(f) - L(g) by
remark 3.2.4. Moreover, L(14) = 14/14 , cf. definition 3.2.3. O

Lemma/Definition 3.2.7. The duality functor Dy : (AJN )P — AP JN°P of A by N shall

be defined as follows.
e For A€ Ob A, let Dy (A) := A.

e Suppose given AL se B in A, representing Af—/S>B in AJN.

Choose a commutative diagram

n

B

fo
o
gés
I .g

So

QAR

BN
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in A such that s, is an N -quasi-isomorphism. This is possible since we may e.g. form the
pullback of f and s, cf. lemma 3.1.27.(a).

Let Dan((f/5)P) := foP/s%P. This definition is independent of the choice of the commu-
tative diagram and of the choice of the representative of the equivalence class.

The functor Dy y is an isomorphism of categories with inverse Dyf, yrop -

Moreover, we have Dy ((f/15)?) = fP/1 for ALs i A

Proof. Suppose given AL 5B in A.

Choose a pullback

e,
Sy

CIJ\
GAAA

-
- ~®
A
w

b
N

in A. For a commutative diagram

mgfl

[k

So

B
S

in A such that s, is an AN -quasi-isomorphism, there exists S,——P in A with uf’ = f, and
us’ = s,. Note that u is an N-quasi-isomorphism by lemma 3.1.26.

ThUS f/op/slop — flopuop/s/opuop — f;)p/sgp'

So the definition of Dy Ar((f/s)°P) is independent of the choice of the commutative diagram.
Suppose given A—2+T«A~B in A with f /s = g/t. So there exist N -quasi-isomorphisms
S~ X and T~%+X in A such that fa = gy and sz = ty.

Choose a pullback
P a
b
A

B
S

in A. Note that b is an N-quasi-isomorphism by lemma 3.1.27.(a).

-

We have (bg — at)y = bgy — aty = bfx — asx = (bf — as)z = 0. By lemma 3.1.28, there exists
an N -quasi-isomorphism Q~~~>P such that q(bg — at) = 0.
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Since the diagrams

Q qa B Q qa B
qb gés and qb t
A L S A-2.T

commute in A, we have Dya((f/s)°P) = (qa)°®/(gb)® = Dun((g/t)°?).

QMWP

/
X B
\ ) /
So the definition of Dy ((f/s)°) is independent of the choice of the representative of the
equivalence class.

Suppose given A L L Set BT in A

Choose pullbacks

So SELENy 7,2 C Q"o
r r r
sOgg gés tog gét and ugg ggto
ATLss BT s, B
and a pushout
BT
sg/ . s’
in A.
So the diagram
Q-1 L0
i1
fo g
S,——B——T
AL g 7, P



commutes in A.

We have
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Dan((g/) - (f/5)) = Dan((f/5- 9/1)") = Dan(f'/ts') = (hgo)* [ (us,)".

Since the diagram

commutes in A°P, we conclude that

Dan((g/t)) - Dan((f/)P)) = geP 1P - [P/ 5P = (hgo)P [ (uso)*” = Dan((g/1)*

The diagram
A-1ss
1 }
f
A——>S
commutes in A, so Dy ((f/1s)P) = foP/15%.
In particular, we have D ((14/14)P) = 197/15%.

We want to show that Db, yop © Dan = Liayayor-

Suppose given AL 5etBin A

Choose a pullback

in A. Since the diagram

commutes in A°, we have

(Ditow prer © D) ((f/5)°) = Do won (57 /57) = (/)"

Dually, we have D"\ 0 Daop pror = 1 (a0 yaroryor and thus Daar o Dyl prop = Laow javor -

- (f/s)°).
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Lemma 3.2.8. Suppose given AL 5« B in A, representing AL B i AJN.
The following three statements are equivalent.

(a) The morphism f/s is an isomorphism in AJN.
(b) The morphism f/1g is an isomorphism in A/N.

(¢) The morphism f is an AN -quasi-isomorphism in A.
In this case, we have (f/s)™! =s/f.

Proof. By remark 3.2.4, we have f/s = f/1g-1g/s, where 1g/s is an isomorphism in A/JN.
Thus (a) and (b) are equivalent.

If f is an N-quasi-isomorphism in A, then f/1g is an isomorphism in AN with inverse 15/ f
by loc. cit.

Suppose that f/1g is an isomorphism in A/AN and suppose given S—2T«A~A in A such
that g/t is the inverse of f/1g in AJN.

Thus 14/14 = f/15-g/t = fg/t by loc. cit. We conlude that there exist N -quasi-isomorphisms
Ax~~U and Ta~>~U in A such that v = fgv and v = tv. By lemma 3.1.26, fg is an
N-quasi-isomorphism.

Choose a kernel K—%—A of f and a cokernel S——=C' of f in A. We have K € ObN by
lemma 3.1.25.

Dually, (f/1¢)° is an isomorphism in (AJN)° and, consequently, Dy n((f/15)?) = fP/1%
is an isomorphism in A /NP, cf. definition 3.2.7. Since ¢°P is a kernel of f°P in A°P, we have
C € Ob(N°P) = ObA as seen above.

Therefore f is an N -quasi-isomorphism. [

3.2.2 The quotient category is additive

Lemma/Definition 3.2.9. Suppose given A, B € Ob.A. The set Hom 4/ (A, B) becomes an
abelian group with the following addition.

Suppose given AL 5et B and AT« B in A, representing Af—/S>B and Ag—/t>B

in AJN.

Choose a commutative diagram

Sy
)

Q“M\\:

~
=
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in A such that u and v are N-quasi-isomorphisms. This is possible since we may e.g. form the
pushout of ¢ and s, cf. lemma 3.1.27.(b).

Let f/s+ g/t := (fu+ gv)/su. This definition is independent of the choice of the commutative
diagram and of the choice of the representatives of the equivalence classes.

Note that f/s = fu/su and g/t = gv/tv, so
f/s+ g/t = fu/su+ gv/tv = fu/su+ gv/su= (fu+ gv)/su.

The zero element of Hom (A, B) is 04,5/15. We have 04 5/1p = 04w /w for all N-quasi-
isomorphisms Ba~~W in A.

For A—'+S in A, we have (f + f)/s = f/s+ f/s. In particular, the additive inverse of f/s
in Hom 4y (A, B) is (—f)/s.

Note that for a finite number of morphisms from A to B in A/ N, we may choose representatives
such that they have a common denominator by remark 3.2.5.

Proof. Choose a pushout
B

ﬁé

T

~

A=A S
2
4
e
q
in A. For a commutative diagram
B~~~ S
I
T~~~ U

in A such that v and v are N -quasi-isomorphisms, there exists P——U in A with pr = u and
gr = v. Note that r is an N -quasi-isomorphism by lemma 3.1.26.

Thus (fp+gq)/sp = (fp+ gq)r/spr = (for + gar)/su = (fu+ gv)/su.
So the definition of f/s + g/t is independent of the choice of the commutative diagram.

Suppose given AL 5B and AT << B in A with f/s = f'/s" and g/t = ¢'/t'. So

there exist A/-quasi-isomorphisms S~ X, §'~% X, T~V and T'~4~Y in A such that
fo = fa, szt =52, gy =gy and ty = t'y'.
Choose a pushout

ST

Sy

i

ty

QAR
QAR
Q
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in A. Note that a and b are N-quasi-isomorphisms by lemma 3.1.27.(b).

Since the diagrams

B~ S B~ S
gé géa and t géx/a
7L ()

commute in A, we have f/s+ g/t = (fra+ gyb)/sxa = (f'2'a+ ¢'y'b)/s'x'a = f'/s" + ¢/t

So the definition of f/s+g¢/t is independent of the choice of the representatives of the equivalence
classes.

For all N-quasi-isomorphisms B—*=W in A, we have 04 5/15 = (045 - w)/w = 04w /w.

For A5 in A, we have (f + f)/s = f/s + f/s since the diagram
Ba2~ S
R
S~ts S

commutes in A.

Suppose given three morphisms from A to B in A/ N, which we may assume to be represented

by ALS@B, A—2 3 S«AB and A—""35«2~B in A by remark 3.2.5.
We have

fls+g/s=(f+g)/s=(g+[f)/s=g/s+ f/s,
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(f/s+g/s)+h/s=((+g)/s)+h/s=([+g+h)/s=Ff]s+(g+h)/s
= [/s+(g/s+N/s),

Oas/s+f/s=as+[)/s=f/s=(f+0as)/s =f/s+0as/s

and

fls+(=f)s=(f = )/s=0us/s=(=f+[)/s=(=f)]s+ [/]s. O

Lemma 3.2.10. The quotient category A /N is preadditive.

Proof. Suppose given ALS%SMB%;T e O—L5U«A~D in A, cf. remark 3.2.5. We

have to show that f/s- (g/t + h/t) = f/s-g/t+ f/s-h/t and that
(g/t+h/t)-Lju=g/t-L/u+h/t L] u.

Choose a pushout

Q

U

b

P

év“\v,-\\:

~

l
—_—
|
—
Z/

in A. We have

(g/t+nh/t)-Lju=(g+h)/t-C/u=(g+ h)l'/uv = (gl + hl")/uv = gl Juv + ht' Juv
=g/t-l/u+h/t-L/u.
Write D := Dyn: (AJN)P — AP JN°P. Since D is an isomorphism of categories, it suffices

to show that D((f/s- (g/t + h/t))®) =D((f/s- g/t + f/s-h/t)°P). At first, we want to show
that D((g/t + h/t)*?) = D((g/t)") + D((h/t)*").

Choose pullbacks

PL.c prc Q~Z P’

AR B {7

t t 7 t and i t

BT, BT, P~isB

in A. Since the diagrams

Q :E/gl O Q Th C Q x,g,—"_'ih C
x't/g gét x’t’g gét and x’t’éé gét
B—2.T BT B 9th .o
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commute in A, we have

D((g/t)*) = (g")*?/(&"t')P,

D((h/t)®) = (&h)P/(z't')
and
D((g/t + h/t)®) = D(((g + h) /1)) = (z'g’ + Eh)P/(&'t)).
Thus D((g/t + h/t)*?) = D((g/t)*?) + D((h/t)°").

z’ /

A P

sE

TEAD W

J/

C

~

{)s

T

We conclude that
D((f/s-(g/t+h/1))*®) = D((g/t + h/t)™) - D((f/5)*)
= (D((g/t)™) + D((h/t)™)) - D((f/5))
=D((g/t)) - D((f/s)) + D((h/t)) - D((f/5))
=D((f/s-9/t)") + D((f/s - h/t))
=D((f/s-g/t+ f]s-h/t)). O

Lemma 3.2.11. Suppose given a zero object Z € Ob.A. Then Z is a zero object in AJN as
well.

i/1 /1
Suppose given a direct sum A <:> C <: B in A. Then Am—=—=C <j:> B is a direct sum in

p/1 q/1
AN as well.

Proof. The object Z is a zero object in AJN since 17/1, =0z/15 .
We have

i/lc-p/lA:ip/lAzlA/lA,

J/lc-q/1p = jq/1p = 1p/1p

and

p/la-i/lc+q/1p-j/lc = (pi+qj)/lc =1c/1c. O
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Proposition 3.2.12. The quotient category AJN is additive. Moreover, the localisation
functor L=Lgn: A— AJN is additive.

Proof. The quotient category AN is additive by lemmata 3.2.9, 3.2.10 and 3.2.11.
f .
For A?B in A, we have L(f +¢) = (f+9)/1s = f/1p+ g/15 = L(f) + L(g),
cf. definition 3.2.9. O]

Lemma 3.2.13. Suppose given AL se B in A, representing Af—/S>B in AJN. The
following four statements are equivalent.

(a) We have f/s=0in AJN.

(b) There exists an N-quasi-isomorphism Sa=~>U such that fu =0 in A.

(¢) We have /15 =01in AJN.

(d) There exists an A-quasi-isomorphism Va=~>A such that vf =0 in A.
Proof. Ad (a)<(c). By remark 3.2.4, we have f/s = f/1g-1g/s, where 1g/s is an isomorphism
in AJ/N. Thus (a) and (c) are equivalent.

Ad (b)<(d). This follows from lemma 3.1.28.

Ad (c)&(b). We have f/lg = 0 = 0a5/1s in AJN if and only if there exist N -quasi-
isomorphisms Sa~~U and S~~~>U such that fu = 0 and v = w, i.e. if and only if there
exists an N -quasi-isomorphism Sa=~>U such that fu = 0in A. n

Remark 3.2.14. Suppose given an object N € Ob.A. Then N is a zero object in AN if and
only if N € Ob V.

Proof. Suppose that N is a zero object in AJN. Since 1x/1y = 0, lemma 3.2.13 yields an
N-quasi-isomorphism Na=~>S such that s = 15 -s = 0 in A. Therefore N € ObWN, cf.
example 3.1.24.

Conversely, if N € Ob, then Oy is an N -quasi-isomorphism.
Thus 1N/1N = 1N . ON/lN . ON = ON/ON y cf. lemma 3.2.9. ]

3.2.3 The quotient category is abelian

!

Lemma 3.2.15. Suppose given K A B—¥—C in A such that k is a kernel of f and

c is a cokernel of f.

(a) The morphism f/1p is epimorphic in A/N if and only if C € ObN.

(b) The morphism f/1p is monomorphic in AJ/N if and only if K € ObN.
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Proof. Ad (a). Suppose that f/1p is epimorphic in AJN.

We have f/1g-¢/1c = f¢/1c = 0/1¢ . So¢/1¢ = Osince f/1p is epimorphic. By lemma 3.2.13,
there exists an A-quasi-isomorphism Ca=~>U such that cu = 0 in A. Since ¢ is epimorphic in
A, we conclude that © = 0. Thus C € ObN, cf. example 3.1.24.

Conversely, suppose that C' € ObN. Thus ¢/1¢ = 0 in AJN, cf. remark 3.2.14. Suppose given

B—2 T« ~(C in A, representing Bg—/t>C in AJN, such that fg/t = f/1g-g/t = 0. By
lemma 3.2.13, there exists an N -quasi-isomorphism Ta~~>U such that fgu = 0 in A. Since ¢
is a cokernel of f, there exists C——U in A such that gu = ca. So g/t = gu/tu = ca/tu =
¢/1c - a/tu = 0. We conclude that f/1p is epimorphic in AJN.

Ad (b). Note that k°P is a cokernel of f°P in A°. The morphism f/1p is monomorphic if and
only if fP/15° = Dan((f/15)°P) is epimorphic in AP JN°P. We have K € Ob N if and only if
K € Ob(N°P). The result now follows from (a). O

f

Lemma 3.2.16. Suppose given K A B—¥—C in A such that k is a kernel of f and

c is a cokernel of f.
(a) The morphism ¢/1¢ is a cokernel of f/1p in AJN.

(b) The morphism k/1,4 is a kernel of f/15 in AJN.

Proof. Ad (a). We have f/1p-c¢/lc = fe/lc =0/1¢ .

By lemma 3.2.15.(a), ¢/1¢ is an epimorphism since C——0 is a cokernel of ¢ in A.

Suppose given B——T<«*~C in A such that fg/t = f/1p-g/t =0. By lemma 3.2.13, there
exists an N -quasi-isomorphism Ta>U in A such that fgu = 0. Since ¢ is a cokernel of f in
A, there exists C—*—U in A such that gu = ca. Thus g/t = gu/tu = ca/tu = c/1¢ - a/tu.

Ad (b). The morphism k/14 is a kernel of f/15 in AJN if and only if kP /15" = Dyrr((k/14)P)
is a cokernel of fP/1% = Dy n((f/15)°P) in AP JN°P. Moreover, kP is a cokernel fP in A°P.
The result now follows from (a). O

Lemma 3.2.17. Suppose given AL 5« Bin A, representing A5 B in AJN.

Suppose given a kernel-cokernel-factorisation

K554 4 S—iC

j

of fin A. Then

sc/l

p/\ /4



150

is a kernel-cokernel-factorisation of f/s in AJN.

Proof. We have p/1;-1;/1;-i/s = pi/s = f/s.
We will use lemma 3.2.16 repeatedly.

The morphism k/14 is a kernel of f/1g and, consequently, of f/s = f/1g-1g/s in AJN, cf.
remark 3.2.4.

The morphism p/1; is a cokernel of k/14 in AJN.
Note that the diagrams

Al s e
1/1 1/5{ l1/1
A f/s B se/1 .
and
[ g A
1/1l 1/s 1/1
i/s s/l
I— B——C
are isomorphisms in (A/JN)52.
Thus sc/1 is a cokernel of f/s and i/s is a kernel of sc¢/1 in AJN. O

Theorem 3.2.18. Recall that A is an abelian category and N is a thick subcategory of A.
Recall that AJN is the quotient category of A by N and L = Lay: A — AJN is the
localisation functor. Cf. definitions 3.2.3 and 3.2.6.

The quotient category A/JN is abelian and the localisation functor L: A — AJN is exact.
Moreover, Ker(L) = A. In particular, L(N) = 04/ for N € ObN.

Proof. The category A/J/N is abelian by proposition 3.2.12 and lemma 3.2.17.
The functor L is additive by proposition 3.2.12.

Suppose given a short exact sequence A4 in A By lemma 3.2.16, L(f) = f/1p is

a kernel of L(g) = g/1¢ and L(g) is a cokernel of L(f). Thus the sequence A g0 s
short exact in AJN.

Suppose given N € Ob A. By remark 3.2.14, L(N) = N is a zero object in A/ if and only if
N € ObN. Thus Ker(L) = N. O

Remark 3.2.19. The thick subcategories of A are precisely the kernels of exact functors from
A to abelian categories. Cf. corollary 3.1.8 and theorem 3.2.18.
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Lemma 3.2.20. Each short exact sequence in AJN is isomorphic to the image of a short
exact sequence in A under L.

More precisely, suppose given A ! SeAxB—T«AxD in A, representing a short exact

sequence A2 D in AJN.

Choose a kernel-cokernel-factorisation

‘B g T —%
I——1T

of g in A. Then there exists a morphism K A in AJJN such that

K C

k/1 p/1
— B

K B I
| e
A f/s

BRI LNy

is an isomorphism in (A/JN)52.

Proof. The sequence K k—/l>Bﬂ>I is short exact in AN since L is exact, cf. theorem 3.2.18.

The morphism k/1p is a kernel of g/t = g/1r - 17/t in AJN by lemma 3.2.16.(b) and re-

mark 3.2.4. Since f/s is a kernel of g/t by assumption, there exists an isomorphism K hT/u>A

in AJN such that h/u- f/s=k/1p .

Since g/17 = g/t - t/1r is epimorphic, we have C' € Ob N by lemma 3.2.15.(a). Therefore i is
an N -quasi-isomorphism in A. So i/t is an isomorphism in AN, cf. lemma 3.2.8.

Finally, we have p/1;-i/t = pi/t = g/t. O

3.3 The universal property

Theorem 3.3.1. Recall that A is an abelian category and N is a thick subcategory of A. Recall
that AJN is the quotient category of A by N and L = Ly : A — AJN is the localisation
functor. Cf. definitions 3.2.3 and 3.2.6.

The category AJN is abelian and L is exact with Ker(L) = A by theorem 3.2.18.

Suppose given an abelian category B.

(a) Suppose given an exact functor F': A — B satisfying N' C Ker(F).
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There exists a unique exact functor F': AJN — B such that F oL = F.

ALt B

| A

AN

For A%, in AJN, we have E(f/s) = F(f) - F(s)~".

(b) Suppose given exact functors F,G: A — B with /' C Ker(F) and N' C Ker(G) and a
transformation a: F' = G.

There exists a unique transformation &: F = @ such that @ L = a.

AN

For A€ Ob A = Ob(AJN), we have Gy = a4 .

Proof. Ad (a). Suppose given an N-quasi-isomorphism A~LeB in A, Choose a kernel

K—%-5A of f and a cokernel B—%—C in A. So K,C € ObN. We have F(K) = 05 = F(C)
by assumption. Since F'is exact, F'(k) is a kernel of F'(f) and F(c) is a cokernel of F(f) in B.
We conclude that F'(f) is an isomorphism in 5.

Suppose given AL 5etBin A

Given a functor F': AJN — B with F oL = F, we necessarily have

F(f/s)=F(f/1s-1s/s) = F(f/1s - (s/15)7") = F(L(f)) - F(L(s)™") = F(L(f)) - F(L(s))™"
=F(f)-F(s)™,

cf. remark 3.2.4.

Let F(A) := F(A) and let F(f/s) := F(f) - F(s)™".

This is well-defined since for A——T<«A~B in A with f/s = g/t, there exist N-quasi-
isomorphisms Sa=~~>U and Ta~~U in A such that fu = gv and su = tv. Therefore

F(f) - F(s)™ = F(f)  F(u) F(u)™" - F(s)™" = F(fu) - F(su)™"

Suppose given A ! Set B2 Te A in A.
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Choose a pushout

in A. We have

and F(14/14) = F(14) - F(14)7" = 1pa).

So F'is in fact a functor.

For A—1=B in A, we have F(L(f)) = F(f/15) = F(f) - F(1p)~" = F(f). Thus F oL = F.
The functor F is additive since

F(f/s+g/s)=F((f+9)/s)=F(f+9)-F(s)™" = (F(f) + F(g)) - F(s)~'
F(f)-F(s)™ + F(g)- F(s)™ = F(f/s) + F(g/s)

for A%;S;B in A.

Suppose given A ! SeiAxB—ITeAC in A, representing a short exact sequence

s t .
A B 9 ——C in AJN. By lemma 3.2.20, there exists a short exact sequence X —e—Y ——7
f/s L(4) L(p)

in A such that AL B0 and X2y 2P 7 are isomorphic in (AJN)52.

By assumption,

F(i) F(p)
——

F(X Y ——-2)

is short exact and thus F (A—f18—>B—0—>C ) is short exact in B as well since F' is a functor.

We conclude that F' is exact.
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Ad (b). Given a transformation &: F = G with axL = «, we necessarily have a g = ar,a) = a4

for A € Ob A.

Let aq := ay for A € Ob . A. We want to show that & := (&a)acoba: F = @ is natural.

Suppose given AL 542 B in A. We have

F(f/s)-ap-G(s)=F(f)- F

We conclude that F/(f/s)-dp = a4 - G(f/s) since G(s) is an isomorphism in B.

Finally, we have & x L = o by construction. O

Remark 3.3.2. Suppose given an abelian category B, exact functors F,G: A — B with
N C Ker(F) and A C Ker(G) and a transformation a: F = G. Let F' and G be the unique
exact functors with F oL = F and G o L = G provided by theorem 3.3.1. (a). Let a: F=aG
be the unique transformation satisfying & * L = a provided by theorem 3.3.1.(b).

If « is an isotransformation, then & is an isotransformation as well.

Proof. Let B := a~! and let B: G = F be the unique transformation satisfying B* L=2p
provided by theorem 3.3.1.(b). We have (&) xL = (@*L)(f*L) = aff = 1p = 15+ L and thus
a3 =15 . Similarly, we obtain S& = 14 . O

Lemma 3.3.3. Suppose given P € ObA such that ,y*": A — Mod-Z is exact and such

that N C Ker(zy*?), cf. definition 1.2.4.(b). Let z5*": AJN — Mod-Z be the unique exact
functor with ;54" o L = ,y** provided by theorem 3.3.1.(a).

Then z547 =2 ,yA/NF in (Mod-Z)A/ and, consequently, ,y*A/*>F is exact.

In other words: If P is projective in A such that Hom4(P, X) = 0 for all X € ObA/, then P
is projective in AJN as well.

Proof. By remark 3.3.2 and theorem 3.3.1.(a), it suffices to show that ,y/N:F oL = ,yAF in
(Mod-Z)*.

For X € Ob A4, let
Lpx: Homyu(P, X) — Homyyn (P, X): h — L(h)

denote the induced morphism in Mod-Z.
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We want to show that Lp x is bijective.

Suppose given h € Homy4(P, X) such that h/1 = L(h) = 0. By lemma 3.2.13, there exists
an N -quasi-isomorphism X~%~S in A such that hs = 0. Choose a kernel K—%—+X of s.
Note that K € ObN. Since hs = 0, there exists P—-—K in A such that uk = h. Since
N C Ker(zy?*?), we have u = 0 and thus h = 0. We conclude that Lpy is injective.

Suppose given P25« X in A, representing Pg—/s>X in AJN. Choose an image

X4 —I1—4-S and a cokernel S——=C of s in A. Note that ¢ € ObA and that ¢ is a
cokernel of j. Since N' C Ker(zy*), we have gc = 0 and thus there exists P——1I in A such
that uj = g. Moreover, since P is projective in A, there exists P——X in A such that vp = u
and thus vs =vpj =uj =g.

X
+P
AR
PTS
C

We conclude that L(v) = v/1 = wvs/s = g/s. Thus Lp x is surjective.

It remains to show that (Lpx ) AP = g AINP o1 is natural.

Xeob - ZY

Suppose given X— oy i A. For w € Homy (P, X), we have

(w) Lpx 7y P (L(f)) = L(w) zy™ P(L(f)) = L(w) L(f) = L(wf) = (wf) Lpy
= (w) zyA’P(f) Lpy .

Homu(P, X) 2% Hom yya (P, X)

ZYA’P(f)J/ lzyA//N’P(L(f))
Hom(P,Y) =2 Hom_uyn (P, Y) -

Remark 3.3.4. In general, there are objects in A that become projective in AJN without
satisfying the assumptions of lemma 3.3.3.

Let e.g. A = N = Mod-Z. Then Z is projective in A, we have Hom4(Z,Z) # 0 and Z is also
projective in AJN since Z =0 in AJN.



Chapter 4

The universal abelian category of an
exact category

4.1 Adelman’s construction for additive categories

Suppose given an additive category A.

We give an overview of Adelman’s construction [1] of the universal abelian category Adel(.A)
of the additive category A. For details, see e.g. [14, chapters 3 and 4].

4.1.1 The Adelman category

Recall that Ay denotes the poset category of [0,2] C Z. This category has three objects 0, 1,
2 and three non-identity morphisms 0 —1, 1 —2, 0— 2. Cf. convention 11.

We denote the objects and morphisms of the functor category A*? as follows.

We write A = (Ag —— A —— A,) for A € Ob(A*2) and

A Ao L Al L) AQ
lf = lfo J/fl lfz
B By B, B,

for AL B AB2,

The Adelman category Adel(A) of A is defined as factor category of A%2:
Adel(A) = A%/ J 4 .

!
The equivalence class of f € Mor(A%2) in Adel(A) is denoted by [f] or [fy, f1, f2]. For A%;B
9

156
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in Adel(A), we have [f] = [g] if and only if there exist morphisms s: A; — By and t: Ay — By
in A such that sby + a1t = f1 —

The category Adel(A) is abelian. Kernels and cokernels of a morphism A B i Adel(A)

are formed as follows.

k()]

A kernel of [f] is given by K(f)——=A, where

(%9 (% %)

K(f) = (AO@BO —— A ® By —— A2@31>and k(f):(((l)),(é)a(tl)))

A cokernel of [f] is given by B—— [c()]

() o0, (5D

——=C(f), where

C(f) = <BO@A1 N g g A, 21 Bg@Ag)&ﬂd c(f) == ((10),(10),(10)).
(99 (5 %)
Ay ® By—21 = Ay @ By—— A, @ B,
(5) (5) (5)
Ag . Ay = Ay
fo f1 f2
By ~ B, 2 B
(10) (10) (10)
BO@A1%—0>B1@AQT>B2@A2
(f1 —a1> (()11>

4.1.2 The inclusion functor and duality
The inclusion functor I4: A — Adel(A) is defined by

4 (X—15v) = (0—x—0) 229 (0—y——0)

for X1V in A
The functor [ 4 is full, faithful and additive.

Moreover, we have an isomorphism of categories D 4: Adel(A)°? — Adel(.A°P) with

op op

D(A) = (A2“—1>A1L>Ao) and Da([f]") = [/*, 1", fo"]

for A2 B in Adel(A).
Note that D4 o(14)° = T gop -
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Lemma 4.1.1. Suppose given Xy in A

(a) A kernel of Ly(X)2Y51, (V) in Adel(A) is given by (0——X—v)—2% o1, (x).
(b) A cokernel of IA(X)IA—m>IA(Y) in Adel(A) is given by 14(Y) .10 (X Ly 0).
0—x -1y
1
0—— X ——0
f
0——Y ——0
1
x—1.yv——o0
Proof. Ad (a). A kernel of I4(f) is given by K(0, f, O)MMX, where

(66)

K(0, f,0) = (0@0—“>X@0—>0@Y) and k(0, f,0) = ((§),(5),(5))-

1 0

Using the isomorphisms 0 ® 0——0, X @ O&X and 0 4 Y&Y in A, [14, lem. 29] yields
the assertion.

Ad (b). This is dual to (a) using the isomorphism of categories D 4: Adel(A)°? — Adel(A°P).

L

Lemma 4.1.2. Suppose given xLwwv 2.7 A

The diagram

La(X La(Y 14(Z)
[0,1,0] [0,1,0] [0,1,0] [0,1,0]
(0— X —Y) (0—Y—2) (X =Y —0 (Y Z—0)
[0’171] %1,0]
(x Ly L2

is a homology diagram of IA(X)IA—U)>IA(Y)IA—(9)>IA(Z) in Adel(.A), cf. definition 1.6.1.

Proof. This is a consequence of lemma 4.1.1 and [14, th. 42]. O
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4.1.3 Adelman’s construction for additive functors

Suppose given an additive category B and an additive functor F': A — B.
The functor Adel(F): Adel(A) — Adel(B) is defined by

(Adel(F))(X) := ( F(Xo) 2% pixy) 290 pexy) )

for X € Ob(Adel(.A)) and

(Adel(E))([f]) == [F'(fo), F(f1), F(f2)]

for [f] € Mor(Adel(A)).
The functor Adel(F') is exact.

4.1.4 The homology functor in the abelian case

Suppose given an abelian category B.

The homology functor Hg: Adel(B) — B was constructed in [14, def. 53 and 55]. The functor
Hpg is exact and we have Hgolg = 15 .

We will use the following lemma for calculations involving Hg .

Lemma 4.1.3.
(a) Suppose given (X Ty itz ) € Ob(Adel(B)) and a homology diagram

TN
N A

of XLy 2.7 in B, cf. definition 1.6.1.

Then Hg(X—5Y—2+2) = H in B. In particular, we have Hg( X—=Y—2527) = 04
if and only if xLov 4z semi-exact, cf. definition 1.6.3.

(b) Suppose given X, M € Adel(B) such that o =0, x; = 0 and m; = 0.
Suppose given [0, f,0]: X — M in Adel(B) and a cokernel M,—%~D of mg in B.

Then there exist isomorphisms Hpz(X)——X; and Hgz(M)——D in B such that
HB([()?fv ODU = de
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In particular, Hg([0, f,0]) = 0 if and only if fd = 0.

//Ml\\
\ /

Proof. Cf. [14, def. 53 and 55]. O

0

4.1.5 The universal property
Theorem 4.1.4. Recall that A is an additive category. Suppose given an abelian category B.

(a) Suppose given an additive functor F': A — B.
We set F':= Hg o Adel(F): Adel(A) — B.
The functor F' is exact with F ol 4=F.

Suppose given exact functors G, G: Adel(A) — B and an isotransformation
0:Goly= Goly. Then there exists an isotransformation 7: G = G with 7 x4 = 0.
In particular, this holds for Goly = Gols and 0 = 1gor, -

A—L B

Adel(A)

(b) Suppose given additive functors F,G: A — B and a transformation a: F' = G.
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There exists a unique transformation &: F = @ such that &1 A= Q.

Proof. See [14, th. 62]. O

Lemma 4.1.5. Suppose given P € Ob.A. Note that zy*": A — Mod-Z is additive, cf.
definition 1.2.4.(b). Let ;547 : Adel(A) — Mod-Z be the exact functor with ;34" ol 4 = ,y*7
provided by theorem 4.1.4.(a).

Then 43 zy A ALAP) i (Mod-Z)A9°1A) and, consequently, ,yAdeAAP) g exact, i.e.
I4(P) is projective in Adel(.A), cf. [14, exa. 40].

A,P o~

Proof. By theorem 4.1.4.(a), it suffices to show that ,yAdeAMaP) o] 4 = vAP in (Mod-Z)4.
For X € Ob A4, let

IP,X3 HOIHA(P7 X) — HomAdel(A)(IA(P),IA(X)): h +—> IA(h)

denote the induced isomorphism in Mod-Z. It remains to show that (IR X ) Xeob A is natural.

Suppose given Xy in A Forh e Hom 4(P, X), we have

(h) 1px Zy AN L(f) = La(h) gy TN (f) = Ta(h) Ta(f) = La(hf)
= (hf)Ipy = (h) gy (f) Ipy -

I
HOHIA<P, X) & HomAdel(.A) (LA(P)a IA(X))

zyAval PMG‘M*IMH(IAU»
I
Hom 4(P,Y") — Homge ) (Ta(P), 14(Y)) ]
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4.2 Construction of the universal abelian category

Suppose given an exact category A = (A, E).

4.2.1 £-homologies and exact functors

Definition 4.2.1. An object A € Adel(A) is called an £-homology if there exists a pure short

exact sequence (X Ay 1.z ) € & such that
o A= (0—>X—£—>Y) or
e A= (Y45Z——0) or
o A= (Xx—4sv—157).
Definition 4.2.2. Let H ¢ be the full subcategory of Adel(.A) defined by
Ob(Hae) := {A € Ob(Adel(A)): A is an E-homology}

We abbreviate H := Hg := Ha ¢ if unambiguous.

Lemma 4.2.3. Suppose given an abelian category B and an additive functor F': A — B. Let
F: Adel(A) — B be the exact functor with F'oI4 = F provided by theorem 4.1.4.(a).

Suppose given a sequence XLy .z A. The sequence F(X) ) F(Y) 19) F(Z) is
semi-exact in B if and only if F(XLYLZ) = Op in B.
Proof. The diagram
[0,1,0] [0,1,0] [0,1,0] [0,1,0]
(0—=X—Y) (0—Y—2) (X =Y —0) (Y 5+ Z—0)
(x Ly % 7)
La(f)

is a homology diagram of I4(X) I4(Y) 14(9) I4(Z) in Adel(A) by lemma 4.1.2.

Thus the sequence

) F(g) F(Z)) _ ((FoIA)(X)M(FOIA)(Y)M(FOIA)(Z))

is semi-exact in B if and only if F(XLYLZ) >~ 0p in B by corollary 1.6.9.(a). O
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Lemma 4.2.4. Suppose given an abelian category B and an additive functor F': A — B. Let
F': Adel(A) — B be the exact functor with F oI, = F provided by theorem 4.1.4.(a).

Suppose given a sequence X v 47 A such that fg = 0. The following three state-
ments are equivalent.

(a) The sequence F(X )M

F(Y) F(g)

F(Z) is short exact in B.
(b) There exists a homology diagram

FX)— " iy — "9 ey

K/k/ L/ \d\D \C\C
N A

H
£(f)

F(g)
)

of F(X) F(Y F(Z) in B such that K = 05 , H = 0g and C = 0p .

(c) We have
F0—X—15Y) 205, F(Y—252—0) 20 and F(X—5Y—257) =04
in B.

Proof. The statements (a) and (b) are equivalent by corollary 1.6.6.
Ad (a)&(c). The diagram

La(X) La(Y) L4(Z)

[0,1,0] [0,1,0] [0,1,0] [0,1,0]
(0—X—Y) (0—Y—2) (X Y —0) (Y - Z—0)
[Ole AI,O]

(x Ly % 72)

La(f)

is a homology diagram of I 4(X) I4(Y) 4@ 14(Z) in Adel(A) by lemma 4.1.2.

Thus the sequence

(FCOE P 2Dk (2)) = ((F o L)(X) -T2 (o 1,(v) -9 (2 6 1,)(2))

is short exact in B if and only if
F0—X—L5y) 205, F(Y—57—0) 205 and F(X— vV —157) =0,
in B by corollary 1.6.9.(b). O
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Proposition 4.2.5. Suppose given an abelian category B and an additive functor F': A — B.
Let F': Adel(A) — B be the exact functor with F oI, = F provided by theorem 4.1.4.(a).

~

The functor F' is exact if and only if H C Ker(F).

Proof.
The functor F' is exact if and only if for each pure short exact sequence (X AV BN ) eé,
the sequence F'(X

) il F(Y) o) F(Z) is short exact in B. By lemma 4.2.4, this is true if and
only if H C Ker(F). Cf. definition 4.2.2. O

Lemma 4.2.6. Suppose given a thick subcategory N of Adel(A).
Recall that Lageiayn: Adel(A) — Adel(A)JN is the localisation functor of Adel(A) by N.

Cf. definition 3.2.6. We abbreviate L := Lgeiayn - Let Lols: Adel(A) — Adel(A)JN be
the exact functor with ﬂ)I\A olq=Loly provided by theorem 4.1.4.(a).

We have Lol, = L in (Adel(A) JN)AdelA) and Ker(m) = Ker(L) = V.

The functor Loly is exact if and only if H C N.

Proof. The functor L ol 4 is additive since it is a composite of additive functors, cf. section 4.1.2

and proposition 3.2.12. Moreover, L is exact by theorem 3.2.18. Since L/oI\A oly=Loly, we
have Lol = L in (Adel(A) JN)A4A) by theorem 4.1.4.(a).

A—L4 L Adel(A) N
I““l /
Adel(A)

Thus Ker(m) = KerL = N by lemma 1.1.5 and theorem 3.2.18.
We conclude that L oIy is exact if and only if H C N by proposition 4.2.5. O

4.2.2 Characterisations of the thick subcategory generated by H
Lemma 4.2.7. Recall that aqea)(Hae) = (H) denotes the thick subcategory of Adel(.A)
generated by H. Cf. definitions 3.1.10 and 4.2.2.

For an abelian category B and an additive functor F: A — B, let F': Adel(A) — B be the
exact functor with F' o 4 = F provided by theorem 4.1.4.(a).

Then we have

(#) = Ker(Lagaa, o)
= ﬂ{Ker(F): B is an abelian category, F': A — B is an exact functor}.

Cf. definition 4.2.9 below.
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Proof. We have (H) = Ker(Ladei(a),2)) by theorem 3.2.18. Since Lageia),n) is exact by
lemma 4.2.6, we have
ﬂ{Ker : B is an abelian category, F': A — B is an exact functor} C Ker(Ladei(ay,(#))-
By proposition 4.2.5, we have

H C m{Ker : B is an abelian category, F': A — B is an exact functor}.

Note that ({Ker(F): B is an abelian category, F': A — B is an exact functor} is a thick sub-
category of Adel(A) by remark 3.1.9 and corollary 3.1.8. Thus

) C ﬂ{Ker : B is an abelian category, F': A — B is an exact functor}.
Altogether, we obtain
(H) = ﬂ{Ker( ): B is an abelian category, F': A — B is an exact functor}. O

Remark 4.2.8. Let Py ¢ be the full subcategory of Adel(A) defined by
Ob(Pas) == {(XLYLZ) € Ob(Adel(A)): xtoy- 2.z E-pure exact in A}.

Cf. definition 1.6.10. We abbreviate P = P, ¢ if unambiguous.
We have H C P C (H) and thus (H) = (P).

Proof. Suppose given a pure short exact sequence (X 1w 1.z ) ef.
The following &£-purity diagrams show that H C P.

O/O\O/Xxj(/Y\iZ

X}/Y\g\;/Z\O/O\O

VAN AN

Suppose given an E-pure exact sequence X L>YL>Z in A.
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Suppose given an abelian category B and an exact functor F': A — B. Let a2k Adel(A) — B
be the exact functor with F' oI, = F provided by theorem 4.1.4.(a). So F' = Hgo Adel(F).

Note that Adel(F)(X—v—2-2) = (F(X)2 L rv) 2 p(2)).
We have (XLYL)Z) € Ob(Ker(F)) by lemmata 4.2.3, 1.6.11 and 1.6.4.

We conclude that
P C ﬂ{Ker : B is an abelian category, F': A — B is an exact functor} = (H),

cf. lemma 4.2.7. O]

4.2.3 Definition of the universal abelian category

Definition 4.2.9. The universal abelian category U(A,E) of (A, E) is defined as the quotient
category of Adel(A) by adeia)(Hae), ie

U(.A, 5) = Adel(A)//Adel(_A) <HA,g> = Adel(.A)//<H>.

Cf. definition 3.2.3.
We write La.e) := Ladei(a),(z) for the localisation functor of Adel(.A) by (H), cf. definition 3.2.6.

The universal functor Jagy: A — U(A,E) of (A, E) is defined as the composite of the inclusion
functor T4: A — Adel(A) of A and the localisation functor Lia¢): Adel(A) — U(A,E) of
Adel(A) by (H), i.e.

j(A7g) - L(A7g) OIA .

Cf. section 4.1.2.

The functor J 4¢) is exact by lemma 4.2.6.
We will show in theorem 4.4.4 below that it is also full and faithful and that it detects exactness.

We abbreviate U(A) =U(A,E), L = Lag), I =14 and T = J4¢) if unambiguous.

A—1 Adel(A) —=—U(A)

~_

J

Remark 4.2.10. We have Ob(U(A)) = Ob(Adel(A)) = Ob(A*2), so an object A € Ob(U(A))
is of the form A = (AOLAlLAg).

Morphisms in U (A) are of the form AMB where the diagram A s M Bisin Adel(A)
such that [s] is an (H)-quasi-isomorphism.
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4.3 The universal property

Suppose given an exact category A = (A, E).

Theorem 4.3.1. Recall that Adel(A) is the Adelman category of A and I: A — Adel(A) is
the inclusion functor. Cf. section 4.1.

Recall that U(A) is the universal abelian category of A = (A, &), that L: Adel(A) — U(A)
is the localisation functor of Adel(.A) by the thick subcategory (H), which is generated by the
category of £-homologies, and that J: A — U(A) is the universal functor. Cf. definition 4.2.9.

Suppose given an abelian category B.

(a) Suppose given an exact functor F': A — B.

Let F': Adel(A) — B be the exact functor with F'ol4 = F provided by theorem 4.1.4.(a).
We have % C Ker(F), so theorem 3.3.1.(a) yields an exact functor F': U(A) — B such
that FoJ =F.

Suppose given exact functors G, G: U(A) — B and an isotransformation o: GoJ = Go7J.
Then there exists an isotransformation 7: G = G with 7xJ = ¢. In particular, this holds
for GoJ=GoJ and 0 = lgoy .

(b) Suppose given exact functors F,G: A — B and a transformation o: F' = G.

There exists a unique transformation &: F = G such that &+ J = a.

Proof. Ad (a). We have H C Ker(F) by proposition 4.2.5. This implies (H) C Ker(F) since

A

Ker(F') is a thick subcategory of Adel(.A) by corollary 3.1.8.

Suppose given exact functors G,G: U(A) — B and an isotransformation o: GoJ = G o J.
Soo: (GoL)ol = (GolL)ol By theorem 4.1.4.(a), there exists an isotransformation
p: GoL = G oL such that pxI = 0. By theorem 3.3.1.(b), there exists a transformation
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7:G = GwithtxL=p. So7xJ=7x(Lol) = (rxL)*I[ = pxI= 0. The transformation 7
is an isotransformation by remark 3.3.2.

Ad (b). By theorem 4.1.4.(b), there exists a unique transformation &: F = G such that
&1 = a. By theorem 3.3.1.(b), there exists a unique transformation &: F' = G such that
axL=da& SoaxJ=(axL)xI=axI=a.

Suppose given another transformation 8: F = G with 8xJ = a. So (B*L)*xI = a. Thus
£ xL = a&. We conclude that indeed 8 = a. O]
Remark 4.3.2. Suppose that A is abelian, equipped with the natural exact structure & = £,
Then J: A — U(A) is an equivalence of categories.

Cf. definition 1.5.6.

Proof. Let 14: U(A) — A be the exact functor with 1403 = 14 provided by theorem 4.3.1.(a).
We have (Jol4)oT=T0(1403)=3T= Iy oJ. Thus Jo 1,2 1y by loc. cit.

We conclude that J is an equivalence of categories. O]
Remark 4.3.3. Suppose that A is equipped with the split exact structure £ = Eipht. Then
L: Adel(A) — U(A) is an equivalence of categories.

Cf. definition 1.5.4.

Proof. Note that I is an exact functor in this case since it is additive, cf. remark 1.5.5.

Let I: Adel(A) — Adel(A) be the exact functor with lol=1 provided by theorem 4.1.4.(a).
Thus T 2 1404y in Adel(A)AdIA),

Let I: U(A) — Adel(A) be the exact functor with I o J = I provided by theorem 4.3.1.(a).
Thus IO L= i = 1Adel(A) .

We have (Lol)oJ = Lo(ToJ) =Lol =3 = Iy 0J. Thus Lol 2 Iy4 in U(AU by loc.
cit.

We conclude that L is an equivalence of categories. O]

Remark 4.3.4. The universal functor is self-dual in the following sense.

Note that (Jaep gor))P: A — U(AP,EP)P is E-exact and that (Jae))P: AP — U(A,E)P is
E°P-exact.

Let J: U(A, E) = U(AP, E)P be the functor provided by theorem 4.3.1.(a).
So JoJae = (j(Aopgop))Op.

Let J°: U(A%® EP)P — U(A,E) be the opposite functor of the one provided by theo-
rem 4.3.1.(a) for the exact category (A%, EP). So J° o (Jaer,or))® = Fae)-
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Then Jo J° & L4400 gopyor and JooJ Ly(ae). In particular, J is an equivalence of categories.

(Ja0p gopy)°P

A

Z/{(AOI)? gOP)OP

4.4 Further properties

Suppose given an exact category A = (A, E).

Recall that Y 4¢): A = GQL(A, &) is the closed immersion of the exact category (A, &) into
its Gabriel-Quillen-Laumon category. Cf. definition 2.5.6 and theorem 2.5.8.

Let Yag): Adel(A) — GQL(A, &) be the exact functor with Y e 0 14 = Ya¢) provided by
theorem 4.1.4.(a).

Let Y(Ag) cU(AE) — GQL(A, €) be the exact functor with Y(A,g) o Jae) = Yae) provided by
theorem 4.3.1.(a).

Thus the following diagram commutes.

A9 GALA, €)

IAl /
Jea,e) Ya,e)

Adel(A)

L(Ax)l

UAE)

Ya.)

Dually, Y orgory: A%® — GQL(A,E) is the closed immersion of the exact category
(A°P, E°P) into its Gabriel-Quillen-Laumon category.

Thus we obtain a closed immersion (Y 4op gor)): A — GQL(AP, EP)P of the exact category
(A, &) into GQL(A°P, £P)°P. This immersion is essentially different from Y 4¢) in general, cf.
remark 4.5.5 below.

Abbreviate Y = Y'(Ayg), YAY = YAY(Ag), ? = ?v(_A’g) and Y° = (Y'(Aop,gop))()p.
Moreover, abbreviate GQL(A) = GQL(A, £) and GQL(A®?) = GQL(AP, £°P).

Let Y°: Adel(A) — GQL(A) be the exact functor with Y° oI, = Y° provided by theo-
rem 4.1.4.(a).

Let Y°: U(A,E) — GQL(A) be the exact functor with Y° o 3 = Y° provided by theo-



170

rem 4.3.1.(a).
A—L 5 GQL(A) A
(b A [
Adel(A Adel(
1 Ll
U(A) U(A)

Remark 4.4.1. Recall the duality functor DY’ : Adel(A) — Adel(.A°)°P from section 4.1.2.
We have Y° 2 (Y 400 £0r))°" 0 DY in (GQL(AP)°P)AdlA) and thus

A

Ker(Y®) = Ker(( (ov gop))°P 0 D) as subcategories of Adel(.A).
Proof. We have DY oI 4 = (I40r)° and thus
(Y(Aopf/‘op))or) o D.(}) @) IA == (?(Aop’gop))()p O (IAop)Op == (YEAOP780P))OP = YO p— YO @) IA .

S0 Y° 2 (Y uop gopy)% 0 D% by theorem 4.1.4.(a).
We conclude that Ker(Y®) = Ker((Y aop gor))°? 0 D) by lemma 1.1.5. O

4.4.1 The induced functor from Adel(A) to GQL(.A)

Lemma 4.4.2. Suppose given ( X Ty 4z ) € Ob(Adel(A)).

(a) We have (X Ty 2.z )€ Ker(Y) if and only if for all A € Ob A and all A——Y

in A with hg = 0, there exists a pure epimorphism P 75 A anda morphism P —"— X
in A such that ph = uf.

In symbols:

(XLYi)Z) € Ker(Y) <
VA€ ObAVA—5Y withhg=03P—F>A4 IP—"3X :ph=uf

X ! y— 9 .7
u h
0
P—}g—>A

(b) We have ( X Sy 4.z ) € Ker(Y®) if and only if for all A € Ob A and all Y ——A

with fh = 0in A, there exists a pure monomorphism A—=e—M and a morphism Z—— M
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in A such that hm = gu.
x—1 vy ¢ .z
h u
0
A—=S— M

) Y(f)

Proof. Ad (a). We have

) Y(9)

Adel(V)(X—Lov—257) = (Y(X) Ly (v) 22y (2)).

Choose an image K,—+—H—s—=Cy of k, ¢y , cf. definition 2.5.4. The diagram

Y(X)———— —>Y(Z)
Kf C!J
. : Y(/f) Y(9) .
is a homology diagram of Y (X) Y(Y) Y(Z) in GQL(A), cf. remark 2.5.5. Note that

in ZA we have ¢y = ¢ ece €(co)t by loc. cit. and that e(ce)t is monomorphic there by
remark 2.3.18.(b).

We have H = Y(XLYLZ), cf. lemma 4.1.3.(a).

Thus the following five statements are equivalent.

o (XLYLZ) € Ker(Y)
o H=0carw

L] kg Cjc ec; e(c;)+ =0

kg c§ ecy = 0

For A € Ob A and h € K,(A), we have (h)(kg)a (c})a (ece)a = 0.

Suppose given A € Ob.A and h € K,(A). So h € Homy4(A,Y') with hg = 0. We have

(h)(kg)a (cF)a (ecs)a = (h)(cF)a (ecs)a
= (h+ Homu(A, X)f) (ecs)a
- [B(h+H0mA(A7X)f)’ maX(A)} ’
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cf. definition 2.3.16.
By lemma 2.4.3, we have [g(iHHoma(AX)0) max(A)] = 0 if and only if there exists a pure
epimorphism P—Y A in A such that
ph+ Homy(P, X)f = (h+ Homa(A, X)) C5(p) = ()"0 =0,
cf. definition 2.3.14.
This is true if and only if there exists P—~—X in A such that ph = uf.
Ad (b). This is dual to (a) using remark 4.4.1. O
Lemma 4.4.3. Suppose given X € Ob.A and M € Adel(A) with m; = 0.
Suppose given [0, f,0]: 14(X) — M in Adel(A).

Then XA’([O, f,0]) = 0 if and only if there exist P—+ M, and a pure epimorphism P—5X in
A such that pf = umg .

f

MoﬂMlLMQ

e

Proof. We have Adel(Y)([0, f,0]) = [0,Y(f),0]. The morphism Y(Ml)mCmo is a cokernel
of Y(myp) in GQL(A) by remark 2.5.5.
Moreover, ¢p, = c5,, €cs, €(cs, )+ and e(cg, )+ is monomorphic by remark 2.3.18.(b).

mo

By lemma 4.1.3.(b), we have Y ([0, f,0]) = 0 if and only if Y(f) ¢m, = 0. This is true if and
only if Y(f) cp,, ecs, = 0. This in turn is equivalent to (1x) (Y(f))x (o) x (ecgn0 )x =0by
the Yoneda lemma 1.2.2.(b).

We calculate
(1x) (Y(f))x (C:no )X <eci’no )X = (f) (Cino )X (eC?nO )X
= (f + Hom (X, My)my) (ecsnO )X
— [ﬁ(erHomA(X,Mg)mo)’ max(x)} ’
cf. definition 2.3.16.
By lemma 2.4.3, we have [,B(HHomA(X’MO)mO),maX(X)} = 0 if and only if there exists a pure
epimorphism P—+—X such that (p) 5§I+H°mA(X’M°)m°) = 0. We calculate
(p) By FHemalEMoImo) — (£ 4 Hom 4 (X, Mo)me) C2,, (p°P) = pf + Homa(P, Mo)my .

Note that pf + Homy (P, My)mg = 0 if and only if there exists P—=M, in A such that
pf =umy . Ol
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4.4.2 Properties of the universal functor

Theorem 4.4.4. The universal functor J: A — U(.A) is an immersion, i.e. it is full, faithful,
exact and detects exactness, cf. definition 1.5.8.

Proof. The functor J is exact, cf. definition 4.2.9.

We want to show that it detects exactness.

Suppose given a sequence X L.y .7 in A such that J(X) )5 (Y
exact in U(A). Since Y: U(A) — GQL(A) is exact, the sequence

J(Z) is short

(Yo)(g)

(¥ 0 2)(0)-S20 (¥ 0 3) ()29 (7 03)(2)) = (Y(0) 1L

Y(Y) Y(9)

—Y(2))
is short exact in GQL(A). Now Y detects exactness by theorem 2.5.8 and thus X Sy 2z

is pure short exact in A. We conclude that J detects exactness as well.

For an additive functor F': C — D between preadditive categories C and D and objects
X, Y € ObC, let

Fxy: Home(X,Y) — Homp(F(X), F(Y)): f— F(f)

denote the induced Z-linear map.
We want to show that J is full and faithful.

Suppose given X, Z € Ob.A. We obtain the following commutative diagram in Mod-Z.

Homgqra) (Y(X), Y(2))

Homageia) (I(X),1(Z))

Lix),1z) 2
3(X),3(2)

The functors I and Y are full and faithful, cf. section 4.1.2 and theorem 2.5.8. Thus Ix
and Yy 7 are isomorphisms in Mod-Z. We conclude that YI( X),I(z) 1s an isomorphism as well,
that Lix)z) is injective and that \?3()(),5(@ is surjective. We want to show that ?g(x)g(z) is
injective since then all morphisms in the diagram above are isomorphisms.

Suppose given I(X)LMéSmI(Z) in Adel(A), representing TJ(X)f—/sﬁ(Z) in U(A). Sup-

pose further that Y(f)-Y(s)"' = Y(f/s) = 0. So Y(f) = 0.

Let m :=[1,1,0]: M — (My—"M;——0) in Adel(A). This is a monomorphism in Adel(.A),
cf. [14, th. 42.(b)]. Since L is exact by theorem 3.2.18, we conclude that L(m) is monomorphic
in U(A).
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We have Y(fm) = Y(f) - Y(m) = 0. Lemma 4.4.3 yields P—“~M, and a pure epimorphism
P—¥-X in A such that pfi = umg . Note that J(p) is epimorphic in U(A) since J is exact.

Moreover, I(p) - fm = 0 in Adel(A) since we have P——M, and 0——M; in A such that
umy + 0 = f1 .

0

/b /]
/ol

M0—>M1—>0

|
|

So J(p) - L(f) - L(m) = L(I(p) - fm) = 0 in U(A) and thus L(f) = 0 since J(p) is epimorphic
and L(m) is monomorphic.

We obtain f/s= f/1-1/s=L(f)-1/s=0.

This shows that Y5 3(x),3(z) is indeed injective. So Jx z = Ix z Lix)1(z) is an isomorphism in
Mod-Z.
We conclude that J is full and faithful. O

Proposition 4.4.5.
Suppose given a relative projective object P € Ob.A. Then J(P) is projective in U(.A).

Proof. By remark 1.2.5, it suffices to show that the functor ,y“(A7() is exact.

Let ;547 : Adel(A) — Mod-Z be the exact functor with ;54" o1 = ,y** provided by theo-
rem 4.1.4.(a).

Then 54T =2 ,yAdlCAIP) i (Mod-Z)A4A) by lemma 4.1.5. We have (H) C Ker(,574") =
Ker(,y "9 A1P)) gince P is relative projective, i.e. since ,y*7 is exact, cf. definition 1.5.9 and
lemmata 1.1.5 and 4.2.7.

Let ,547: U(A) — Mod-Z be the exact functor with ;74" o L = ,7** provided by theo-
rem 3.3.1.( ) and let zyAdlANP) he the exact functor with ZyAdelAIP) o I, = yAdel(A)IP)
provided by loc. cit.

We have ;547 o2 jgAdlANIP) o gU(AIP) iy (Mod-Z)¥) by remark 3.3.2 and lemma 3.3.3.
[

Proposition 4.4.6. Recall the notion of a closed immersion from definition 1.5.8.

(a) Suppose that A has enough relative projectives. Then the immersion J: A — U(A) is
closed, cf. definition 1.5.8.

(b) Suppose that A has enough relative injectives. Then the immersion J: A — U(A) is
closed.
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Proof. Ad (a).

Suppose given X', X” € ObA and a short exact sequence 3(X’)—£—>Z—?—>3(X”) in U(A).
We have to find C' € Ob A such that Z = J(C) in U(A).

Since A has enough relative projectives we may choose pure short exact sequences
K/ 14 P/ p/ X/ K// P// X/l L/ Ql K/ a)1,1(:1 L// Q// N K//

in A. Since J maps relative projectives to projectives by proposition 4.4.5, the proof of the
horseshoe lemma (cf. [16, lem. 2.2.8] and [2, th. 12.8]) yields the commutative diagram

I(L) = 3(Q) — AR e 3(P) - ()

T O

N—%53QeQ") —+—M—3 3P aP)—+sZ

L by boy b

3L 3@ s 3P 3(X)
in U(A) such that that the sequences (f”, "), (f',¢'), (n,s) and (m,r) are short exact.

3(q") J(K")
— e

~

Moreover, since J is full and faithful, we may write sm = J(a) for a uniquely determined
Q & Q"——P @& P" in A. Note that Z is a cokernel of J(a) in U(A).

We want to use that we know that the essential image of Y is closed under extensions. Therefore
we apply the exact functor Y to the diagram above and obtain the commutative diagram

Y(L) vy 2 ypy Y v (x)
Jf(f”) }Y(l 0)

}?(f) }Y(l 0) l\?(f)
YN S y(@ e @) Ly Sy (P e Py VL Y(2)
s 5@

fm }v(?) ff(g)
v = v X0, YO vy 2y (xen

Y(¢)

II)

in GQL(A).

Since the sequences (Y(f”),Y(g"), (Y(f),Y(¢)) and (Y(f),Y(g)) are short exact, we may
replace Y(N),Y(M) and Y(Z) isomorphically with the images of objects in A under Y and
obtain the following commutative diagram in GQL(A).

Y () Y(q')

v oy Xy ey Yy ey P yx)

Y(}L) &Y(Q'g;:))lﬂw}f() —Y&Y(P’éa P") MY(}(J
J*[ (e JV[Y(({) Y i V() %{(?) RGN f
v (1) 4 v X v () L v () L v (x)
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Since Y is full, faithful and detects exactness and since we have Y(a) = Y(sm) = Y(qk), we
obtain the commutative diagram

I 4 Q/ Q// P &P’ p C

in A such that the sequences (¢, q) and (k,p) are pure short exact. Thus a cokernel of J(a) in
U(A) is given by J(C). We conclude that indeed Z = J(C') in U(A).

Ad (b). This is dual to (a) using that J is self-dual, cf. remark 4.3.4. O

Remark 4.4.7. I do not know whether the immersion J is closed in general. This question
remains open, cf. section 4.6.

More precisely, for a short exact sequence ’J(X’)—Z—>Z—‘(]|—>3(X”) in U(A), the sequence

GQL(A) for some X € Ob A since Y is a closed immersion. However, we would need

Y (X") is short exact in GQL(A). Thus Y(Z) = Y(X) = Y(J(X)) in
Z=73(X)
in U(.A) but I do not know if this is true in general, cf. proposition 4.5.4.(c).

4.5 A counterexample to some assertions

Let A = mod-Z be the abelian category whose objects are the finitely generated Z-modules.
Note that A has kernels and cokernels since it is abelian.

We will use two different exact structures on A, namely the split exact structure Ei{)ht and the
natural exact structure %', cf. definitions 1.5.4 and 1.5.6.

We keep the notation from section 4.4.

4.5.1 Natural exact structure

Let A be equipped with the natural exact structure & = £3".

Proposition 4.5.1. The functor I: A — Adel(.A) is not left-exact.

Proof. Assume that 1 is left-exact. For each additive functor F': A — B, where B is an
abelian category, the induced functor F: Adel(A) — B provided by theorem 4.1.4 is exact
with F ol = F. So F has to be left-exact as composite of a left-exact and an exact functor.

So to arrive at a contradiction, it suffices to show that there is an additive functor from
A = mod-Z to an abelian category that is not left-exact.
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The tensor functor — ® Z/2: mod-Z — Mod-Z is additive and (Z%Z%Z/Q) € £ Now

7 ® 7/2-2257 ® 7,/2 is not injective since it is isomorphic to Z/2—2-7/2 in (Mod-Z)2!. We
conclude that — ® Z/2 is not left-exact. [

4.5.2 Split exact structure

Let A be equipped with the split exact structure £ = ;plit.

Let X := (O—>ZL>Z) € Adel(A).
Lemma 4.5.2. We have X € Ob(Ker(Y)) but X ¢ Ob(Ker(Y®)).

~

Proof. We show that X € Ob(Ker(Y)) using lemma 4.4.2.(a).

Suppose given A—""7 in A such that h-2 = 0. Since 2 is monomorphic in A, we obtain
h = 0. Thus the following diagram commutes.

0 Z 2 7
0 h
0
A———— A

We conclude that X € Ob(Ker(Y)).
We show that X ¢ Ob(Ker(Y®)) using lemma 4.4.2.(b). Suppose that X € Ob(Ker(Y®)). For

7— 7 in A, we obtain Z—"=M and a split monomorphism Z—"-+M in A such that the

following diagram commutes.

0 0 7 2 7
1 u
N \
7Z—& M

Since m is split monomorphic, there exists M——Z in A such that mn = 1. Thus 2-un =

1-mn = 1. So 2 would be split monomorphic as well, which is not true.

We conclude that X ¢ Ob(Ker(Y®)). O

Lemma 4.5.3. Suppose given additive categories C and D, an additive functor F': C — D and
C € ObC. Suppose that C is not a zero object in C and that C' € Ob(Ker(F)). Then F' is not
faithful.

Proof. Since C'is not a zero object in C, we have 1¢ # 0¢ . But C' € Ob(Ker(F)) implies that
F(l¢) = 1p@) = 0pcy = F(0c). So F is not faithful. n
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N

(a) We have (H) C Ker(Y).
(b) The functor Y: Adel(A) — GQL(A) is not faithful.

(¢) The functor Y: U(A) — GQL(A) is not faithful. In particular, Y is not an equivalence
and thus the construction of Gabriel-Quillen-Laumon is not universal.

Proof. We use lemma 4.5.2 repeatedly.
Ad (a). By lemma 4.2.7, we have (H) C Ker(Y) and (H) C Ker(Y°). Thus X € Ob(Ker(Y))

A

but X ¢ Ob((#)). We conclude that indeed (H) € Ker(Y).

Ad (b). Note that X is not a zero object in Adel(A) since X ¢ Ob(Ker(Y®)). So Y is not
faithful by lemma 4.5.3.

Ad (c). Note that L(X) is not a zero object in U(A) since X ¢ Ob((H)), cf. remark 3.2.14.

~

Moreover, we have L(X) € Ob(Ker(Y)) since YoL = Y. Thus Y is not faithful by lemma 4.5.3.
[l

Remark 4.5.5.
So for this exact category (A, E), we have Ker(Y) # Ker(Y®) and (H) € Ker(Y).

I do not know whether Ker(Y) N Ker(Y°) = () in this case and in the case of an arbitrary
exact category. This question remains open, cf. section 4.6.

In general, we have (#) C Ker(Y) N Ker(Y®).

4.6 Open questions
We keep the notation from section 4.4.

e When does U(.A) have enough projectives/injectives? If A is abelian and equipped with
the natural exact structure, then J is an equivalence. So in this case U(A) has enough
projectives/injectives if and only if A does.

e [s J a closed immersion, i.e. is the image of J always closed under extensions?

Cf. remark 4.4.7.

~ A

e Does Ker(Y) NKer(Y®) equal (H)? Cf. remark 4.5.5.

e Are there objects in (H) that are not isomorphic to a pure exact sequence?
Cf. remark 4.2.8.
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