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Preface

Introduction

Exact categories

An exact category is an additive category equipped with a family of short exact sequences

satisfying certain properties. This notion of an exact category was introduced by Quillen [12,

§2]. As a general reference on exact categories, we use Bühler’s article [2].

For example, any abelian category forms an exact category when equipped with all short exact

sequences. On the other hand, it also forms an exact category when equipped with the split

short exact sequences only. In practice, there also appear exact structures in between these

extremal cases. For example, let mod-Z denote the category of finitely generated abelian

groups and let C(mod-Z) denote the category of complexes with entries in mod-Z. We may

equip the latter with the pointwise split short exact sequences. In this way, C(mod-Z) becomes

an exact category, which is even a Frobenius category, whose corresponding stable category is

the homotopy category K(mod-Z).

Given any abelian category B, then an extension-closed full additive subcategory A ⊆ B forms

an exact category when equipped with the short exact sequences in B whose three objects lie

in A. Somewhat more generally, an immersion of an exact category into an abelian category

is a functor from the former to the latter that is full, faithful, exact and detects exactness.

Moreover, we call such an immersion closed if its essential image is closed under extensions. So

the inclusion functor from A to B is an example of a closed immersion.

But for C(mod-Z), equipped with the pointwise split short exact sequences, there is no obvious

way how to immerse it into an abelian category. So we ask how, in general, an exact category

A can be immersed into an abelian one.

The immersion of Gabriel, Quillen and Laumon

Quillen states in [12, p. 16] that we may closedly immerse A into the category GQL(A) of left-

exact contravariant functors from A to abelian groups via the Yoneda functor Y : A → GQL(A)
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and that one can prove this assertion following ideas of Gabriel [4]. As far as I know, Laumon

was the first to publish a proof [8, th. 1.0.3]. His proof relies on the theory of sheaves on sites,

originally due to Grothendieck and Verdier [5], cf. also [9]. However, this immersion is not

universal.

A universal construction

Adelman [1] gives a construction of the universal abelian category Adel(A) of the underlying

additive category A, cf. also [14]. The objects of Adel(A) are diagrams in A of the form

X0
x0 // X1

x1 // X2 . Let I : A → Adel(A) denote the inclusion functor that maps A ∈ ObA
to 0 // A // 0. For each abelian category B and each additive functor F : A → B, there

exists an exact functor F̂ : Adel(A)→ B, unique up to isotransformation, such that F̂ ◦ I = F .

A F //

I
��

B

Adel(A)
F̂

;;

Let N denote the intersection of the kernels of the induced functors F̂ , where F runs through

all exact functors from A into arbitrary abelian categories. He defines the universal abelian

category U(A) of the exact categoryA to be the localisation of Adel(A) byN , where morphisms

in Adel(A) with kernel and cokernel in N become formally inverted.

Let L: Adel(A) → U(A) denote the localisation functor. The universal property of U(A),

together with the exact universal functor I = L ◦ I : A → U(A), states that for each abelian

category B and each exact functor F : A → B, there exists an exact functor F̃ : U(A) → B,

unique up to isotransformation, such that F̃ ◦ I = F .

A

I

!!

F //

I
��

B

Adel(A)

L
��

F̂

;;

U(A)

F̃

KK

In the extremal cases, we obtain the following. If A is abelian and equipped with all short exact

sequences, then A is its own universal abelian category. More precisely, I is an equivalence in

this case. On the other hand, if A is abelian and equipped with the split short exact sequences

only, then L is an equivalence.

Adelman also shows that for a relative projective object P in A, the image I(P ) is projective

in U(A) [1, th. 2.5].

Keller gives a similar construction in his manuscript [6]. Additionally, he proposes to study

the connection between the universal category U(A) and the Gabriel-Quillen-Laumon category



6

GQL(A) via the functor Ỹ : U(A)→ GQL(A) provided by the universal property of U(A). We

follow that idea in this thesis.

Properties of the universal functor

We consider the diagram

A

I

!!

Y //

I
��

GQL(A)

Adel(A)

L
��

Ŷ

88

U(A)

Ỹ

HH

to study how properties of Y can be transported to I via Ỹ. It follows directly that I is

faithful and that it detects exactness since Y has these properties. To obtain further results,

we need to study GQL(A) in detail. Following Laumon [8], we equip A with the structure of

a site and interpret GQL(A) as a certain subcategory of the category of abelian sheaves on

A. To explicitly calculate in GQL(A), we need tools from sheaf theory, which we provide in a

self-contained course on the Grothendieck-Verdier theory of sheaves on sites. This allows us to

study further properties of I, Ŷ and Ỹ. We show that I is also full and therefore an immersion,

cf. theorem 4.4.4. Under the assumption that A has enough relative projectives (or injectives),

we prove that the immersion I is closed, cf. proposition 4.4.6. However, I do not know whether

the immersion I is closed in general.

The universal functor is self-dual, as follows from the universal property. We provide an example

where Y is not self-dual and where N ( Ker(Ŷ), cf. proposition 4.5.4. This shows that neither

Ŷ nor Ỹ are faithful in general. In particular, Ỹ is not an equivalence and hence GQL(A) is

not universal. We also see that I is not always left-exact, cf. proposition 4.5.1.

Furthermore, we give an alternative description of the thick subcategory N of Adel(A). It is

generated by the homologies of the images of the pure short exact sequences under I, which are of

the forms 0 // X •
f
// Y , Y �g // Z // 0 and X •

f
// Y �g // Z , where X •

f
// Y �g // Z

is a pure short exact sequence in A. We denote the corresponding full subcategory of Adel(A)

by H. So 〈H〉 = N and U(A) = Adel(A)//〈H〉. A larger family of generating objects of N is

given by the pure exact sequences of A.

We present two ways how to obtain the objects of such a thick subcategory from the generating

objects in general. In section 3.1.2.2, we successively construct larger subcategories and finally

obtain the desired thick subcategory as their union. We start with the subcategory of the

generating objects. To obtain the larger subcategory in each step, we add the middle object of

a short exact sequence when the outer objects lie in the previous subcategory. Conversely, if

the middle object lies in the previous subcategory, then we add the outer objects.
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A different approach is described in section 3.1.2.3. At first, we add subfactors of the generating

objects to obtain an enlarged subcategory that is closed under subobjects and factor objects

and contains the generating objects. Then we take all objects that have a finite filtration with

subfactors in this enlarged subcategory and these form the desired thick subcategory.

Results

We summarise. Suppose given an exact category A. Adelman [1, §2] constructs an abelian

category U(A) and an exact universal functor I : A → U(A) such that the following universal

property is fulfilled. For each abelian category B and each exact functor F : A → B, there

exists an exact functor F̃ : U(A)→ B, unique up to isotransformation, such that F̃ ◦ I = F .

A F //

I
��

B

U(A)
F̃

<<

Theorem. The universal functor I is an immersion, i.e. it is full, faithful, exact and detects

exactness, cf. theorem 4.4.4. Moreover, if A has enough relative projectives or enough relative

injectives, then I is a closed immersion, i.e. the essential image of I is closed under extensions,

cf. proposition 4.4.6.

Let Y : A → GQL(A) denote the closed immersion of Gabriel, Quillen and Laumon.

Proposition. The induced functor Ỹ : U(A) → GQL(A) is not faithful in general, cf. propo-

sition 4.5.4. In particular, it is not an equivalence and therefore Y is not universal in general.

Outline of the thesis

We summarise the required preliminaries in chapter 1. In particular, section 1.5 contains the

needed results on exact categories.

In chapter 2, we present the general theory of sheaves on sites and construct the sheafification

functor which is left adjoint to the inclusion functor from the category of sheaves into the

category of presheaves. This adjunction is used to show that the category of R-sheaves is

abelian for any ring R. Then we explain how an exact category is equipped with the structure

of a site and that the additive sheaves turn out to be the left-exact functors. Afterwards, we are

able to prove the Gabriel-Quillen-Laumon immersion theorem. We also give a description of

cokernels in GQL(A) without using the language of sheaves, which seems involved and difficult

to work with.

The topic of chapter 3 is a recapitulation of the localisation theory of an abelian category at

a thick subcategory. At first, we study thick subcategories and how to generate them. For
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example, we show how subfactors and filtrations can be used to obtain the objects of the

resulting thick subcategory from the generating objects. Then we recall the construction of

the quotient category and the corresponding localisation functor. We prove that the former is

abelian and that the latter is exact. Finally, we present the universal property.

Chapter 4 contains the construction of the universal abelian category of an exact category.

We begin with an overview of Adelman’s construction of the universal abelian category of

an additive category. Then we define the subcategory H consisting of the homologies of the

images of the pure short exact sequences under I. We show that a functor F : A → B is exact

if and only if the functor F̂ : Adel(A) → B vanishes on H. Moreover, we provide Adelman’s

characterisation of the thick subcategory 〈H〉 in terms of the kernels of the induced functors

of exact functors. We also present a larger family of generating objects of 〈H〉, namely the

pure exact sequences. Next, we define the universal abelian category U(A) to be the quotient

category Adel(A)//〈H〉 and prove the universal property. In section 4.4, we use the Gabriel-

Quillen-Laumon immersion to show that the universal functor I is an immersion and that it

is also closed if A has enough relative projectives. We conclude by disproving some assertions

concerning U(A) and its relationship to GQL(A) and by formulating some open questions.

I would like to thank my advisor Matthias Künzer for an uncountable amount of very useful

suggestions and for his continual support.

Conventions

We assume the reader to be familiar with elementary category theory. An introduction to

category theory can be found in [13]. Some basic definitions and notations are given in the

conventions below. Cf. [14, conventions].

Suppose given categories A,B and C.

1. All categories are supposed to be small with respect to a sufficiently big universe, cf. [13,

§3.2 and §3.3].

2. The set of objects in A is denoted by ObA. The set of morphisms in A is denoted by

MorA. Given A,B ∈ ObA, the set of morphisms from A to B is denoted by HomA(A,B)

and the set of isomorphisms from A to B is denoted by Homiso
A (A,B). The identity

morphism of A ∈ ObA is denoted by 1A . We write 1 := 1A if unambiguous. Given

f ∈ Homiso
A (A,B), we denote its inverse by f−1 ∈ Homiso

A (B,A).

3. Suppose given A
f
//B in A. We call A ∈ ObA the domain or source dom(f) of f . We

call B ∈ ObA the codomain or target cod(f) of f .
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4. The composition of morphisms is written naturally:(
A

f
// B

g
// C
)

=
(
A

fg
// C
)

=
(
A

f ·g
// C
)

in A.

5. The composition of functors is written traditionally:
(
A F // B G // C

)
=
(
A G◦F // C

)
.

6. Given A,B ∈ ObA, we write A ∼= B if A and B are isomorphic in A.

7. The opposite category (or dual category) of A is denoted by Aop. Given f ∈ MorA, the

corresponding morphism in Aop is denoted by f op. Cf. [14, rem 1].

8. We call A preadditive if HomA(A,B) carries the structure of an abelian group for

A,B ∈ ObA, written additively, and if f(g + g′)h = fgh+ fg′h holds for

A
f
// B

g
//

g′
// C h // D in A.

The zero morphisms in a preadditive category A are denoted by 0A,B ∈ HomA(A,B) for

A,B ∈ ObA. We write 0A := 0A,A and 0 := 0A,B if unambiguous.

9. The set of integers is denoted by Z. The set of positive integers is denoted by N and the

set of non-negative integers is denoted by N0 .

10. Given a, b ∈ Z, we write [a, b] := {z ∈ Z : a ≤ z ≤ b}.

11. For n ∈ N0, let ∆n be the poset category of [0, n] with the partial order inherited from

Z. This category has n + 1 objects 0, 1, 2, . . . , n and morphisms i // j for i, j ∈ Z with

i ≤ j.

12. Suppose that A is preadditive and suppose given A,B ∈ ObA. A direct sum of A and B

is a diagram A
i // C
p

oo
q
// B

j
oo in A satisfying ip = 1A , jq = 1B and pi+ qj = 1C .

This is generalized to an arbitrary finite number of objects as follows.

Suppose given n ∈ N0 and Ak ∈ ObA for k ∈ [1, n]. A direct sum of A1, . . . , An is a

tuple
(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
with C ∈ ObA and morphisms Ak

ik // C
pk
oo in A satisfying

ikpk = 1Ak , ikp` = 0Ak,A` and
∑n

m=1 pmim = 1C for k, ` ∈ [1, n] with k 6= `. Cf. [14, rem. 2].

Sometimes we abbreviate C :=
(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
for such a direct sum.

We often use the following matrix notation for morphisms between direct sums.

Suppose given n,m ∈ N0, a direct sum
(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
of A1, . . . , An in A and

a direct sum
(
D, (jk)k∈[1,m], (qk)k∈[1,m]

)
of B1, . . . , Bm in A.

Any morphism f : C → D in A can be written as f =
∑n

k=1

∑m
`=1 pkfk`j` with unique

morphisms fk` = ikfq` : Ak → B` for k ∈ [1, n] and ` ∈ [1,m]. We write

f =
(
fk`
)
k∈[1,n],
`∈[1,m]

=

(
f11 · · · f1m

...
...

...
fn1 · · · fnm

)
.

Omitted matrix entries are zero.
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13. An object A ∈ ObA is called a zero object if for every B ∈ ObA, there exists a single

morphism from A to B and there exists a single morphism from B to A.

If A is preadditive, then A ∈ ObA is a zero object if and only if 1A = 0A holds.

14. We call A additive if A is preadditive, if A has a zero object and if for A,B ∈ ObA, there

exists a direct sum of A and B in A. In an additive category direct sums of arbitrary

finite length exist.

15. Suppose that A is additive. We choose a zero object 0A and write 0 := 0A if unambiguous.

We choose 0Aop = 0A , cf. [14, rem. 1.(c)].

For n ∈ N0 and A1, . . . , An ∈ ObA, we choose a direct sum(
n⊕
k=1

Ak,
(
i
(Ak)k∈[1,n]

`

)
`∈[1,n]

,
(
p

(Ak)k∈[1,n]

`

)
`∈[1,n]

)
.

We sometimes write A1 ⊕ · · · ⊕ An :=
⊕n

k=1 Ak.

Note that p
(Ak)k∈[1,n]

` =


0
...
0
1
0
...
0

 and i
(Ak)k∈[1,n]

` = ( 0 · · · 0 1 0 · · · 0 ) in matrix notation, where

the ones are in the `th row resp. column for ` ∈ [1, n].

In functor categories we use the direct sums of the target category to choose the direct

sums, cf. [14, rem. 5].

16. Suppose given a full subcategory N of A. We say that N is closed under isomorphisms

in A if A ∼= B in A for A ∈ ObN and B ∈ ObA implies B ∈ ObN .

17. Suppose that A is additive and suppose given a full subcategory N of A. We call N a

full additive subcategory of A if N contains a zero object of A and if N contains a direct

sum of A and B for objects A,B ∈ ObN .

18. Suppose that A is additive. Suppose given M ⊆ ObA. The full subcategory add〈M〉 of

A defined by

Ob
(

add〈M〉
)

:=

{
Y ∈ ObA : Y ∼=

⊕̀
i=1

Xi for some ` ∈ N0 and some Xi ∈M for i ∈ [1, `]

}

shall be the full additive subcategory of A generated by M .

19. Suppose that A is preadditive. Suppose given f : A → B in A. A kernel of f is a

morphism k : K → A in A with kf = 0 such that the following factorisation property

holds.
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Given g : X → A with gf = 0, there exists a unique morphism u : X → K such that

uk = g holds.

Sometimes we refer to K as the kernel of f .

The dual notion of a kernel is called a cokernel.

Note that kernels are monomorphic and that cokernels are epimorphic.

20. In diagrams, we often denote monomorphisms by • // and epimorphisms by � // . In

exact categories, we use this notation for pure monomorphisms resp. epimorphisms, cf.

definition 1.5.1.

21. Suppose that A is preadditive. Suppose given f : A→ B in A, a kernel k : K → A of f ,

a cokernel c : B → C of f , a cokernel p : A→ J of k and a kernel i : I → B of c.

There exists a unique morphism f̂ : J → I such that the following diagram commutes.

K •k // A

�
p
��

f
// B �c // C

J
f̂
// I

•
i

??

We call such a diagram a kernel-cokernel-factorisation of f , and we call f̂ the induced

morphism of the kernel-cokernel-factorisation. Cf. [14, rem 8].

22. We call A abelian if A is additive, if each morphism in A has a kernel and a cokernel and

if for each morphism f in A, the induced morphism f̂ of each kernel-cokernel-factorisation

of f is an isomorphism.

23. Suppose thatA and B are preadditive. A functor F : A → B is called additive if F (f+g) =

F (f) + F (g) holds for X
f
//

g
// Y in A, cf. [14, prop 4].

24. Suppose given functors F,G : A → B.

A tuple α = (αX)X∈ObA, where αX : F (X) → G(X) is a morphism in B for X ∈ ObA,

is called natural if F (f)αY = αX G(f) holds for X
f
// Y in A. A natural tuple is also

called a transformation. We write α : F → G, α : F ⇒ G or A
F
((

G

66 Bα �� .

A transformation α : F ⇒ G is called an isotransformation if and only if αX is an isomor-

phism in B for X ∈ ObA. The isotransformations from F to G are precisely the elements

of Homiso
BA(F,G), cf. convention 25.

Suppose given A
F

$$
G //

H

;;B
K
((

L

66 C
α ��

β ��
γ �� .

We have the transformation α · β = αβ : F ⇒ H with (αβ)X := αXβX for X ∈ ObA.
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We have the transformation γ ? α : K ◦ F ⇒ L ◦ G with (γ ? α)X := K(αX) γG(X) =

γF (X) L(αX) for X ∈ ObA.

(K ◦ F )(X)
γF (X)

//

K(αX)

��

(L ◦ F )(X)

L(αX)

��

(K ◦G)(X) γG(X)

// (L ◦G)(X)

We have the transformation 1F : F ⇒ F with (1F )X := 1F (X) for X ∈ ObA.

We set γ ? F := γ ? 1F : K ◦ F ⇒ L ◦ F and K ? α := 1K ? α : K ◦ F ⇒ K ◦G.

So (γ ? F )X = γF (X) and (1K ? α)X = K(αX) for X ∈ ObA.

Thus we also have

γ ? α = (γ ? F ) · (L ? α) = (K ? α) · (γ ? G).

Cf. [14, lem. 6].

25. Let AC denote the functor category whose objects are the functors from C to A and whose

morphisms are the transformations between such functors. Cf. remark 1.1.9.

26. The identity functor of A shall be denoted by 1A : A → A.

27. A functor F : A → B is called an isomorphism of categories if there exists a functor

G : B → A with F ◦G = 1B and G ◦ F = 1A . In this case, we write F−1 := G.

28. A functor F : A → B is called an equivalence of categories if there exists a functor

G : B → A with F ◦G ∼= 1B in BB and G◦F ∼= 1A in AA. The functor F is an equivalence

if and only if it is full, faithful and dense.

29. Suppose given a functor F : A → B. The full subcategory Imess(F ) of B defined by

Ob(Imess(F )) := {B ∈ ObB : there exists A ∈ ObA such that F (A) ∼= B in B}

is called the essential image of F .

30. Suppose given A
f
// B in A. The morphism f is called a retraction if there exists

a morphism g : B → A with gf = 1Y . The dual notion of a retraction is called a

coretraction.

31. Suppose that A is abelian. An object P ∈ ObA is called projective if for each morphism

g : P → Y and each epimorphism f : X → Y , there exists h : P → X with hf = g.

P
h

~~

g
��

X �
f
// Y
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The dual notion of a projective object is called an injective object.

Cf. remark 1.2.5.

32. Suppose that A is abelian. Suppose given X
f
// Y in A. A diagram X �p // I •i // Y

is called an image of f if p is epimorphic, if i is monomorphic and if pi = f holds.

33. Suppose that A is preadditive. A sequence X
f
// Y

g
// Z in A is called left-exact if

f is a kernel of g and right-exact if g is a cokernel of f . Such a sequence is called short

exact if it is left-exact and right-exact.

Suppose that A is abelian.

Suppose given n ∈ N0 and a sequence A0
a0 // A1

a1 // A2
a2 // · · · an−2

// An−1
an−1

// An
in A. The sequence is called exact if for each choice of images(

Ak
ak // Ak+1

)
=
(
Ak

�pk // Ik •
ik // Ak+1

)
for k ∈ [0, n− 1], the sequences Ik

ik // Ak+1

pk+1
// Ik+1 are short exact for k ∈ [0, n− 2].

Cf. [14, rem. 12].

34. Suppose that A and B are abelian.

An additive functor F : A → B is called left-exact if for each left-exact sequence

X •
f
// Y

g
// Z in A, the sequence F (X)

F (f)
// F (Y )

F (g)
// F (Z) is also left-exact.

An additive functor F : A → B is called right-exact if for each right-exact sequence

X
f
// Y �g // Z in A, the sequence F (X)

F (f)
// F (Y )

F (g)
// F (Z) is also right-exact.

An additive functor F : A → B is called exact if it is left-exact and right-exact.

Cf. also definitions 1.5.3 and 1.5.7.

35. Suppose given a subcategory A′ ⊆ A and a subcategory B′ ⊆ B. Suppose given a functor

F : A → B with F (f) ∈ MorB′ for f ∈ MorA′.

Let F |B′A′ : A′ → B′ be defined by F |B′A′(A) = F (A) for A ∈ ObA′ and F |B′A′(f) = F (f) for

f ∈ MorA′.

Let F |A′ := F |BA′ . If A′ = A, let F |B′ := F |B′A .

36. All rings are supposed to be associative with an identity element and all modules are

supposed to be right unitary.

Suppose given a ring R. The category of (right) R-modules is denoted by Mod-R.

37. Suppose given a ring R. Let RΥ: Mod-R→ Set denote the forgetful functor.
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38. Suppose that A is additive. A short exact sequence A i // C
q
// B is called split short

exact if there exist C
p
// A and B

j
// C in A such that A

i // C
p

oo
q
// B

j
oo is a direct

sum of A and B. Cf. lemma 1.1.4.

39. Let A× B denote the product category of A and B.

40. Suppose that A is abelian and that N is a full subcategory of A. We say that N is closed

under subobjects in A if for each monomorphism A
f
// B in A with B ∈ ObN , we have

A ∈ ObN .

We say that N is closed under factor objects in A if for each epimorphism A
f
// B in

A with A ∈ ObN , we have B ∈ ObN .

We say that N is closed under extensions in A if for each short exact sequence

A
f
// B

g
// C in A with A,C ∈ ObN , we have B ∈ ObN .

41. Suppose that A and B are additive and that F : A → B is a functor. The kernel of F is

the full subcategory of A defined by Ob(Ker(F )) := {A ∈ ObA : F (A) ∼= 0B in B}.

42. Suppose given a functor F : A → B. The opposite functor F op : Aop → Bop is defined by

F op(A) = F (A) for A ∈ ObA and F op(f op) = F (f)op for f ∈ MorA. Cf. [14, rem. 1.(g)].

43. A diagram A F // B
G
oo with transformations ε : 1A ⇒ G ◦ F and η : F ◦G⇒ 1B such that

(F ? ε) · (η ? F ) = 1F and (ε ? G) · (G ? η) = 1G is called an adjunction, written F a G or

A ⊥

F
$$
B

G

ee .

F
F?ε +3

1F  (

F◦G◦F
η?F
��
F

G
ε?G +3

1G  (

G◦F◦G
G?η
��
G

In this case, the functor F is called left adjoint to G, the functor G is called right adjoint

to F , the transformation ε is called a unit of the adjunction and the transformation η is

called a counit of the adjunction.

Note that if (F,G, ε, η) is an adjunction, then (Gop, F op, ηop, εop) is an adjunction as well.

In particular, we have F a G if and only if Gop a F op.

Now suppose given an adjunction A ⊥

F
$$
B

G

ee with unit ε : 1A ⇒ G ◦ F and counit

η : F ◦G⇒ 1B .

For X ∈ ObA and Y ∈ ObB, let

Φε,η
X,Y : HomB(F (X), Y )→ HomA(X,G(Y )) : s 7→ εX ·G(s).
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This is a bijection with inverse(
Φε,η
X,Y

)−1
: HomA(X,G(Y ))→ HomB(F (X), Y ) : t 7→ F (t) · ηY .

For X ′
f
// X in A, Y

g
// Y ′ in B and F (X) s // Y in B, we have(

F (f) · s · g
)

Φε,η
X′,Y ′ = εX′ · (G ◦ F )(f) ·G(s) ·G(g) = f · εX ·G(s) ·G(g)

= f · (s) Φε,η
X,Y ·G(g).

44. A diagram

A
f
//

g
��

B

g′

��

C
f ′
// D

in A is called a pullback if for T s // B and T t // C in A with sg′ = tf ′, there exists

T
u // A in A such that uf = s and ug = t.

The dual notion of a pullback is called a pushout.

In diagrams, we often denote pullbacks by

A
f
//

g
��

B

g′

��

C
f ′
// D

and pushouts by

A
f
//

g
��

B

g′

��

C
f ′
// D.



Chapter 1

Preliminaries

1.1 Miscellaneous

Lemma 1.1.1. Suppose given an abelian category A and A
f
//B

g
//C in A.

Suppose given a kernel K •k //A of f , a kernel L •` //A of fg and a kernel M •m //B of g.

Suppose given a cokernel B �p //P of f , a cokernel C �q //Q of fg and a cokernel C �r //R of

g. Then there exist unique morphisms a, b, c, d, e such that the diagram

M c //

•
m

  

P

d

��

B
g

��

>
p

??

L •` //

b

>>

A

f
>>

fg
// C �q //

�
r
��

Q

e
��

K

a

__

•
k

>>

R

commutes. Moreover, the sequence

0 // K a // L b //M c // P d // Q e // R // 0

is exact.

Proof. See [2, prop. 8.11] and [13, prob. 13.6.8].

Lemma 1.1.2. Suppose given an abelian category A and a commutative diagram

K

u
��

•k // A
f
//

g

��

B

g′

��

�c // C

v
��

K ′ •k
′
// D

f ′
// E �c′ // C ′

16
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in A such that k is a kernel of f , k′ is a kernel of f ′, c is a cokernel of f and c′ is a cokernel of f ′.

Note that u is the induced morphism between the kernels and that v is the induced morphism

between the cokernels.

(a) The diagram

A
f
//

g
��

B

g′

��

C
f ′
// D

is a pullback if and only if u is an isomorphism and v is a monomorphism.

(b) The diagram

A
f
//

g
��

B

g′

��

C
f ′
// D

is a pushout if and only if u is an epimorphism and v is a isomorphism.

Proof. See [7, lem. 134].

Lemma 1.1.3. Suppose given additive categories A and B and a functor F : A → B. The

following four statements are equivalent.

(a) The functor F is additive.

(b) For a direct sum A
i //A⊕B
p
oo

q
//B

j
oo in A, the morphism

( F (p) F (q) ) : F (A⊕B)→ F (A)⊕ F (B)

is an isomorphism with inverse(
F (i)
F (j)

)
: F (A)⊕ F (B)→ F (A⊕B).

(c) We have F (0A) ∼= 0B in B and for a direct sum A
i //A⊕B
p
oo

q
//B

j
oo in A, the morphism

( F (p) F (q) ) : F (A⊕B)→ F (A)⊕ F (B) is a monomorphism.

(d) We have F (0A) ∼= 0B in B and for a direct sum A
i //A⊕B
p
oo

q
//B

j
oo in A, the morphism(

F (i)
F (j)

)
: F (A)⊕ F (B)→ F (A⊕B) is an epimorphism.
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Cf. [3, th. 3.11].

Proof. Ad (b)⇒(a). Suppose given A
f
//

g
//B in A. Choose a direct sum A

i //A⊕B
p
oo

q
//B

j
oo

in A.

We obtain

F (f + g) = F
(
(i+ gj)(pf + q)

)
= F (i+ gj)F (pf + q)

= F (i+ gj) ( F (p) F (q) )
(
F (i)
F (j)

)
F (pf + q)

= ( F (1) F (g) )
(
F (f)
F (1)

)
= F (f) + F (g).

F (A)

(F (1) F (g) )
,,

F (i+gj)
// F (A⊕B)

F (pf+q)
//

(F (p) F (q) )
��

F (B)

F (A)⊕ F (B)

(
F (i)
F (j)

)OO

(
F (f)
F (1)

)
>>

Ad (a)⇒(b). See [14, prop. 4].

Moreover, we have F (0A) ∼= 0B in case (a) or (b) are true by loc. cit.

Now suppose that F (0A) ∼= 0B . Note that for a direct sum A
i //A⊕B
p
oo

q
//B

j
oo in A, we

always have(
F (i)
F (j)

)
( F (p) F (q) ) =

(
F (i)F (p) F (i)F (q)
F (j)F (p) F (j)F (q)

)
=
(
F (ip) F (iq)
F (jp) F (jq)

)
=
(
F (1) F (0)
F (0) F (1)

)
= ( 1 0

0 1 ) .

Thus the statements (b), (c) and (d) are equivalent as well.

Lemma 1.1.4.

Suppose given an additive category A and a short exact sequence A •i //C �q //B in A. The

following three statements are equivalent.

(a) The sequence A •i //C �q //B is split short exact, cf. convention 38.

(b) The morphism q is a retraction.

(c) The morphism i is a coretraction.

Proof. By definition, (a) implies (b) and (c).

Ad (b)⇒(a). So there exists C
p
//A in A such that ip = 1. We conclude that i(1− pi) = 0.

Since q is a cokernel of i, there exists B
j
//C in A such that qj = 1 − pi. Moreover, we
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have qjq = (1 − pi)q = 1 = q1 and thus jq = 1 since q is epimorphic. We conclude that

A •i //C �q //B is split short exact.

A •i // C
p

oo
�q //

1−pi
��

B

j}}

C

Ad (c)⇒(a). This is dual to (b)⇒(a).

Lemma 1.1.5. Suppose given additive categories A and B and functors F,G : A → B. If

F ∼= G in BA, then Ker(F ) = Ker(G), cf. convention 41.

Proof. Since F ∼= G in BA, there exists an isotransformation α : F ⇒ G.

In particular, F (A)
αA //G(A) is an isomorphism in B for A ∈ ObA. Thus F (A) ∼= 0B if and

only if G(A) ∼= 0B for A ∈ ObA.

Lemma 1.1.6. Suppose given an abelian category A. A sequence X
0 //Y

0 //Z in A is

short exact if and only if X, Y, Z ∼= 0A in A.

Proof. If X, Y, Z ∼= 0A in A, then X 0 //Y 0 //Z is short exact.

Conversely, if X 0 //Y
0 //Z is short exact, then Z ∼= 0A since Y

0 //Z is epimorphic and

X, Y ∼= 0A since X 0 //Y has to be an isomorphism as kernel of Y 0 //Z .

Lemma 1.1.7.

Suppose given an abelian category A and a short exact sequence X • //Y � //Z in A. We

have Y ∼= 0A if and only if X,Z ∼= 0A in A.

Proof. This is a consequence of lemma 1.1.6.

Lemma 1.1.8. Suppose given an additive category A and a full additive subcategory B of A.

Suppose given K •k //A
f
//B in B such that k is a kernel of f in A. Then k is a kernel of f

in B.

Proof. Suppose given t : T → B in B with tf = 0. Since tf = 0 also in A, there exists

u : T → A in A such that uk = t. Since B is a full subcategory, we have u ∈ MorB. The

induced morphism is unique since it is even unique in A.

Remark 1.1.9. Suppose given a category C and an additive category A.

Suppose given F α //G in AC.

(a) Suppose that C is an additive category. Suppose that α is an isotransformation. If F is

an additive functor, then G is an additive functor as well.
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(b) For X ∈ Ob C, suppose given a cokernel G(X) �cX //C(X) of αX in A.

For X
f
//Y in C, we have the commutative diagram

F (X)
αX //

F (f)

��

G(X)

G(f)

��

F (Y )
αY // G(Y )

in A. Let C(f) be the induced morphism between the cokernels cX and cY .

This yields a functor C ∈ Ob(AC) and a transformation c = (cX)X∈Ob C : G⇒ C.

The morphism c is a cokernel of α in AC.

Consequently, the following four statements are equivalent.

– α is an epimorphism in AC.
– c = 0 in AC.
– cX = 0 in A for X ∈ Ob C.
– αX is an epimorphism in A for X ∈ Ob C.

Suppose that C is an additive category. If G is an additive functor, then C is additive as

well.

As usual, the dual statements for kernels are also true.

(c) Suppose that A is an abelian category. Then AC is abelian as well.

(d) Suppose that A is an abelian category and C is an additive category. Suppose given a

cokernel G
β
//H of α in AC. If G is an additive functor, then H is additive as well.

As usual, the dual statements for kernels are also true.

(e) Suppose that A is an additive category. The zero objects of AC are additive functors. If

F and G are additive functors, then F ⊕G is additive as well.

(f) Suppose that A is an additive category. Let Add(C,A) denote the full subcategory of AC
whose objects are the additive functors from C to A. The full subcategory Add(C,A) is

a full additive subcategory which is closed under isomorphisms.

(g) Suppose that A is an additive category. Suppose given K •k //F α //G �c //C in AC such

that k is a kernel of α and c is a cokernel of α. If α is additive, then k and c are additive

as well.

(h) Suppose that A is an abelian category. Kernels and cokernels of morphisms in Add(C,A)

formed in AC lie again in Add(C,A) by (g). In particular, the category Add(C,A) is

abelian.
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Cf. [14, rem. 5].

Definition 1.1.10. Suppose given a category C and a functor F : C → Set. A tuple

(G(A))A∈Ob C with G(A) ⊆ F (A) for A ∈ Ob C such that G(f) := F (f)|G(B)
G(A) exists for all

A
f
//B defines a functor G : C → Set. Such a functor is called a subfunctor of F .

Definition 1.1.11. Suppose given a category C. Let Ĉ := Set(Cop) denote the functor category

with objects being functors from Cop to Set.

Suppose given a ring R. Let RĈ := (Mod-R)(Cop) denote the functor category with objects being

functors from Cop to Mod-R.

Definition 1.1.12. Suppose given categories A,B and C and a functor L : A → B.

We obtain a functor LC : AC → BC by setting

LC
(
F α +3G

)
:=
(
L ◦ F L?α +3L ◦G

)
for F α +3G in AC.

We also write LCop := LC.

In this way, we obtain the functor RΥC : RĈ → Ĉ, cf. convention 37 and definition 1.1.11.

Remark 1.1.13. Suppose given a ring R, a set S and an R-module M .

The set HomSet(S, RΥ(M)) carries an R-module structure, where addition and multiplication

are defined pointwise using the R-module structure on M . Note that M and RΥ(M) are the

same, viewed as sets.

So for f, g ∈ HomSet(S, RΥ(M)), r ∈ R and a ∈ S, we have (s)(f + g) := (s)f + (s)g and

(s)(fr) := (s)f · r.

We obtain the functor H : Setop ×Mod-R→ Mod-R by setting

H (S,M) := HomSet(S, RΥ(M)) and (f) H (σop, µ) := σfµ

for (S,M)
(σop,µ)

//(T,N) in Setop ×Mod-R and f ∈ HomSet(S, RΥ(M)).

1.2 Yoneda functors

Lemma/Definition 1.2.1.

(a) Suppose given a category C and an object A ∈ Ob C.

For C
f
//B in C, let

yC,A(B) := HomC(B,A)
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and

yC,A(f op) : HomC(B,A)→ HomC(C,A) : h 7→ fh.

This defines a functor yC,A : Cop → Set. So yC,A ∈ Ob Ĉ. We call yC,A the Yoneda functor

of A in C.

(b) Suppose given a preadditive category C and an object A ∈ Ob C. Recall that for B ∈ Ob C,
HomC(B,A) is endowed with a Z-module structure, cf. convention 8.

For C
f
//B in C, let

ZyC,A(B) := HomC(B,A)

and

ZyC,A(f op) : HomC(B,A)→ HomC(C,A) : h 7→ fh.

This defines an additive functor ZyC,A : Cop → Mod-Z. So ZyC,A ∈ Ob Ĉ. We call ZyC,A the

Z-Yoneda functor of A in C.

Moreover, ZyC,A preserves kernels.

By construction, we have ZΥC(ZyC,A) = ZΥ ◦ ZyC,A = yC,A , cf. definition 1.1.12.

Proof. Ad (a). Suppose given D
g
//C

f
//B in C. For h ∈ HomC(B,A), we have

(h)
(

yC,A(1op
B )
)

= 1B h = h

and

(h) yC,A(f op) · yC,A(gop) = (fh) yC,A(gop) = gfh = (h) yC,A((gf)op) = (h) yC,A(f opgop),

so yC,A(1op
B ) = 1yC,A(B) and yC,A(f op) · yC,A(gop) = yC,A(f opgop).

Ad (b). Suppose given C
f
//B in C and h, k ∈ HomC(B,A). We have

(h+ k) ZyC,A(f op) = f(h+ k) = fh+ fk = (h) ZyC,A(f op) + (k) ZyC,A(f op),

so ZyC,A(f op) ∈ Mor(Mod-Z).

The same calculation as in (a) now shows that ZyC,A is a functor. We show that it is additive.

Suppose given C
f
//

g
//B in C. For h ∈ HomC(B,A), we have

(h) ZyC,A(f op + gop) = (h) ZyC,A((f + g)op) = (f + g)h = fh+ gh

= (h) ZyC,A(f op) + (h) ZyC,A(gop) = (h)(ZyC,A(f op) + ZyC,A(gop)).
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Thus ZyC,A(f op + gop) = ZyC,A(f op) + ZyC,A(gop).

Suppose given a right-exact sequence Z
g
//Y

f
//X in C. We have to show that the sequence

HomA(X,A)
ZyC,A(fop)

// HomA(Y,A)
ZyC,A(gop)

// HomA(Z,A)

is left-exact in Mod-Z. The morphism ZyC,A(f op) is monomorphic in Mod-Z since f is epimorphic

in A. Moreover, for h ∈ HomA(Y,A), we have (h) ZyC,A(gop) = gh = 0 if and only if there exists

u ∈ HomA(X,A) such that (u) ZyC,A(f op) = uf = h since f is a cokernel of g.

Lemma 1.2.2 (Yoneda).

(a) Suppose given a category C, an object A ∈ Ob C and a functor F : Cop → Set. Recall

that HomĈ(yC,A, F ) denotes the set of transformations from yC,A to F .

The map

γF,A : HomĈ(yC,A, F )→ F (A)

α 7→ (1A)αA

is a bijection with inverse

F (A)→ HomĈ(yC,A, F )

x 7→
(
αxB : HomC(B,A)→ F (B) : f 7→ (x)F (f op)

)
B∈Ob C .

(b) Suppose given a preadditive category C, an object A ∈ Ob C and an additive functor

F : Cop → Mod-Z.

The map

ZγF,A : Hom
ZĈ(ZyC,A, F )→ F (A)

α 7→ (1A)αA

is an isomorphism in Mod-Z with inverse

F (A)→ Hom
ZĈ(ZyC,A, F )

x 7→
(
αxB : HomC(B,A)→ F (B) : f 7→ (x)F (f op)

)
B∈Ob C .

Proof. Ad (a). Suppose given x ∈ F (A). We show that αx := (αxB)B∈Ob C is natural.

Suppose given D
f
//B in C. For h ∈ HomC(B,A), we have

(h)αxB · F (f op) = (x)F (hop) · F (f op) = (x)F ((fh)op) = (fh)αxD = (h) yC,A(f op) · αxD ,

so αxB · F (f op) = yC,A(f op) · αxD .

It remains to show that the maps are mutually inverse.
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Suppose given α ∈ HomĈ(yC,A, F ), B ∈ Ob C and f ∈ HomC(B,A).

We have

(f)α
(1A)αA
B = (1A)αAF (f op) = (1A) yC,A(f op)αB = (f)αB

and therefore α(1A)αA = α.

Conversely, suppose given x ∈ F (A). We have (1A)αxA = (x)F (1op
A ) = x.

Ad (b). Suppose given x ∈ F (A) and B ∈ Ob C. We show that αxB is Z-linear.

For f, g ∈ HomC(B,A), we have

(f + g)αxB = (x)F ((f + g)op) = (x)F (f op + gop) = (x) (F (f op) + F (gop))

= (x)F (f op) + (x)F (gop) = (f)αxB + (g)αxB.

The same calculation as in (a) now shows that ZγF,A is a bijection. We show that it is Z-linear.

For α, β ∈ Hom
ZĈ(ZyC,A, F ), we have

(α + β) ZγF,A = (1A)(α + β)A = (1A)(αA + βA) = (1A)αA + (1A)βA = (α) ZγF,A + (β) ZγF,A .

Lemma/Definition 1.2.3.

(a) Suppose given a category C. For A ∈ Ob C, let yC(A) := yC,A .

For A
f
//B in C and D ∈ Ob C, let (yC(f))D : HomC(D,A)→ HomC(D,B) : h 7→ hf .

Let yC(f) :=
(
(yC(f))D

)
D∈Ob C : yC,A ⇒ yC,B .

This defines a full and faithful functor yC : C → Ĉ.

(b) Suppose given a preadditive category C. For A ∈ Ob C, let ZyC(A) := ZyC,A .

For A
f
//B in C and D ∈ Ob C, let (ZyC(f))D : HomC(D,A)→ HomC(D,B) : h 7→ hf .

Let ZyC(f) :=
(
(ZyC(f))D

)
D∈Ob C : ZyC,A ⇒ ZyC,B .

This defines a full, faithful and additive functor ZyC : C → ZĈ.

By construction, we have ZΥC ◦ ZyC = yC .

C

ZyC
��

yC // Ĉ

ZĈ
ZΥC

@@

Suppose given A
f
//B

g
//C in C.

The sequence A
f
//B

g
//C is left-exact in C if and only if the sequence

ZyC(A)ZyC(f)
//
ZyC(B)ZyC(g)

//
ZyC(C) is left-exact in ZĈ.
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Proof. Ad (a). Suppose given A
f
//B in C. We show that yC(f) is natural.

Suppose given E
g
//D in C. For h ∈ yC,A(D) = HomC(D,A), we have

(h) (yC(f))D · yC,B(gop) = (hf) yC,B(gop) = ghf = (gh) (yC(f))E

= (h) yC,A(gop) · (yC(f))E

and therefore (yC(f))D · yC,B(gop) = yC,A(gop) · (yC(f))E .

yC,A(D)
(yC(f))D

//

yC,A(gop)

��

yC,B(D)

yC,B(gop)

��

yC,A(E)
(yC(f))E

// yC,B(E)

The functor yC is faithful:

For A
f
//B and A

g
//B in C with yC(f) = yC(g), we obtain

f = (1A)
(

yC(f)
)
A

= (1A)
(

yC(g)
)
A

= g.

The functor yC is full:

Suppose given α : yC,A ⇒ yC,B for A,B ∈ Ob C. Write f := (1A)αA ∈ yC,B(A) = HomC(A,B).

We claim that α = yC(f).

For D ∈ Ob C and h ∈ yC,A(D) = HomC(D,A) we have

(h)
(

yC(f))D = hf = h · (1A)αA = (1A)(αA) · yC,B(hop) = (1A) yC,A(hop) · αD = (h)αD ,

so αD =
(

yC(f)
)
D

. This proves the claim.

yC,A(A)
αA //

yC,A(hop)

��

yC,B(A)

yC,B(hop)

��

yC,A(D)
αD // yC,B(D)

Ad (b). Suppose given A
f
//B in C and D ∈ Ob C. We show that (ZyC(f))D is Z-linear. For

h, k ∈ HomC(D,A), we have

(h+ k) (ZyC(f))D = (h+ k)f = hf + kf = (h) (ZyC(f))D + (k) (ZyC(f))D .

The same calculation as in (a) now shows that ZyC is a full and faithful functor. We show that

it is additive.
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Suppose given A
f
//

g
//B in C. For D ∈ Ob C and h ∈ HomC(D,A), we have

(h) (ZyC(f + g))D = h(f + g) = hf + hg = (h) (ZyC(f))D + (h) (ZyC(g))D

= (h) (ZyC(f) + ZyC(g))D .

Thus ZyC(f + g) = ZyC(f) + ZyC(g).

Suppose given A
f
//B

g
//C in C.

Note that the sequence ZyC(A)ZyC(f)
//
ZyC(B)ZyC(g)

//
ZyC(C) is left-exact in ZĈ if and only if the

sequence (
ZyC(A)(X)

(ZyC(f))X
//
ZyC(B)(X)

(ZyC(g))X
//
ZyC(C)(X)

)
=
(

HomC(X,A)
(ZyC(f))X

//HomC(X,B)
(ZyC(g))X

//HomC(X,C)
)

is left-exact in Mod-Z for all X ∈ Ob C.

Suppose that the sequence A
f
//B

g
//C is left-exact in C. Suppose given X ∈ Ob C and

h ∈ HomC(X,B) such that hg = (h) (ZyC(g))X = 0. Since f is a kernel of g in C, there exists a

unique k ∈ HomC(X,A) such that (k) (ZyC(f))X = kf = 0.

Thus the sequence HomC(X,A)
(ZyC(f))X

//HomC(X,B)
(ZyC(g))X

//HomC(X,C) is left-exact in

Mod-Z.

Conversely, suppose that the sequence ZyC(A)ZyC(f)
//
ZyC(B)ZyC(g)

//
ZyC(C) is left-exact in ZĈ. Sup-

pose given X h //B in C such that (h) (ZyC(g))X = hg = 0. Since (ZyC(f))X is a kernel of

(ZyC(g))X in Mod-Z, there exists a unique k ∈ HomC(X,A) such that kf = (k) (ZyC(f))X = h.

Thus the sequence A
f
//B

g
//C is left-exact in C.

Lemma/Definition 1.2.4.

(a) Suppose given a category C and an object A ∈ Ob C.

For B
f
//C in C, let

yC,A(B) := HomC(A,B)

and

yC,A(f) : HomC(A,B)→ HomC(A,C) : h 7→ hf.

This defines a functor yC,A : C → Set. We call yC,A the hom-functor of A in C.

(b) Suppose given a preadditive category C and an object A ∈ Ob C. Recall that for B ∈ Ob C,
HomC(A,B) is endowed with a Z-module structure, cf. convention 8.



27

For B
f
//C in C, let

ZyC,A(B) := HomC(A,B)

and

ZyC,A(f) : HomC(A,B)→ HomC(A,C) : h 7→ hf.

This defines an additive functor ZyC,A : C → Mod-Z. We call ZyC,A the Z-hom-functor of

A in C.
Moreover, ZyC,A preserves kernels.

By construction, we have ZΥC(ZyC,A) = ZΥ ◦ ZyC,A = yC,A , cf. definition 1.1.12.

Proof. Ad (a). Suppose given B
f
//C

g
//C in C. For h ∈ HomC(A,B), we have

(h)
(

yC,A(1B)
)

= 1B h = h

and

(h) yC,A(f) · yC,A(g) = (hf) yC,A(g) = hfg = (h) yC,A(fg),

so yC,A(1B) = 1yC,A(B) and yC,A(f) · yC,A(g) = yC,A(fg).

Ad (b). Suppose given B
f
//C in C and h, k ∈ HomC(A,B). We have

(h+ k) ZyC,A(f) = (h+ k)f = hf + kf = (h) ZyC,A(f) + (k) ZyC,A(f),

so ZyC,A(f) ∈ Mor(Mod-Z).

The same calculation as in (a) now shows that ZyC,A is a functor. We show that it is additive.

Suppose given B
f
//

g
//C in C. For h ∈ HomC(A,B), we have

(h) ZyC,A(f + g) = h(f + g) = hf + hg = (h) ZyC,A(f) + (h) ZyC,A(g)

= (h)(ZyC,A(f) + ZyC,A(g)).

Thus ZyC,A(f + g) = ZyC,A(f) + ZyC,A(g).

Suppose given a left-exact sequence X
f
//Y

g
//Z in C. We have to show that the sequence

HomA(A,X) ZyC,A(f)
// HomA(A, Y ) ZyC,A(g)

// HomA(A,Z)

is left-exact in Mod-Z. The morphism ZyC,A(f) is monomorphic in Mod-Z since f is monomor-

phic in A. Moreover, for h ∈ HomA(A, Y ), we have (h) ZyC,A(g) = hg = 0 if and only if there

exists u ∈ HomA(A,X) such that (u) ZyC,A(f) = uf = h since f is a kernel of g.

Remark 1.2.5. Suppose given an abelian category A and P ∈ ObA. The functor ZyA,P is

exact if and only if P is projective in A, cf. convention 31.
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1.3 Adjoint functors

Lemma 1.3.1. Suppose given an additive category A.

Suppose given diagrams A =
(
A0

a //A1

)
, B =

(
B0

b //B1

)
∈ Ob(A∆1) and an isomorphism

η = (η0, η1) ∈ HomA∆1 (A,B).

(a) Suppose that K •k //A0 is a kernel of a in A. Then kη0 is a kernel of b in A.

K •k // A0
a //

∼η0

��

A1

∼η1

��

K •
kη0
// B0

b // B1

(b) Suppose that A1
�c //C is a cokernel of a in A. Then η−1

1 c is a cokernel of b in A.

A0
a //

∼η0

��

A1

∼η1

��

�c // C

B0
b // B1

�η−1
1 c
// C

(c) Suppose that the diagram

K •k // A0

�
p

��

a // A1
�c // C

I u
// J

•
i

>>

is a kernel-cokernel-factorisation of a in A. Then the diagram

K •
kη0
// B0

�
η−1

0 p ��

b // B1
�η−1

0 c
// C

I u
// J

•
iη1

>>

is a kernel-cokernel-factorisation of b in A.

Lemma 1.3.2. Suppose given an adjunction A ⊥

F
$$
B

G

ee with unit ε : 1A ⇒ G ◦ F and counit

η : F ◦G⇒ 1B , cf. convention 43.

(a) If A and B are additive categories, then F and G are additive functors.

(b) If A and B are additive categories, then F preserves cokernels and G preserves kernels.

So if A and B are abelian categories, then F is right-exact and G is left-exact.



29

(c) Suppose that A is abelian and B is additive. Suppose that F preserves kernels and G is

full and faithful. Then B is abelian and, consequently, F is exact and G is left-exact.

Suppose given Y
f
//Y ′ in B. Suppose given a kernel k of G(f) and a cokernel c of G(f).

A kernel of f is given by F (k) · ηY and a cokernel of f is given by η−1
Y ′ · F (c).

Moreover, the counit η is an isotransformation with G(η−1
Y ) = εG(Y ) for Y ∈ ObB.

Cf. [10, prop. V.5.3] and [13, cor. 16.6.2].

Proof. Write ΦX,Y := Φε,η
X,Y for X ∈ ObA and Y ∈ ObB, cf. convention 43.

Ad (a). We want to show that F is additive.

We have HomB(F (0A), F (0A)) ∼= HomA(0A, (G ◦ F )(0A)) in Set via Φ0A,F (0A).

Since 0A is a zero object in A, both sets contain precisely one element. So 1F (0A) = 0F (0A) and

therefore F (0A) ∼= 0B .

For X ∈ ObA and Y ∈ ObB, we have

(0F (X),Y ) ΦX,Y = (0F (X) · 0F (X),Y ) ΦX,Y = (F (0X) · 0F (X),Y · 1Y ) ΦX,Y

= 0X · (0F (X),Y ) ΦX,Y · 1G(Y ) = 0X,G(Y )

Suppose given X,X ′ ∈ ObA. Write i := ιX,X
′

1 , j := ιX,X
′

2 , p := pX,X
′

1 and q := pX,X
′

2 . So

X
i //X ⊕X ′
p
oo

q
//X ′

j
oo is a direct sum in A, cf. convention 15.

It suffices to show that
(
F (i)
F (j)

)
: F (X)⊕ F (X ′)→ F (X ⊕X ′) is epimorphic, cf. lemma 1.1.3.

Suppose given F (X ⊕X ′) u //Y in B with 0 =
(
F (i)
F (j)

)
u =

(
F (i)u
F (j)u

)
.

We have

0 = (0) ΦX,Y = (F (i) · u) ΦX,Y = i · (u) ΦX⊕X′,Y

and similarly

0 = (0) ΦX′,Y = (F (j) · u) ΦX′,Y = j · (u) ΦX⊕X′,Y .

So
(
i
j

)
· (u) ΦX⊕X′,Y = 0 and thus (u) ΦX⊕X′,Y = 0 = (0) ΦX⊕X′,Y . Therefore u = 0 since

ΦX⊕X′,Y is a bijection.

We conclude that F is additive. Dually, G is also additive.

Ad (b). We want to show that F preserves cokernels.

Suppose given a morphism X
f
//X ′ in A with cokernel X ′ �c //C .
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Suppose given F (X ′) t //T in B with F (f) · t = 0.

We have f · (t) ΦX′,T = (F (f) · t) ΦX,T = (0) ΦX,T = 0. Since c is a cokernel of f , there exists

C
u //G(T ) in A with (t) ΦX′,T = c · u.

We have (
F (c) · (u) Φ−1

C,T

)
ΦX′,T = c ·

(
(u) Φ−1

C,T

)
ΦC,T = c · u = (t) ΦX′,T

and therefore F (c) · (u) Φ−1
X,T = t.

It now suffices to show that F (c) is epimorphic.

Suppose given F (C) v //Y in B with F (c) · v = 0.

We have

c · (v) ΦC,Y = (F (c) · v) ΦX′,Y = (0) ΦX′,Y = 0.

Since c is epimorphic, we conclude that (v) ΦC,Y = 0 = (0) ΦC,Y . So v = 0.

Dually, G preserves kernels.

Ad (c).

We claim that the counit η is an isotransformation.

Suppose given Y ∈ ObB. Since G is full, we may choose Y
f
//(F ◦G)(Y ) in B such that

G(f) = εG(Y ) : G(Y )→ (G ◦ F ◦G)(Y ).

We have

G(fηY ) = εG(Y ) G(ηY ) = 1G(Y ) = G(1Y ).

Since G is faithful, we conclude that fηY = 1Y .

We have

ηY f = (F ◦G)(f) η(F◦G)(Y ) = F (εG(Y )) η(F◦G)(Y ) = 1(F◦G)(Y ).

So ηY is an isomorphism with inverse f . This proves the claim.

Suppose given Y
f
//Y ′ in B.

We will use the fact that
(
Y

f
//Y ′
)

and
(
(F ◦G)(Y )

(F◦G)(f)
//(F ◦G)(Y ′)

)
are isomorphic

in Ob(B∆1) via (ηY , ηY ′).

Since A is abelian, the morphism G(f) has a kernel-cokernel-factorisation as follows.

K •k // G(Y )

�
p

!!

G(f)
// G(Y ′) �c // C

I ∼
f̃

// J

•
i

<<
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The functor F preserves kernels by assumption and cokernels by part (b). So the diagram

F (K)
F (k)

// (F ◦G)(Y )

F (p) &&

(F◦G)(f)
// (F ◦G)(Y ′)

F (c)
// F (C)

F (I) ∼
F (f̃)

// F (J)
F (i)

88

is a kernel-cokernel-factorisation of (F ◦G)(f) where the induced morphism F (f̃) is an isomor-

phism.

By lemma 1.3.1.(c), the morphism f also has a kernel-cokernel-factorisation where the induced

morphism is an isomorphism.

Moreover, a kernel of f is given by F (k) · ηY and a cokernel of f is given by η−1
Y ′ · F (c). Cf.

lemma 1.3.1.(a,b).

We conclude that B is abelian.

1.4 Direct limits

Definition 1.4.1. A non-empty category I is called filtering if it satisfies the following two

conditions.

(F1) For i, j ∈ Ob I, there exist
(
i σ //k

)
,
(
j

ρ
//k
)
∈ Mor I.

(F2) For a diagram

k

i

σ′ ��

σ

@@

j

τ

OO

τ ′

��

k′

in I, there exist
(
k

λ //`
)
,
(
k′

λ′ //`
)
∈ Mor I such that σλ = σ′λ′ and τλ = τ ′λ′.

k
λ

&&
i

σ′ ��

σ

@@

j

τ

OO

τ ′

��

`

k′
λ′

88
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Definition 1.4.2. Suppose given a filtering category I and a category C. A functor A : I → C
is called a system over I in C.

We usually write Ai := A(i) for i ∈ Ob I and aσ := A(σ) for σ ∈ Mor I.

Suppose given systems A,B : I → C. A transformation ξ : A ⇒ B is called a morphism of

systems.

Lemma 1.4.3. Suppose given a non-empty poset category I. Then I is filtering if and only if

(F1) holds.

Proof. If I is filtering, then (F1) holds by definition.

Conversely, suppose that (F1) holds. For i, j ∈ Ob I, write i ≤ j if (i //j ) ∈ Mor I.

A diagram

k

i

��

@@

j

OO

��

k′

in I translates to i ≤ k, j ≤ k, i ≤ k′ and j ≤ k′. We may choose ` ∈ Ob I with k ≤ ` and

k′ ≤ ` by (F1). So i ≤ ` and j ≤ ` by transitivity. Since moreover morphisms between fixed

objects in I are unique, we conclude that (F2) holds.

Definition 1.4.4. Suppose given categories I and C. Suppose given M ∈ Ob C. We obtain

a constant functor CI,CM : I → C by setting CI,CM (i) := M for i ∈ Ob I and CI,CM (σ) := 1M for

σ ∈ Mor I.

Definition 1.4.5. Suppose given a filtering category I and a category C. Suppose given a

system A over I in C and M ∈ Ob C. A morphism of systems ξ : A ⇒ CI,CM is called a

compatible family for A. So ξ = (ξi)i∈Ob I such that aσξj = ξi for i σ //j in I.

Definition 1.4.6. Suppose given a filtering category I and a category C. Suppose given a

system A over I in C. Suppose given L ∈ Ob C and a compatible family ω : A⇒ CI,CL for A.

The pair (L, ω) is called a direct limit of A if for each M ∈ Ob C and each compatible family

ξ : A⇒ CI,CM for A, there exists a unique morphism
(
L

u //M
)
∈ Mor C such that ωiu = ξi for

i ∈ I.

Ai

ωi
  

ξi

��

L
u //M

Aj

ωj
??

ξj

@@
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Lemma/Definition 1.4.7. Suppose given a filtering category I.

(a) Suppose given a system A over I in Set.

For (x, i), (y, j) ∈
⊔
`∈Ob I A` :=

⋃
`∈Ob I(A` × {`}), let (x, i) ∼ (y, j) if there exist(

i
σ //k

)
,
(
j

ρ
//k
)
∈ Mor I such that xaσ = yaρ. This defines an equivalence rela-

tion on
⊔
`∈Ob I A`. Let lim−→A :=

(⊔
`∈Ob I A`

)/
∼ denote the factor set. Let [x, i] denote

the equivalence class of (x, i) ∈
⊔
`∈Ob I A`.

Let ωAi : Ai → lim−→A : x 7→ [x, i] for i ∈ Ob I.

This defines a compatible family ωA := (ωAi )i∈Ob I : A ⇒ CI,Setlim−→A for A. Moreover,

(lim−→A, ωA) is a direct limit of A.

(b) Suppose given a ring R. Recall that RΥ: Mod-R→ Set denotes the forgetful functor, cf.

convention 37.

Suppose given a system A over I in Mod-R. We use the construction in (a) and define an

R-module structure on the set lim−→(RΥ◦A) as follows and denote the resulting R-module by

lim−→A. So lim−→(RΥ◦A) and lim−→A are the same, viewed as sets, i.e. RΥ(lim−→A) = lim−→(RΥ◦A).

For [x, i], [y, j] ∈ lim−→A, we may choose
(
i

σ //k
)
,
(
j

ρ
//k
)
∈ Mor I by (F1). Let

[x, i]+[y, j] := [xaσ+yaρ, k]. This definition is independent of the choice of representatives

and of the choice of σ and ρ.

For r ∈ R and [x, i] ∈ lim−→A, let [x, i]r := [xr, i]. This definition is independent of the

choice of representatives.

The maps ωAi := ωRΥ◦A
i : Ai → lim−→A are R-linear for i ∈ Ob I and we obtain a compatible

family ωA = (ωAi )i∈Ob I : A⇒ CI,Mod-R
lim−→A for A. Moreover, (lim−→A, ωA) is a direct limit of A.

Proof. Ad (a). Write U :=
⊔
`∈Ob I A`.

We show that ∼ defines an equivalence relation.

Suppose given (x, i) ∈ U . The identity on i shows that ∼ is reflexive.

By definition, ∼ is symmetric.

Suppose given (x, i), (y, j), (z, p) ∈ U with (x, i) ∼ (y, j) and (y, j) ∼ (z, p). We may choose(
i

σ //k
)
,
(
j

ρ
//k
)
,
(
j

η
//`
)
,
(
p

ϑ //`
)
∈ Mor I such that xaσ = yaρ and yaη = zaϑ.

For the diagram

k

j

η
��

ρ
@@

j

ρ

OO

η

��

`
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in I, we may choose
(
k

λ //m
)
,
(
`

µ
//m
)
∈ Mor I such that ρλ = ηµ by (F2).

We obtain

xaσλ = xaσaλ = yaρaλ = yaρλ = yaηµ = yaηaµ = zaϑaµ = zaϑµ,

so (x, i) ∼ (z, p) and therefore ∼ is transitive.

We show that ωA is a morphism of systems and therefore a compatible family for A.

Suppose given i
σ //j in I and x ∈ Ai. We have (xaσ, j) ∼ (x, i) since (xaσ)a1j = (xaσ)1Aj =

xaσ. Therefore xaσωj = [xaσ, j] = [x, i] = xωi. So aσωj = ωi.

We conclude that ωA is a morphism of systems.

It remains to show that (lim−→A, ωA) is a direct limit of A.

Suppose given M ∈ Ob(Set) and a compatible family ξ : A⇒ CI,SetM .

For u : lim−→A → M with ωiu = ξi for i ∈ Ob I, we necessarily have xξi = xωiu = [x, i]u for

x ∈ Ai.

Therefore, let u : lim−→A → M : [x, i] 7→ xξi. This is a well-defined map since in case [x, i] =

[y, j] ∈ lim−→A, we may choose
(
i

σ //k
)
,
(
j

ρ
//k
)
∈ Mor I such that xaσ = yaρ and obtain

xξi = xaσξk = yaρξk = yξj.

Suppose given i ∈ Ob I and x ∈ Ai. We have xωiu = [x, i]u = xξi, so ωiu = ξi.

We conclude that (lim−→A, ωA) is a direct limit of A.

Ad (b). Suppose given [x, i] = [x′, i′], [y, j] = [y′, j′] ∈ lim−→A and r ∈ R.

So there exist
(
i

α //`
)
,
(
i′ α′ //`

)
,
(
j

β
//`′
)
,
(
j′

β′
//`′
)
∈ Mor I with xaα = x′aα′ and

yaβ = y′aβ′ .

Suppose given
(
i

σ //k
)
,
(
i′

σ′ //k′
)
,
(
j

ρ
//k
)
,
(
j′

ρ′
//k′
)
∈ Mor I.

We want to show that [xaσ + yaρ, k] = [xaσ′ + yaρ′ , k
′] and that [xr, i] = [x′r, i′].

By (F1), we may choose
(
` λ //m

)
,
(
`′ λ′ //m

)
∈ Mor I.

For the diagram

k

i

αλ
��

σ

@@

j

ρ

OO

βλ′

��
m

in I, we may choose
(
k

γ
//n
)
,
(
m

δ //n
)
∈ Mor I such that σγ = αλδ and ργ = βλ′δ by

(F2).
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For the diagram

k′

i′

σ′
@@

α′λδ
��

j′

ρ′

OO

β′λ′δ

��
n

in I, we may choose
(
k′

ε //p
)
,
(
n

ζ
//p
)
∈ Mor I such that σ′ε = α′λδζ and ρ′ε = β′λ′δζ by

(F2).

Using k
γζ
//p and k′ ε //p in I, we obtain

(xaσ + yaρ)aγζ = xaσγζ + yaργζ

= xaαλδρ + yaβλ′δζ

= xaαaλδρ + yaβaλ′δζ

= x′aα′aλδρ + y′aβ′aλ′δζ

= x′aα′λδρ + y′aβ′λ′δζ

= x′aα′λδρ + y′aβ′λ′δζ

= x′aσ′ε + y′aρ′ε

= (x′aσ′ + y′aρ′)aε.

So [xaσ + yaρ, k] = [xaσ′ + yaρ′ , k
′].

i σ //

α
&&

k
γ

''
j

ρ

88

β
&&

`
λ //m

δ
// n

ζ

��
i′
α′

99

σ′
%%

`′
λ′

??

p

j′
β′

99

ρ′
// k′

ε

55

Using k
γζ
//p and k′

ε //p in I, we obtain

(xr)aα = xaα · r = x′aα′ · r = (x′r)aα′

So [xr, i] = [x′r, i′].

We verify the axioms for R-modules.
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Note that since I is non-empty, there exists an object i ∈ I. We have [0, i] = [0, j] for all

j ∈ Ob I since we may choose
(
i σ //k

)
,
(
j

ρ
//k
)
∈ Mor I by (F1) and obtain 0aσ = 0 = 0aρ.

Suppose given [x, i], [y, j], [z, `] ∈ lim−→A. We may choose

i
σ //k

λ

$$
j

ρ

::

m

`

µ
44

in I by (F1).

Suppose given r, s ∈ R.

We have

[x, i] + [y, j] = [xaσ + yaρ, k] = [yaρ + xaσ, k] = [y, j] + [x, i],

[x, i] + [0, i] = [xa1i + 0a1i , i] = [x, i],

[x, i] + [−x, i] = [xa1i − xa1i , i] = [0, i],

([x, i] + [y, j]) + [z, `] = [xaσ + yaρ, k] = [(xaσ + yaρ)aλ + zaµ,m] = [xaσλ + yaρλ + zaµ,m]

= [xaσλ + (yaρλ + zaµ)a1m ,m] = [x, i] + [yaρλ + zaµ,m]

= [x, i] + ([y, j] + [z, `]),

[x, i]1R = [x1R, i] = [x, i],

([x, i]r)s = [xr, i]s = [(xr)s, i] = [x(rs), i] = [x, i](rs),

([x, i] + [y, j])r = [xaσ + yaρ, k]r = [(xaσ + yaρ)r, k] = [(xr)aσ + (yr)aσ, k] = [xr, i] + [yr, j]

and

[x, i](r + s) = [x(r + s), i] = [xr + xs, i] = [(xr)a1i + (xs)a1i , i] = [xr, i] + [xs, i]

= [x, i]r + [x, i]s.

The maps ωAi are R-linear by definition. The calculation in (a) shows that ωA is a compatible

family for A.
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It remains to show that (lim−→A, ωA) is a direct limit of A. We adapt the proof in (a) for

given M ∈ Ob(Mod-R) and a compatible family ξ : A ⇒ CI,Mod-R
M . It remains to verify that

u : lim−→A→M : [x, i] 7→ xξi is an R-linear.

Suppose given [x, i], [y, j] ∈ lim−→A and r ∈ R. We may choose
(
i σ //k

)
,
(
j

ρ
//k
)
∈ Mor I by

(F1).

We have

([x, i]r)u = [xr, i]u = (xr)ξi = (xξi)r = ([x, i]u)r

and

([x, i] + [y, j])u = [xaσ + yaρ, k]u = (xaσ + yarho)ξk = xaσξk + yaρξk = xξi + yξj

= [x, i]u+ [y, j]u.

1.5 Exact categories

Definition 1.5.1. A pair (A, E), where A is an additive category and E ⊆ Ob(A∆2) is a set

consisting of short exact sequences of A, is called an exact category if the following axioms

(E1-7) are satisfied.

Let

Em :=
{(
A

f
//B
)
∈ MorA : there exists

(
B

g
//C
)
∈ MorA

such that
(
A

f
//B

g
//C
)
∈ E
}

and let

Ee :=
{(
B

g
//C
)
∈ MorA : there exists

(
A

f
//B
)
∈ MorA

such that
(
A

f
//B

g
//C
)
∈ E
}
.

(E1) Suppose given S, T ∈ Ob(A∆2). If S ∈ E and S ∼= T in A∆2 , then T ∈ E .

(E2) For A ∈ ObA, we have 1A ∈ Em .

(E3) For A ∈ ObA, we have 1A ∈ Ee .

(E4) For f, f ′ ∈ Em, we have ff ′ ∈ Em .

(E5) For g, g′ ∈ Ee, we have gg′ ∈ Ee .
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(E6) Suppose given a diagram

A

g
��

f
// B

C

in A with f ∈ Em . Then there exists a pushout

A

g
��

f
// B

g′

��

C
f ′
// D

in A with f ′ ∈ Em .

(E7) Suppose given a diagram

C

g
��

A
f
// B

in A with f ∈ Ee . Then there exists a pullback

D

g′

��

f ′
// C

g
��

A
f
// B

in A with f ′ ∈ Ee .

A short exact sequence S ∈ E is called E-pure or just pure if unambiguous.

A monomorphism f ∈ Em is called E-pure or just pure if unambiguous. In diagrams, we often

denote pure monomorphisms by A •
f
//B .

An epimorphism g ∈ Ee is called E-pure or just pure if unambiguous. In diagrams, we often

denote pure epimorphisms by B �g //C .

We also say that A is equipped with the exact structure E if (A, E) is an exact category.

We write A = (A, E) if unambiguous.

Remark 1.5.2. Suppose given an exact category (A, E). We obtain an exact category

(Aop, Eop) if we let Eop consist of the short exact sequences C
gop
//B

fop
//A in Aop, where(

A
f
//B

g
//C
)
∈ E .
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Definition 1.5.3. Suppose given exact categories (A, E) and (B,F). An additive functor

F : A → B is called (E ,F)-exact if we have F (S) ∈ F for S ∈ E . We shortly say that F is

exact instead of (E ,F)-exact if unambiguous.

We say that F detects (E ,F)-exactness if F (S) ∈ F implies S ∈ E for a sequence S ∈ Ob(A∆2).

We shortly say that F detects exactness instead of (E ,F)-exactness if unambiguous.

Definition 1.5.4. Suppose given an additive category A. Let E split
A consist of the split short

exact sequences in A. Then (A, E split
A ) is an exact category and we call E split

A the split exact

structure on A.

Remark 1.5.5. Suppose given an additive category A and an exact category (B,F). Every

additive functor F : A → B is (E split
A ,F)-exact.

Definition 1.5.6. Suppose given an abelian category A. Let Eall
A consist of all short exact

sequences in A. Then (A, Eall
A ) is an exact category and we call Eall

A the natural exact structure

on A. We equip an abelian category with the natural exact structure unless otherwise stated.

Definition 1.5.7. Suppose given an exact category (A, E), an abelian category B and an

additive functor F : A → B.

The functor F is called E-exact or just exact if it is (E , Eall
B )-exact.

The functor F is called E-left-exact or just left-exact if F (S) is left-exact for S ∈ E .

The functor F is called E-right-exact or just right-exact if F (S) is right-exact for S ∈ E .

The functor F is said to detect E-exactness or just exactness if it detects (E , Eall
B )-exactness.

Definition 1.5.8. Suppose given an exact category (A, E), an abelian category B and an

additive functor F : A → B.

The functor F is called an E-immersion if it is full, faithful, E-exact and detects E-exactness.

Moreover, we call an E-immersion F closed if the essential image Imess(F ) of F is closed under

extensions.

We shortly say that F is an immersion instead of an E-immersion if unambiguous.

Definition 1.5.9. Suppose given an exact category (A, E) and an object P ∈ ObA. We

say that P is E-relative projective if the functor ZyA,P : A → Mod-Z is E-exact, cf. defini-

tion 1.2.4.(b). We shortly say that P is relative projective instead of E-relative projective if

unambiguous.

The dual of an (E-)relative projective object is called an (E-)relative injective object.

Definition 1.5.10. Suppose given an exact category (A, E).

(a) We say that A has enough E-relative projectives or just enough projectives if for each

object A ∈ ObA, there exists an E-relative projective object P ∈ ObA and an E-pure

epimorphism P �p //A in A.
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(b) We say that A has enough E-relative injectives or just enough injectives if for each ob-

ject A ∈ ObA, there exists an E-relative injective object M ∈ ObA and an E-pure

monomorphism A •m //M in A.

Lemma 1.5.11. Suppose given an exact category (A, E).

(a) Suppose given pure epimorphisms P �p //A and Q �q //B in A.

Then
(
p 0
0 q

)
: P ⊕Q→ A⊕B is purely epimorphic as well.

(b) Suppose given pure monomorphisms A •m //M and B •n //N .

Then (m 0
0 n ) : A⊕B →M ⊕N is purely monomorphic as well.

Proof. Ad (a). The diagram

P ⊕Q
(
p 0
0 1

)
//

( 1
0 )
��

A⊕Q
( 1

0 )
��

P �p // A

is a pullback by the kernel-cokernel-criterion lemma 1.1.2.(a). By (E7), the morphism
(
p 0
0 1

)
is

purely epimorphic.

Similarly, the diagram

A⊕Q
(

1 0
0 q

)
//

( 0
1 )
��

A⊕B
( 0

1 )
��

Q �q // B

is a pullback by the kernel-cokernel-criterion lemma 1.1.2.(a). By (E7), the morphism
(

1 0
0 q

)
is

purely epimorphic.

Therefore the composite
(
p 0
0 1

) (
1 0
0 q

)
=
(
p 0
0 q

)
is purely epimorphic.

Ad (b). This is dual to (a).

Proposition 1.5.12. Suppose given an abelian category B. Suppose given a full additive

subcategory A of B that is closed under extensions.

Let E ⊆ Ob(A∆2) be the set of short exact sequences in B whose objects lie in A. So elements

of E are short exact sequences
(
A

f
//B

g
//C
)

in B with A,B,C ∈ ObA.

Then (A, E) is an exact category.

Proof. Note that if a sequence
(
A

f
//B

g
//C
)

in A is short exact in B, then it is short exact

in A as well.
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Note that A contains the zero objects of B since it is a full additive subcategory closed under

isomophisms.

We verify the axioms (E1-7).

(E1) Suppose given S, T ∈ Ob(A∆2) with S ∼= T . If S is short exact in B, then T is short

exact in B as well.

(E2) The sequence
(
A

1A //A //0
)

is short exact in B, so 1A ∈ Em .

(E3) The sequence
(
0 //A

1A //A
)

is short exact in B, so 1A ∈ Ee .

(E4) Suppose given f, f ′ ∈ Em . Cokernels of ff ′ lie in A since A is closed under extensions,

cf. lemma 1.1.1.

(E5) Suppose given g, g′ ∈ Em . Kernels of gg′ lie in A since A is closed under extensions, cf.

lemma 1.1.1.

(E6) Suppose given a diagram

A

g
��

•
f
// B

C

in A with f ∈ Em . Choose a pushout

A

g
��

•
f
// B

g′

��

C
f ′
// D

in A. Then f ′ is a monomorphism with cokernel in A by lemma 1.1.2.(b). Since A is

closed under extensions, we conclude that f ′ ∈ Em .

(E7) Suppose given a diagram

C

g
��

A �f // B

in A with f ∈ Ee . Choose a pullback

D

g′

��

f ′
// C

g
��

A �f // B

in A. Then f ′ is an epimorphism with kernel in A by lemma 1.1.2.(a). Since A is closed

under extensions, we conclude that f ′ ∈ Ee .
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Proposition 1.5.13 (Obscure axiom). Suppose given an exact category (A, E).

(a) Suppose given A
f
//B

g
//C in A. If f has a cokernel and fg is purely monomorphic,

then f is purely monomorphic.

(b) Suppose given A
f
//B

g
//C in A. If g has a kernel and fg is purely epimophic, then

g is purely epimorphic.

Proof. See [2, prop. 2.16].

1.6 Homologies and exact functors

Suppose given an abelian category B.

Definition 1.6.1. Suppose given a sequence X
f
//Y

g
//Z in B. A commutative diagram

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
p
��

•
`

??

D C

H

•
j

>>

in B is called a homology diagram of X
f
//Y

g
//Z in B if k is a kernel of f , ` is a kernel of

g, d is a cokernel of f , c is a cokernel of g and L
p
//H

j
//D is an image of `d in B.

Remark 1.6.2. Suppose given a sequence X
f
//Y

g
//Z in B and homology diagrams

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
p
��

•
`

??

D C

H

•
j

>>

and

X
f

// Y

�
d′ !!

g
// Z

�c
′

  

K ′

•k
′
>>

L′

�
p′   

•
`

>>

D′ C ′

H ′

•
j′

==
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of X
f
//Y

g
//Z . By the universal properties of kernels, cokernels and images, the diagrams

are isomorphic. In particular, we obtain K ∼= K ′, H ∼= H ′ and C ∼= C ′ in B.

Also note that there exists a homology diagram of X
f
//Y

g
//Z since B is an abelian cate-

gory.

Definition 1.6.3. Suppose given a sequence X
f
//Y

g
//Z in B.

The sequence X
f
//Y

g
//Z is called semi-exact in B if there exists a homology diagram

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
p
��

•
`

??

D C

H

•
j

>>

of X
f
//Y

g
//Z such that H ∼= 0B in B.

Lemma 1.6.4. Suppose given a sequence X
f
//Y

g
//Z in B.

The sequence X
f
//Y

g
//Z is exact if and only if it is semi-exact with fg = 0.

Some use the term exact in the middle for what we call exact, cf. convention 33.

Proof. Suppose that X
f
//Y

g
//Z is exact. Choose a kernel K •k //X of f and a cokernel

Z �c //C of g. Choose an image X �u //L •` //Y of f and an image Y �d //D •v //Z of g. The

sequence L ` //Y d //D is short exact and thus the diagram

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
��

•
`

>>

D C

0B

•

>>

is a homology diagram of X
f
//Y

g
//Z in B. So X

f
//Y

g
//Z is semi-exact. Moreover,

we have fg = u`dv = 0.

Suppose that X
f
//Y

g
//Z is semi-exact with fg = 0.



44

So we may choose a homology diagram

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
��

•
`

>>

D C

0B

•

>>

of X
f
//Y

g
//Z in B. Note that `d = 0.

Lemma 1.1.1 yields morphisms X u //L and D
v //Z in B such that the diagram

L 0 //

•
`   

D

v

��

Y
g

  

>
d

>>

X
1 //

u

>>

X

f
>>

0
// Z

1 //

�
c
  

Z
>
c

��

K

•
k

``

•
k

>>

C

commutes and such that the sequence K 1 //K u //L 0 //D v //Z 1 //Z is exact. Thus u is

epimorphic and v is monomorphic.

We conclude that X
f
//Y

g
//Z is exact since X �u //L •` //Y is an image of f ,

Y �d //D •v //Z is an image of g and L
` //Y

d //D is short exact.

Lemma 1.6.5. Suppose given a sequence X
f
//Y

g
//Z in B such that fg = 0 and a ho-

mology diagram

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
p
��

•
`

??

D C

H

•
j

>>

of X
f
//Y

g
//Z in B

The sequence X
f
//Y

g
//Z is short exact if and only if K ∼= 0B , H ∼= 0B and C ∼= 0B in B.

Proof. Suppose that X
f
//Y

g
//Z is short exact. Then K ∼= 0B since f is monomorphic

and C ∼= 0B since g is monomorphic. Since X
f
//Y

g
//Z is in particular exact, lemma 1.6.4

yields that H ∼= 0B .
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Conversely, suppose that K ∼= 0B , H ∼= 0B and C ∼= 0B .

By loc. cit., the sequence X
f
//Y

g
//Z is exact. Since K ∼= 0B , we may choose the image

X �1 //X •
f
//Y of f . Since C ∼= 0B , we may choose the image Y �g //Z •1 //Z of g. We

conclude that X
f
//Y

g
//Z is indeed short exact.

Corollary 1.6.6. Suppose given an additive category A and an additive functor F : A → B.

Suppose given a sequence X
f
//Y

g
//Z in A such that fg = 0 and a homology diagram

F (X)
F (f)

// F (Y )

�
d

""

F (g)
// F (Z)

�c

""

K

•k
<<

L

�
p

""

•
`

<<

D C

H

•
j

;;

of F (X)
F (f)

//F (Y )
F (g)

//F (Z) in B.

The sequence F (X)
F (f)

//F (Y )
F (g)

//F (Z) is short exact if and only if K ∼= 0B , H ∼= 0B and

C ∼= 0B in B.

Corollary 1.6.7. Suppose given an exact category (A, E) and an additive functor F : A → B.

The functor F is E-exact if and only if for all pure short exact sequences
(
X •

f
//Y �g //Z

)
∈ E ,

there exists a homology diagram

F (X)
F (f)

// F (Y )

�
d

""

F (g)
// F (Z)

�c

""

K

•k
<<

L

�
p

""

•
`

<<

D C

H

•
j

;;

of F (X)
F (f)

//F (Y )
F (g)

//F (Z) in B such that K ∼= 0B , H ∼= 0B and C ∼= 0B .

Lemma 1.6.8. Suppose given an abelian category A and an exact functor F : A → B.

The functor F preserves homology diagrams. More precisely, we have the following statement.

Suppose given a sequence X
f
//Y

g
//Z in A and a homology diagram

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
p
��

•
`

??

D C

H

•
j

>>
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of X
f
//Y

g
//Z in A.

Then the diagram

F (X)
F (f)

// F (Y )

F (d) $$

F (g)
// F (Z)

F (c)

##

F (K)

F (k)
::

F (L)

F (p) ##

F (`)

;;

F (D) F (C)

F (H)
F (j)

::

is a homology diagram of F (X)
F (f)

//F (Y )
F (g)

//F (Z) in B.

Proof. This follows from the fact that an exact functor between abelian categories preserves

kernels, cokernels and images.

Corollary 1.6.9. Suppose given an abelian category A and an exact functor F : A → B.

Suppose given a sequence X
f
//Y

g
//Z in A and a homology diagram

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
p
��

•
`

??

D C

H

•
j

>>

of X
f
//Y

g
//Z in A.

(a) The sequence F (X)
F (f)

//F (Y )
F (g)

//F (Z) is semi-exact if and only if F (H) ∼= 0B in B.

(b) Suppose that fg = 0 in A. The sequence F (X)
F (f)

//F (Y )
F (g)

//F (Z) is short exact if and

only if F (K) ∼= 0B , F (H) ∼= 0B and F (C) ∼= 0B in B.

Definition 1.6.10. Suppose given an exact category (A, E) and a sequence X
f
//Y

g
//Z

in A.

A commutative diagram

X
f

//

�
e
��

Y
g

//

�
d   

Z

�c

��

K

•k
>>

L

•
`

??

D

•
m

>>

C
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in A is called an E-purity diagram of X
f
//Y

g
//Z in A if(

K •k //X �e //L
)
,
(
L •` //Y �d //D

)
,
(
D •m //Z �c //C

)
∈ E .

The sequence X
f
//Y

g
//Z is called E-pure exact if there exists an E-purity diagram of

X
f
//Y

g
//Z in A.

We say pure exact instead of E-pure exact and purity diagram instead of E-purity diagram if

unambiguous.

Lemma 1.6.11. Suppose given an exact category (A, E) and an E-exact functor F : A → B.

Suppose given a sequence X
f
//Y

g
//Z in A.

Suppose given an E-purity diagram

X
f

//

�
e
��

Y
g

//

�
d   

Z

�c

��

K

•k
>>

L

•
`

??

D

•
m

>>

C

of X
f
//Y

g
//Z in A.

Then the diagram

F (X)
F (f)

// F (Y )

F (d) ##

F (g)
// F (Z)

F (c)

##

F (K)

F (k)
::

F (L)

0
$$

F (`)

;;

F (D) F (C)

0B

0

::

is a homology diagram of X
f
//Y

g
//Z in B.

In particular, if X
f
//Y

g
//Z is E-pure exact, then F (X)

F (f)
//F (Y )

F (g)
//F (Z) is exact in

B.

Proof. The morphism F (k) is a kernel of F (e) since F is E-exact. Note that F (e)F (`) = F (f)

and that F (`) is monomorphic since F is E-exact. Thus F (k) is also a kernel of F (f). Similarly,

F (`) is a kernel of g. Dually, F (c) is a cokernel of F (g) and F (d) is a cokernel of F (f).

Moreover, we have F (`)F (d) = F (`d) = F (0) = 0.



Chapter 2

Sheaves

2.1 Sieves

Suppose given a category S .

Example

For the sake of illustration, we want to show how sheaves on topological spaces fit into the picture

of the general theory of sheaves on sites. Throughout this chapter, we translate the general terms

into the language of topological spaces in centered paragraphs like this. None of this will be

relevant to the general theory. The arguments in this illustration are often only sketched.

Suppose given a topological space X in the centered paragraphs throughout this chapter. We

consider the poset SX of open subsets of X as a category.

Suppose given open subsets V ⊆ U ⊆ X. We write iUV : V → U for the inclusion morphism. Every

morphism in SX is of this form.

Definition 2.1.1. Suppose given an object A ∈ Ob S . A subset S ⊆ Mor S is called a sieve

on A if the following two conditions hold.

(S1) We have cod(f) = A for f ∈ S, cf. convention 3.

(S2) Suppose given C
g
//B

f
//A in S . If f ∈ S, then gf ∈ S.

The set of sieves on A is denoted by Sieves(A).

Example (cont.)

Suppose given an open subset U ⊆ X. For an open subset V ⊆ U and a sieve S on U , we identify

the inclusion iUV with V itself, i.e. we often write V ∈ S instead of iUV ∈ S.

So a sieve on U is a set S of open subsets of U , such that given V ∈ S and an open subset W ⊆ V ,

we have W ∈ S.

Informally speaking, sieves are closed under taking open subsets.

48
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Lemma/Definition 2.1.2. Suppose given an object A ∈ Ob S .

We call max(A) := {f ∈ Mor S : cod(f) = A} the maximal sieve on A.

The subset max(A) ⊆ Mor S is in fact a sieve on A.

Proof. By definition, we have cod(f) = A for f ∈ max(A). So (S1) holds. Suppose given

C
g
//B

f
//A in S with f ∈ max(A). We have cod(gf) = A and therefore gf ∈ max(A).

So (S2) holds.

Lemma/Definition 2.1.3. Suppose given an object A ∈ Ob S and a sieve S on A.

For B
f
//A in S , we set

f ∗(S) := {g ∈ Mor S : cod(g) = B and gf ∈ S}.

The subset f ∗(S) ⊆ Mor S is a sieve on B, called the inverse image of S along f .

Proof. By definition, we have cod(g) = B for g ∈ f ∗(S). So (S1) holds.

Suppose given D
h //C

g
//B in S with g ∈ f ∗(S). We have cod(hg) = B. Since S is a sieve

on A and since gf ∈ S, we conclude that (hg)f = h(gf) ∈ S and therefore hg ∈ f ∗(S). So

(S2) holds.

Example (cont.)

Suppose given an open subset U ⊆ X and a sieve S on U .

For an open subset V ⊆ U , we have (iUV )∗(S) = {W ⊆ V : W ∈ S}.

Remark 2.1.4. Suppose given an object A ∈ Ob S and sieves S, S ′ on A with S ⊆ S ′. Suppose

given B
f
//A in S . Then f ∗(S) ⊆ f ∗(S ′).

Proof. For
(
C

g
//B
)
∈ f ∗(S), we have gf ∈ S ⊆ S ′, so g ∈ f ∗(S ′).

Remark 2.1.5. Suppose given an object A ∈ Ob S and a sieve S on A.

For C
g
//B

f
//A in S , we have (gf)∗(S) = g∗(f ∗(S)).

Proof. For h ∈ (gf)∗(S), we have hgf ∈ S, so hg ∈ f ∗(S) and, consequently, h ∈ g∗(f ∗(S)).

For h ∈ g∗(f ∗(S)), we have hg ∈ f ∗(S), so hgf ∈ S and, consequently, h ∈ (gf)∗(S).

Lemma/Definition 2.1.6. Suppose given B
f
//A in S . Let

Sf :=
{
g ∈ Mor S : there exists h ∈ Mor S such that g = hf}.

We call Sf the sieve generated by f . The set Sf is in fact a sieve on A.
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Proof. By definition, (S1) holds. For D k //C
h //B in S , we have k(hf) = (kh)f . So (S2)

holds as well.

Lemma/Definition 2.1.7. Suppose given an object A ∈ Ob S and a sieve S on A.

Let

FS(B) := S ∩ HomS (B,A)

and let

FS(f op) : FS(B)→ FS(C) : h 7→ fh

for C
f
//B in S .

This defines a subfunctor FS : S op → Set of the Yoneda functor yS, A , cf. definitions 1.1.10

and 1.2.1.

Proof. Suppose given C
f
//B in S and h ∈ FS(B). Then fh ∈ S since S is a sieve. Therefore

FS(f op) is well-defined.

So FS is a subfunctor of yS, A by definition.

Remark 2.1.8. Suppose given an object A ∈ Ob S . Then Fmax(A) = yS, A .

Lemma/Definition 2.1.9. Suppose given an object A ∈ Ob S and sieves S, S ′ on A with

S ⊆ S ′.

Let (ιS
′

S )B : FS(B)→ FS′(B) : h 7→ h for B ∈ Ob S .

This yields a transformation ιS
′

S :=
(
(ιS
′

S )B
)
B∈Ob S

: FS ⇒ FS′ .

Moreover, let ιS := ι
max(A)
S : FS ⇒ yS, A .

Proof. For C
f
//B in S and h ∈ FS(B), we have

(h) FS(f op) (ιS
′

S )C = (fh) (ιS
′

S )C = fh = f · (h) (ιS
′

S )B = (h) (ιS
′

S )B FS′(f
op).

Remark 2.1.10. Suppose given A ∈ Ob S and sieves S, S ′, S ′′ on A with S ⊆ S ′ ⊆ S ′′. Then

ιS
′

S ι
S′′

S′ = ιS
′′

S .

2.2 Sites and sheaves

Suppose given a ring R, cf. convention 36.

From after definition 2.2.1 on, we will suppose given a site S = (S , J).
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2.2.1 Definitions

Definition 2.2.1. Suppose given a category S . A tuple J = (JA)A∈Ob S with JA ⊆ Sieves(A)

for A ∈ Ob S is called a Grothendieck topology on S if the following three conditions hold.

(G1) We have max(A) ∈ JA for A ∈ Ob S .

(G2) Suppose given B
f
//A in S . For S ∈ JA , we have f ∗(S) ∈ JB .

(G3) Suppose given A ∈ Ob S and S ∈ JA . Suppose given a sieve T on A such that f ∗(T ) ∈ JB
for
(
B

f
//A
)
∈ S. Then T ∈ JA .

The set JA is called the set of coverings of A for A ∈ Ob S . We say that S covers A (or that

S is a covering of A) if S ∈ JA for A ∈ Ob S .

A tuple (S , J) consisting of a category S and a Grothendieck topology J on S is called a

site. We often abbreviate S = (S , J) if unambiguous.

For a way to obtain Grothendieck topologies in practice, see section 2.2.4.

Example (cont.)

For an open subset U ⊆ X, let the set of coverings JU of U consist of sieves S on U with
⋃
S = U .

We want to show that (SX , J) is a Grothendieck topology.

(G1) For an open subset U ⊆ X, we have max(U) = {V ⊆ U : V open}. So
⋃

max(U) = U and

therefore max(U) ∈ JU .

(G2) Suppose given open subsets V ⊆ U ⊆ X and a covering S of U .

We have (iUV )∗(S) = {W ⊆ V : W ∈ S} = {W ′ ∩ V : W ′ ∈ S}.
So
⋃

(iUV )∗(S) =
⋃
{W ′ ∩ V : W ′ ∈ S} =

(⋃
{W ′ : W ′ ∈ S}

)
∩ V = U ∩ V = V and therefore

(iUV )∗(S) ∈ JV .

(G3) Suppose given an open subset U ⊆ X and a covering S of U . Suppose given a sieve T on U

such that (iUV )∗(T ) covers V for each V ∈ S. We have to show that T covers U .

For each V ∈ S, we have V =
⋃

(iUV )∗(T ) =
⋃
{W ∩ V : W ∈ T} ⊆

⋃
{W : W ∈ T} =

⋃
T .

Thus U =
⋃
S =

⋃
{V ⊆ U : V ∈ S} ⊆

⋃
T ⊆ U .

We conclude that
⋃
T = U and thus T ∈ JU .

Suppose given a site S = (S , J) for the remainder of this section 2.2.

Definition 2.2.2.

(a) A functor P : S op → Set is called a presheaf on S .

The functor category Ŝ := Set(S op) is called the category of presheaves on S .

(b) A functor P : S op → Mod-R is called an R-presheaf on S .

The functor category RŜ := (Mod-R)(S op) is called the category of R-presheaves on S .

Cf. definition 1.1.11.
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Definition 2.2.3. Suppose given an object A ∈ Ob S and a covering S ∈ JA .

(a) Suppose given a presheaf P on S . A transformation ξ : FS ⇒ P is called a matching

family for P on S in S .

So ξB P (f op) = FS(f op) ξC for C
f
//B in S .

FS(B)
ξB //

FS(fop)

��

P (B)

P (fop)

��

FS(C)
ξC // P (C)

(b) Recall that RΥ: Mod-R→ Set denotes the forgetful functor, cf. convention 37. Suppose

given an R-presheaf P on S . A matching family for RΥ◦P on S in S is called a matching

family for P on S in S .

Definition 2.2.4. Suppose given an object A ∈ Ob S and a covering S ∈ JA . Suppose given

a presheaf P on S . Suppose given a matching family ξ : FS ⇒ P for P on S. A transformation

ζ : yS, A ⇒ P with ιS ζ = ξ is called an amalgamation of ξ.

FS

ιS

��

ξ
// P

yS ,A

ζ

77

So ζB P (f op) = yS, A(f op) ζC for C
f
//B in S .

yS, A(B)

yS, A(fop)

��

ζB // P (B)

P (fop)

��

yS, A(C)
ζC // P (C)

Cf. also remark 2.2.6.

Remark 2.2.5. Suppose given an object A ∈ Ob S and a covering S ∈ JA . Suppose given

an R-presheaf P on S .

Note that a matching family ξ for P on S in S is a matching family for RΥ ◦ P on S in S by

definition, so we can speak of an amalgamation of ξ, being a transformation ζ : yS, A ⇒ RΥ ◦ P
such that ιS ζ = ξ.

Remark 2.2.6. Suppose given an object A ∈ Ob S and a covering S ∈ JA . Suppose given a

presheaf P on S . Suppose given a matching family ξ for P on S.
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By the Yoneda lemma 1.2.2, we have the bijection γP,A : HomŜ (yS, A, P )→ P (A) : ζ 7→ (1A)ζA
.

Under this bijection, the amalgamations of ξ correspond to the elements x ∈ P (A) with

(x)P (f op) = (f)ξB for
(
B

f
//A
)
∈ S.

We will use this correspondence from now on usually without comment.

So we will identify an amalgamation ζ of ξ with (1A)ζA ∈ P (A).

Proof. Suppose given ζ ∈ HomŜ (yS, A, P ).

For
(
B

f
//A
)
∈ S, we have

(γP,A(ζ))P (f op) = ((1A)ζA)P (f op) = (1A)(ζA P (f op)) = (1A)(yS ,A(f op) ζB) = (f)ζB .

So if ιS ζ = ξ, then (γP,A(ζ))P (f op) = (f)ζB = (f)(ιS ζ)B = (f)ξB for
(
B

f
//A
)
∈ S.

Conversely, if (γP,A(ζ))P (f op) = (f)ξB for
(
B

f
//A
)
∈ S, then

(f)(ιS ζ)B = (f)ζB = (γP,A(ζ))P (f op) = (f)ξB

for
(
B

f
//A
)
∈ S and, consequently, ιS ζ = ξ.

Definition 2.2.7.

(a) A presheaf P on S is called separated if for each matching family ξ for P on each covering

of each object in S , there exists at most one amalgamation of ξ.

(b) An R-presheaf P on S is called separated if for each matching family ξ for P on each

covering of each object in S , there exists at most one amalgamation of ξ.

Definition 2.2.8.

(a) A presheaf P on S is called a sheaf on S if for each matching family ξ for P on each

covering of each object in S , there exists a unique amalgamation of ξ.

The full subcategory S̃ of Ŝ whose objects are the sheaves on S is called the category

of sheaves on S .

Let ES : S̃ → Ŝ denote the inclusion functor. We abbreviate E = ES if unambiguous.

(b) An R-presheaf P on S is called an R-sheaf on S if for each matching family ξ for P on

each covering of each object in S , there exists a unique amalgamation of ξ.

The full subcategory RS̃ of RŜ whose objects are the R-sheaves on S is called the

category of R-sheaves on S .

Let RES : RS̃ → RŜ denote the inclusion functor. We abbreviate E = RES if unam-

biguous.
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Definition 2.2.9. Recall that RΥ: Mod-R → Set denotes the forgetful functor, cf. conven-

tion 37.

Let RΥS = RΥ
(S op) : RŜ → Ŝ , cf. definition 1.1.12.

So we have RΥS

(
P α //Q

)
=
(
RΥ ◦ P RΥ?α

//
RΥ ◦Q

)
for P α //Q in RŜ .

Remark 2.2.10. Suppose given an R-presheaf P on S .

The R-presheaf P is separated if and only if the presheaf RΥS (P ) = RΥ ◦ P is separated.

The R-presheaf P is an R-sheaf if and only if the presheaf RΥS (P ) = RΥ ◦ P is a sheaf.

Example (cont.)

We illustrate the previous definitions with the example of the presheaf of continuous real-valued

functions on X.

For an open subset U ⊆ X, let O(U) = {ϕ : U → R : ϕ is continuous}.

For open subsets V ⊆ U ⊆ X, let O
(
(iUV )op

)
: O(U)→ O(V ) : ϕ 7→ ϕ|V .

This yields a presheaf O ∈ Ob(ŜX). Our aim is to prove that O is a sheaf.

Suppose given a covering S on an open subset U ⊆ X.

Suppose given a matching family ξ : FS ⇒ O.

The matching family ξ consists of maps ξV : S ∩ HomSX
(V,U) → O(V ) for each open subset

V ⊆ X. Note that S∩HomSX
(V,U) = ∅ if V is not an open subset of U contained on S, and that

S ∩ HomSX
(V,U) = {iUV } if V is an open subset of U contained in S. So for V ⊆ U with V ∈ S,

the image of ξV contains precisely one element ψV ∈ O(V ). The tuple (ψV )V⊆U,V ∈S carries the

information of ξ and the naturality of ξ translates into (ψV )|W = ψW for W ⊆ V , where W,V ∈ S.

An amalgamation of ξ is a function ϕ ∈ O(U) with ϕ|V = ψV for V ∈ S, cf. remark 2.2.6.

Suppose given amalgamations ϕ and ϕ′ of ξ. We want to show that ϕ = ϕ′.

Suppose given u ∈ U . Since
⋃
S = U , we may choose V ∈ S such that u ∈ V .

We have

(u)ϕ = (u)ϕ|V = (u)ψV = (u)ϕ′|V = (u)ϕ′.

So ϕ = ϕ′. Thus the presheaf O is separated.

We want to construct an amalgamation ϕ : U → R of ξ. For u ∈ U , we may choose V ∈ S such

that u ∈ V since
⋃
S = U . Let (u)ϕ := (u)ψV . This definition is independent of the choice of V

since in case u ∈ V ∩ V ′ for V, V ′ ∈ S, we have

(u)ψV = (u)ψV |V ∩V ′ = (u)ψV ∩V ′ = (u)ψV ′ |V ∩V ′ = (u)ψV ′ .

So ϕ|V = ψV for V ∈ S.

It remains to show that ϕ is continuous. Suppose given an open subset I ⊆ R.

For V ∈ S, we have V ∩ ϕ−1(I) = ψ−1V (I), which is an open subset of V since ψV is continuous.

We obtain

ϕ−1(I) = ϕ−1(I) ∩ U = ϕ−1(I) ∩
⋃
{V ⊆ U : V ∈ S} =

⋃
{V ∩ ϕ−1(I) : V ∈ S}

=
⋃
{ψ−1V (I) : V ∈ S}.
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So ϕ−1(I) is a union of open subsets of U and therefore ϕ−1(I) is open as well.

We conclude that ξ has a unique amalgamation. Thus O is a sheaf.

2.2.2 Elementary facts on the category of sheaves

Lemma 2.2.11.

(a) The full subcategory of sheaves S̃ ⊆ Ŝ is closed under isomorphisms: Suppose given an

isomorphism P α //P ′ in Ŝ . If P ∈ Ob S̃ , then P ′ ∈ Ob S̃ .

(b) The full subcategory of R-sheaves RS̃ ⊆ RŜ is closed under isomorphisms: Suppose

given an isomorphism P
α //P ′ in RŜ . If P ∈ Ob(RS̃ ), then P ′ ∈ Ob(RS̃ ).

Proof. Ad (a). Suppose given A ∈ Ob S and S ∈ JA. Suppose given a matching family

ξ′ : FS ⇒ P ′. We want to show that there exists a unique amalgamation of ξ′.

Let ξ := ξ′ · α−1 : FS ⇒ P . So ξ is a matching family for P .

Let Aξ ⊆ HomŜ (yS ,A, P ) denote the set of amalgamations of ξ. Let Aξ′ ⊆ HomŜ (yS ,A, P
′)

denote the set of amalgamations of ξ′.

We claim that the map

I : Aξ → Aξ′ : ζ 7→ ζα

is a bijection with inverse

J : Aξ′ → Aξ : ζ ′ 7→ ζ ′α−1.

The map I is well-defined since for ζ ∈ Aξ, we have ιS ζα = ξα = ξ′.

The map J is well-defined since for ζ ′ ∈ Aξ′ , we have ιS ζ
′α−1 = ξ′α−1 = ξ.

The maps I and J are mutually inverse by construction. This proves the claim.

If P is a sheaf, then the set Aξ contains precisely one element. So the same is true for Aξ′ ,

thus P ′ is a sheaf.

Ad (b). By remark 2.2.10, P ′ is an R-sheaf if and only if RΥS (P ′) is a sheaf. The result now

follows from (a) since RΥS is a functor and therefore preserves isomorphisms.

Remark 2.2.12. Recall that 0Mod-R denotes a zero object in Mod-R and that 0
RŜ denotes a

zero object in RŜ with 0
RŜ (A) = 0Mod-R for A ∈ Ob S , cf. convention 15.

The R-presheaf 0
RŜ is an R-sheaf.

Proof. The presheaf 0
RŜ is separated since the set 0

RŜ (A) = 0Mod-R contains precisely one

element for A ∈ Ob S .
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Suppose given A ∈ Ob S and S ∈ JA. Suppose given a matching family ξ : FS ⇒ RΥ ◦ 0
RŜ .

Note that ξB has target 0
RŜ (B) = 0Mod-R for B ∈ Ob S .

The zero element 0 ∈ 0Mod-R = 0
RŜ (A) is an amalgamation of ξ since we have

(0) 0
RŜ (f op) = 0 = (f)ξB for

(
B

f
//A
)
∈ S.

We conclude that 0
RŜ is an R-sheaf.

Proposition 2.2.13. The category of R-sheaves RS̃ is a full additive subcategory of RŜ ,

which is closed under isomorphisms, cf. convention 17.

Proof. By lemma 2.2.11.(b), the category of R-sheaves RS̃ is a full subcategory of RŜ which

is closed under isomorphisms. By remark 2.2.12, RS̃ contains a zero object. It remains to

show that a direct sum of two objects in RS̃ lies in RS̃ .

Suppose given R-sheaves P,Q ∈ Ob(RS̃ ).

A direct sum of P and Q in RŜ is P ⊕Q : S op → Mod-R with

(P ⊕Q)
(
A

fop
//B
)

=

(
P (A)⊕Q(A)

(
P (fop) 0

0 Q(fop)

)
//P (B)⊕Q(B)

)

for B
f
//A in S . Cf. [14, rem. 5.(f)]. We want to show that P ⊕Q is an R-sheaf.

Suppose given A ∈ Ob S and S ∈ JA. Suppose given a matching family ξ : FS ⇒ RΥ◦ (P ⊕Q).

Write ( ξPB ξQB ) := ξB : FS(B)→ P (B)⊕Q(B) for B ∈ Ob S .

We have

( FS(gop) ξPC FS(gop) ξQC ) = FS(gop) · ( ξPC ξQC ) = FS(gop) · ξC = ξB · (P ⊕Q) (gop)

= ( ξPB ξQB ) ·
(
P (gop) 0

0 Q(gop)

)
= ( ξPB P (gop) ξQB Q(gop) )

for C
g
//B in S since ξ is natural.

FS(B)
( ξPB ξQB )

//

FS(gop)

��

P (B)⊕Q(B)(
P (gop) 0

0 Q(gop)

)
��

FS(C)
( ξPC ξQC )

// P (C)⊕Q(C)

The equations for each component show that ξP := (ξPB)B∈Ob S and ξQ := (ξQB)B∈Ob S are

natural as well. So ξP is a matching family for P and ξQ is a matching family for Q. Suppose

given (p, q) ∈ P (A)⊕Q(A) = (P ⊕Q)(A).

For
(
B

f
//A
)
∈ S, we have

(p, q) (P ⊕Q)(f op) = (p, q)
(
P (fop) 0

0 Q(fop)

)
=
(
(p)P (f op), (q)Q(f op)

)
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and

(f)ξB = (f) ( ξPB ξQB ) =
(
(f)ξPB , (f)ξQB

)
.

So (p, q) is an amalgamation of ξ if and only if p is an amalgamation of ξP and q is an

amalgamation of ξQ. We conclude that P ⊕Q is an R-sheaf.

2.2.3 Elementary facts on coverings

Lemma 2.2.14. Suppose given an object A ∈ Ob S and coverings S, S ′ of A, i.e. S, S ′ ∈ JA .

Then S ∩ S ′ is a covering of A, i.e. S ∩ S ′ ∈ JA .

Proof. Suppose given C
g
//B

f
//A in S with f ∈ S ∩ S ′. Then gf ∈ S since S is a sieve

and gf ∈ S ′ since S ′ is a sieve. So gf ∈ S ∩ S ′. We conclude that S ∩ S ′ is a sieve, cf.

definition 2.1.1.

Suppose given
(
B

f
//A
)
∈ S.

We claim that f ∗(S ∩ S ′) = f ∗(S ′). We have f ∗(S ∩ S ′) ⊆ f ∗(S ′), cf. remark 2.1.4.

For
(
C

g
//B
)
∈ f ∗(S ′), we have gf ∈ S ′ and gf ∈ S since f ∈ S, so g ∈ f ∗(S ∩ S ′).

This proves the claim. By (G2), we have f ∗(S ′) ∈ JB , thus f ∗(S ∩ S ′) = f ∗(S ′) ∈ JB .

By (G3), we conclude that S ∩ S ′ ∈ JB .

Lemma 2.2.15. Suppose given an object A ∈ Ob S and a covering S ∈ JA . Suppose given

a sieve T on A with S ⊆ T . Then T covers A, i.e. T ∈ JA .

Proof. Suppose given
(
B

f
//A
)
∈ S. Then f ∗(S) = max(B) since gf ∈ S for g ∈ max(B).

By remark 2.1.4, we have max(B) = f ∗(S) ⊆ f ∗(T ). We conclude that f ∗(T ) = max(B) ∈ JB
by (G1). Now (G3) yields T ∈ JA .

Lemma 2.2.16. Suppose given an object A ∈ Ob S and a covering S ∈ JA . Suppose given

coverings Tf ∈ JB for
(
B

f
//A
)
∈ S. Then {gf : f ∈ S, g ∈ Tf} ∈ JA .

Proof. Write U := {gf : f ∈ S, g ∈ Tf}.

The set U is a sieve on A since for D h //C
g
//B

f
//A in S with f ∈ S and g ∈ Tf , we

obtain hg ∈ Tf and therefore hgf ∈ U .

Suppose given
(
B

f
//A
)
∈ S. We have f ∗(U) ⊇ Tf since gf ∈ U for g ∈ Tf . Therefore

f ∗(U) ∈ JB by lemma 2.2.15.

So U ∈ JA by (G3).
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2.2.4 Reduced topologies

For possible practical purposes, we present a way how to obtain Grothendieck topologies.

However, we will not use the results of section 2.2.4 in the sequel.

Lemma/Definition 2.2.17. For A ∈ Ob S , let Cod(A) := {f ∈ Mor S : cod(f) = A}. The

power set of Cod(A) is denoted by P(Cod(A)).

A tuple K = (KA)A∈Ob S with KA ⊆ P(Cod(A)) is called a reduced topology on S if the

following three conditions hold.

(RT1) {1A} ∈ KA for A ∈ Ob S .

(RT2) Suppose given A ∈ Ob S , U ∈ KA and
(
B

f
//A
)
∈ Mor S . Then there exists V ∈ KB

such that for all
(
D

d //B
)
∈ V , there exist

(
C

c //A
)
∈ U and

(
D

g
//C
)
∈ Mor S

such that df = gc.

D d //

g
��

B

f
��

C
c // A

(RT3) Suppose given A ∈ Ob S , U ∈ KA and Vc ∈ KC for
(
C c //A

)
∈ U . Then there exists

W ∈ KA such that for all
(
E

e //A
)
∈ W , there exist

(
C

c //A
)
∈ U ,

(
Dc

d //C
)
∈ Vc

and g ∈ Mor S such that e = gdc.

E

e
��

g

ww
Dc d

// C c
// A

A reduced topology K gives rise to a Grothendieck topology JK = (JKA )A∈Ob S on S by setting

JKA := {S ∈ Sieves(A) : there exists U ∈ KA with U ⊆ S} for A ∈ Ob S .

Proof. Ad (G1). For A ∈ Ob S , we have {1A} ⊆ max(A) by (RT1). Thus max(A) ∈ JKA . So

(G1) holds.

Ad (G2). Suppose given B
f
//A in S . Suppose given S ∈ JKA . We may choose U ∈ KA

with U ⊆ S. By (RT2), we may choose V ∈ KB such that for all
(
D d //B

)
∈ V , there exist(

C c //A
)
∈ U and

(
D

g
//C
)
∈ Mor S such that df = gc. Since c ∈ U ⊆ S and S is a sieve,

df = gc is in S and therefore d ∈ f ∗(S). So V ⊆ f ∗(S) and thus f ∗(S) ∈ JKB . So (G2) holds.

Ad (G3). Suppose given A ∈ Ob S and S ∈ JKA . We may choose U ∈ KA with U ⊆ S.

Suppose given a sieve T on A such that f ∗(T ) ∈ JKB for
(
B

f
//A
)
∈ S. For

(
C

c //A
)
∈ U ,
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we may choose Vc ∈ KC with Vc ⊆ c∗(T ). By (RT3), we may choose W ∈ KA such that for

all
(
E

e //A
)
∈ W , there exist

(
C

c //A
)
∈ U ,

(
Dc

d //C
)
∈ Vc and g ∈ Mor S such that

e = gdc. Since gdc ∈ T for c ∈ U , d ∈ Vc ⊆ c∗(T ) and g ∈ Mor S , we have W ⊆ T . Thus

T ∈ JKA . So (G3) holds.

Example 2.2.18. A prétopologie in the sense of [5, Exposé II, Def. 1.3] and a basis in the

sense of [9, III. 2. Def. 2] are examples of reduced topologies.

Example (cont.)

We want to show that the Grothendieck topology (SX , J) from above can be obtained from the

following reduced topology K = (KU )U⊆X open on SX . For an open subset U ⊆ X, let KU consist

of the sets of open subsets of U whose union is U . So

KU := {C ⊆P(U) :
⋃
C = U, C consists of open subsets of U}.

• Ad (RT1). For an open subset U ⊆ X, we have
⋃
{U} = U .

• Ad (RT2). Suppose given open subsets V ⊆ U ⊆ X. Suppose given a family of open subsets

C = {Ui : i ∈ I} ∈ KU , where I is some index set. So Ui ⊆ U for i ∈ I and
⋃

i∈I Ui = U .

Then {V ∩ Ui : i ∈ I} ∈ KV since
⋃

i∈I V ∩ Ui = V ∩
⋃

i∈I Ui = V ∩ U = V . Moreover, we

have the following inclusions for i ∈ I.

V ∩ Ui
//

��

V

��

Ui
// U.

• Ad (RT3). Suppose given an open subset U ⊆ X. Suppose given a set of open subsets

C = {Ui : i ∈ I} ∈ KU , where I is some set. So Ui ⊆ U for i ∈ I and
⋃

i∈I Ui = U .

For i ∈ I, suppose given a family of open subsets Di = {Vi,j : j ∈ Ji}, where Ji is some

set. So Vi,j ⊆ Ui for j ∈ Ji and
⋃

j∈Ji
Vi,j = Ui . Then {Vi,j : i ∈ I, j ∈ Ji} ∈ KU since⋃

i∈I
⋃

j∈Ji
Vi,j =

⋃
i∈I Ui = U . Moreover, we have the following inclusions for i ∈ I and

j ∈ Ji .

Vi,j

��vv
Vi,j // Ui

// U

By construction, JK = J .

2.3 Sheafification

Suppose given a ring R.

Suppose given a site (S , J).

In this section, we construct the sheafification functor, which is left-adjoint to the inclusion

functor from the category of (R-)sheaves into the category of (R-)presheaves on S . We will

use this adjunction to prove that the category of R-sheaves is abelian.
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2.3.1 Construction of the sheafification functor

We will proceed in two steps. At first, we construct a functor that maps a presheaf P to a

separated presheaf P+. Then we show that P++ is a sheaf.

Remark 2.3.1. Suppose given an object A ∈ Ob S .

We consider the set of coverings JA , ordered by inclusion, as a poset category. So Jop
A is a

poset category as well. Note that for S, S ′ ∈ JA , there exists a morphism
(
S //S ′

)op
in Jop

A if

and only if S ⊆ S ′.

The category Jop
A is filtering, as we show using lemma 1.4.3:

• The category Jop
A is non-empty since max(A) ∈ JA by (G1).

• For S, S ′ ∈ JA , we have S ∩ S ′ ∈ JA by lemma 2.2.14. So (F1) holds since S ∩ S ′ ⊆ S

and S ∩ S ′ ⊆ S ′.

Lemma/Definition 2.3.2. Suppose given an object A ∈ Ob S .

(a) Suppose given a presheaf P on S , i.e. P ∈ Ob Ŝ .

The functor PA : Jop
A → Set shall be defined as follows.

– For S ∈ JA , let PA(S) := HomŜ (FS, P ).

– For S //S ′ in JA , let PA
((
S //S ′

)op)
: HomŜ (FS′ , P )→ HomŜ (FS, P ) : ξ 7→ ιS

′
S ξ.

So PA is a system over Jop
A in Set. Let P+(A) := lim−→PA ∈ Ob(Set), cf. definition 1.4.7.(a).

(b) Suppose given an R-presheaf P on S , i.e. P ∈ Ob(RŜ ).

The functor PA : Jop
A → Mod-R shall be defined as follows.

– For S ∈ JA , let PA(S) := HomŜ (FS, RΥ◦P ), equipped with the following R-module

structure.

Suppose given ξ, ξ′ ∈ HomŜ (FS, RΥ ◦P ), r ∈ R and B ∈ Ob S . To define ξ+ ξ′ and

ξr, we use the R-module structure on HomSet(FS(B), (RΥ◦P )(B)), cf. remark 1.1.13.

Let (ξ + ξ′)B := ξB + ξ′B and (ξr)B := ξB r = ξB · r.

– For S //S ′ in JA , let

PA
((
S //S ′

)op)
: HomŜ (FS′ , RΥ ◦ P )→ HomŜ (FS, RΥ ◦ P ) : ξ 7→ ιS

′

S ξ.

So PA is a system over Jop
A in Mod-R and we have RΥ ◦ PA = (RΥ ◦ P )A by construction.

Let P+(A) := lim−→PA ∈ Ob(Mod-R), cf. definition 1.4.7.(b).

We have RΥ(P+(A)) = RΥ(lim−→PA) = lim−→(RΥ ◦ PA) = lim−→(RΥ ◦ P )A = (RΥ ◦ P )+(A) by

loc. cit.
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Proof. Ad (a).

We show that PA is a well-defined functor. Suppose given S //S ′ //S ′′ in JA .

For ξ ∈ HomŜ (FS, P ), we have (ξ)PA
((
S //S

)op)
= ιSS ξ = ξ and thus

PA
((
S //S

)op)
= 1HomŜ (FS ,P ) .

For ξ ∈ HomŜ (FS′′ , P ), we have

(ξ)PA
((
S ′ //S ′′

)op(
S //S ′

)op)
= (ξ)PA

((
S //S ′′

)op)
= ιS

′′

S ξ

= ιS
′

S ι
S′′

S′ ξ

= (ιS
′′

S′ ξ)PA
((
S //S ′

)op)
= (ξ)PA

((
S ′ //S ′′

)op)
PA
((
S //S ′

)op)
,

so PA
((
S ′ //S ′′

)op (
S //S ′

)op)
= PA

((
S ′ //S ′′

)op)
PA
((
S //S ′

)op)
.

Ad (b).

Suppose given S ∈ JA .

Suppose given ξ, ξ′ ∈ PA(S) = HomŜ (FS, RΥ ◦ P ) and r ∈ R.

We show that ξ + ξ′ and ξr are elements of PA(S), i.e. that they are natural.

For C
f
//B in S , we have

(ξ + ξ′)B · (RΥ ◦ P )(f op) = (ξB + ξ′B) · (RΥ ◦ P )(f op)

= ξB · (RΥ ◦ P )(f op) + ξ′B · (RΥ ◦ P )(f op)

= FS(f op) · ξC + FS(f op) · ξ′C
= FS(f op) · (ξC + ξ′C)

= FS(f op) · (ξ + ξ′)C

and

(ξr)B · (RΥ ◦ P )(f op) = (ξB r) · (RΥ ◦ P )(f op)

= (ξB · (RΥ ◦ P )(f op)) · r
= (FS(f op) · ξC) · r
= FS(f op) · (ξC · r)
= FS(f op) · (ξr)C ,

cf. remark 1.1.13.

We verify the axioms for R-modules for PA(S).
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The zero element in PA(S) is

0 = (0B)B∈Ob S : FS ⇒ RΥ ◦ P

with 0B = 0HomSet(FS(B),(RΥ◦P )(B)) for B ∈ Ob S . It is natural since for C
f
//B in S , we have

0B · (RΥ ◦ P )(f op) = 0 = FS(f op) · 0C .

Suppose given ξ, ξ′, ξ′′ ∈ PA(S), B ∈ Ob S and r, r′ ∈ R.

We have

(ξ + ξ′)B = ξB + ξ′B = ξ′B + ξB = (ξ′ + ξ)B ,

(ξ + 0)B = ξB + 0B = ξB ,

(ξ + ξ · (−1))B = ξB + ξB · (−1) = 0B

and

((ξ + ξ′) + ξ′′)B = (ξ + ξ′)B + ξ′′B = ξB + ξ′B + ξ′′B = ξB + (ξ′ + ξ′′)B = (ξ + (ξ′ + ξ′′))B .

So ξ + ξ′ = ξ′ + ξ, ξ + 0 = ξ, ξ + ξ · (−1) = 0 and (ξ + ξ′) + ξ′′ = ξ + (ξ′ + ξ′′).

We have

(ξ · 1)B = ξB · 1 = ξB ,

(ξ(rr′))B = ξB · (rr′) = (ξB · r)r′ = (ξr)B · r′ = ((ξr)r′)B ,

((ξ + ξ′)r)B = (ξ + ξ′)B · r = (ξB + ξ′B)r = ξB · r + ξ′B · r = (ξr)B + (ξ′r)B = (ξr + ξ′r)B

and

(ξ(r + r′))B = ξB · (r + r′) = ξB · r + ξB · r′ = (ξr + ξr′)B .

So ξ · 1 = ξ, ξ(rr′) = (ξr)r′, (ξ + ξ′)r = ξr + ξ′r and ξ(r + r′) = ξr + ξr′.

Suppose given S //S ′ in JA . We show that PA((S //S ′ )op) is R-linear.

Suppose given ξ, ξ′ ∈ PA(S ′) and r, r′ ∈ R.

We have

(ξr + ξ′r′)PA((S //S ′ )op) = ιS
′

S (ξr + ξ′r′) = ιS
′

S ξ · r + ιS
′

S ξ
′ · r′

= (ξ)PA((S //S ′ )op) · r + (ξ′)PA((S //S ′ )op) · r′,

cf. remark 1.1.13.

The same calculation as in (a) now shows that PA is a functor.
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Remark 2.3.3.

(a) Suppose given an object A ∈ Ob S and a presheaf P on S . The set P+(A) = lim−→PA
consists of elements of the form [ξ, S], where S ∈ JA and ξ ∈ HomŜ (FS, P ).

For [ξ, S], [ξ′, S ′] ∈ P+(A), we have [ξ, S] = [ξ′, S ′] if and only if there exists T ∈ JA with

T ⊆ S ∩ S ′ such that ιST ξ = ιS
′

T ξ
′.

Cf. definitions 2.3.2.(a) and 1.4.7.(a).

(b) Suppose given an object A ∈ Ob S and an R-presheaf P on S . The set P+(A) = lim−→PA
consists of elements of the form [ξ, S], where S ∈ JA and ξ ∈ HomŜ (FS, RΥ ◦ P ).

For [ξ, S], [ξ′, S ′] ∈ P+(A), we have [ξ, S] = [ξ′, S ′] if and only if there exists T ∈ JA with

T ⊆ S ∩ S ′ such that ιST ξ = ιS
′

T ξ
′. Moreover, for T ∈ JA with T ⊆ S ∩ S ′, we have

[ξ, S] + [ξ′, S ′] = [ιST ξ + ιS
′

T ξ
′, T ]. For r ∈ R, we have [ξ, S] · r = [ξr, S].

Cf. definitions 2.3.2.(b) and 1.4.7.(b).

Lemma/Definition 2.3.4. Suppose given a presheaf P on S . Suppose given B
f
//A in S ,

a covering S ∈ JA and a matching family ξ ∈ HomŜ (FS, P ) for P on S.

Let ξfC : Ff∗(S)(C)→ P (C) : h 7→ (h)ξfC := (hf)ξC for C ∈ Ob S .

We obtain a matching family ξf := (ξfC)C∈Ob S : Ff∗(S) ⇒ P for P on f ∗(S).

Proof. We need to show that ξf is natural.

Suppose given D
g
//C in S and h ∈ Ff∗(S)(C) ⊆ HomS (C,B).

We have

(h)ξfC P (gop) = (hf)ξC P (gop) = (hf) FS(gop) ξD = (ghf)ξD = (gh)ξfD

= (h) Ff∗(S)(g
op) ξfD ,

so ξfC P (gop) = Ff∗(S)(g
op) ξfD .

Ff∗(S)(C)
ξfC //

Ff∗(S)(g
op)

��

P (C)

P (gop)

��

Ff∗(S)(D)
ξfD // P (D)

Remark 2.3.5. Suppose given a presheaf P on S . Suppose given C
g
//B

f
//A in S , a

covering S ∈ JA and a matching family ξ ∈ HomŜ (FS, P ) for P on S.

We have ξ(gf) =
(
ξf
)g

as matching families for P on (gf)∗(S) = g∗(f ∗(S)), cf. remark 2.1.5.

Proof. For D ∈ Ob S and h ∈ F(gf)∗(S)(D), we have

(h)ξ
(gf)
D = (hgf)ξD = (hg)ξfD = (h)(ξf )gD .
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Remark 2.3.6. Suppose given P
α //Q in Ŝ . So we have presheaves P and Q on S and a

transformation α : P ⇒ Q.

Suppose given B
f
//A in S , a covering S ∈ JA and a matching family ξ ∈ HomŜ (FS, P ) for

P on S.

We have ξfα = (ξα)f as matching families for Q on f ∗(S).

Proof. For C ∈ Ob S and h ∈ Ff∗(S)(C), we have

(h)(ξfα)C = (h)ξfC αC = (hf)ξC αC = (hf)(ξα)C = (h)(ξα)fC .

Lemma/Definition 2.3.7. Suppose given a morphism
(
B

f
//A
)
∈ Mor S .

(a) Suppose given a presheaf P on S . Let

P+(f op) : P+(A)→ P+(B) : [ξ, S] 7→ [ξf , f ∗(S)].

This is a well-defined map.

(b) Suppose given an R-presheaf P on S . Let

P+(f op) : P+(A)→ P+(B) : [ξ, S] 7→ [ξf , f ∗(S)].

This is a well-defined R-linear map.

We have RΥ(P+(f op)) = (RΥ ◦ P )+(f op) by construction, cf. definition 2.3.2.

Proof. Ad (a).

Suppose given [ξ, S], [ξ′, S ′] ∈ P+(A) with [ξ, S] = [ξ′, S ′].

So there exists T ∈ JA with T ⊆ S ∩ S ′ such that ιST ξ = ιS
′

T ξ
′.

Thus for C ∈ Ob S and g ∈ FT (C), we have (g)ξC = (g)ξ′C as elements of P (C).

We have to show that [ξf , f ∗(S)] = [ξ′f , f ∗(S ′)].

Note that f ∗(T ) ∈ JB with f ∗(T ) ⊆ f ∗(S) ∩ f ∗(S ′) by (G2) and remark 2.1.4.

It suffices to show that ι
f∗(S)
f∗(T ) ξ

f = ι
f∗(S′)
f∗(T ) ξ

′f : Ff∗(T ) ⇒ P .

Suppose given C ∈ Ob S and h ∈ Ff∗(T )(C). So
(
C

h //B
f
//A
)
∈ T .

We have

(h)
(
ι
f∗(S)
f∗(T )

)
C
ξfC = (hf)ξC = (hf)(ιST ξ)C = (hf)(ιS

′

T ξ
′)C = (hf)ξ′C = (h)

(
ι
f∗(S′)
f∗(T )

)
C
ξ′fC .

Thus
(
ι
f∗(S)
f∗(T ) ξ

f
)
C

=
(
ι
f∗(S′)
f∗(T ) ξ

′f)
C

.

Ad (b).



65

The same calculation as in (a) shows that P+(f op) is well-defined. We show that it is R-linear.

Suppose given r, r′ ∈ R and [ξ, S], [ξ′, S ′] ∈ P+(A). Write T := S ∩ S ′ ∈ JA , cf. lemma 2.2.14.

Note that f ∗(T ) ∈ JB with f ∗(T ) ⊆ f ∗(S) ∩ f ∗(S ′) by (G2) and remark 2.1.4.

We have (
[ξ, S] · r + [ξ′, S ′] · r′

)
P+(f op) =

(
[ξr, S] + [ξ′r′, S ′]

)
P+(f op)

=
(
[ιST (ξr) + ιS

′

T (ξ′r′), T ]
)
P+(f op)

= [(ιST (ξr) + ιS
′

T (ξ′r′))f , f ∗(T )]

and

([ξ, S])P+(f op) · r + ([ξ′, S ′])P+(f op) · r′ = [ξf , f ∗(S)] · r + [ξ′f , f ∗(S ′)] · r′

= [ξfr, f ∗(S)] + [ξ′fr′, f ∗(S ′)]

= [ιST (ξfr) + ιS
′

T (ξ′fr′), f ∗(T )].

So it suffices to show that (ιST (ξr) + ιS
′

T (ξ′r′))f = ιST (ξfr) + ιS
′

T (ξ′fr′).

Suppose given C ∈ Ob S and h ∈ Ff∗(T )(C).

We have

(h)(ιST (ξr) + ιS
′

T (ξ′r′))fC = (hf)(ιST (ξr) + ιS
′

T (ξ′r′))C

= (hf)ξC · r + (hf)ξ′C · r′

= (h)ξfC · r + (h)ξ′fC · r
′

= (h)(ξfC r) + (h)(ξ′fC r
′)

= (h)(ιST (ξfr) + ιS
′

T (ξ′fr′))C .

Lemma/Definition 2.3.8.

(a) Suppose given a presheaf P on S . The constructions given in the definitions 2.3.2.(a)

and 2.3.7.(a) yield a presheaf P+ on S .

(b) Suppose given an R-presheaf P on S . The constructions given in the definitions 2.3.2.(b)

and 2.3.7.(b) yield an R-presheaf on S .

We have RΥS (P+) = RΥ ◦ P+ = (RΥ ◦ P )+ = (RΥS (P ))+ by construction, cf. defini-

tion 2.2.9.

Proof. Ad (a). Suppose given P ∈ Ob Ŝ . Suppose given C
g
//B

f
//A in S . Suppose given

[ξ, S] ∈ P+(A).

We have

[ξ, S]P+(1op
A ) = [ξ1A , (1A)∗(S)] = [ξ, S] = [ξ, S] 1P+(A)
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and

[ξ, S]P+(f op · gop) = [ξ, S]P+((gf)op) = [ξ(gf), (gf)∗(S)]
R2.3.5

= [(ξf )g, g∗(f ∗(S))]

= [ξf , f ∗(S)]P+(gop)

= [ξ, S]P+(f op) · P+(gop).

So P+(1A) = 1P+(A) and P+(f op · gop) = P+(f op) · P+(gop).

Ad (b). The same calculation as in (a) shows that P+ is a functor.

Lemma/Definition 2.3.9.

(a) Suppose given P α //Q in Ŝ . So we have presheaves P and Q on S and a transformation

α : P ⇒ Q.

For A ∈ Ob S , let α+
A : P+(A)→ Q+(A) : [ξ, S] 7→ [ξ, S]α+

A := [ξα, S].

This is a well-defined map.

We obtain a transformation α+ :=
(
α+
A

)
A∈Ob S

: P+ ⇒ Q+.

(b) Suppose given P
α //Q in RŜ . So we have R-presheaves P and Q on S and a transfor-

mation α : P ⇒ Q.

For A ∈ Ob S , let α+
A : P+(A)→ Q+(A) : [ξ, S] 7→ [ξ, S]α+

A :=
[
ξ · RΥS (α), S

]
,

where RΥS (α) = RΥ ? α =
(
RΥ(αA)

)
A∈Ob S

∈ HomŜ (RΥ ◦ P, RΥ ◦Q), cf. definition 2.2.9.

This is a well-defined R-linear map.

We obtain a transformation α+ :=
(
α+
A

)
A∈Ob S

: P+ ⇒ Q+.

We have RΥS (α+) = (RΥS (α))+ by construction, cf. definition 2.3.8 and lemma 2.3.7.(b).

Proof. Ad (a). We want to show that α+
A is well-defined.

Suppose given [ξ, S], [ξ′, S ′] ∈ P+(A) with [ξ, S] = [ξ′, S ′].

So there exists T ∈ JA with T ⊆ S ∩ S ′ such that ιST ξ = ιS
′

T ξ
′.

We have ιST (ξα) = ιST ξα = ιS
′

T ξ
′α = ιS

′
T (ξ′α), so [ξα, S] = [ξ′α, S ′].

We want to show that α+ is natural.

Suppose given B
f
//A in S . For [ξ, S] ∈ P+(A), we have

[ξ, S]α+
A ·Q

+(f op) = [ξα, S]Q+(f op) = [(ξα)f , f ∗(S)]
R2.3.6

= [ξfα, f ∗(S)] = [ξf , f ∗(S)]α+
B

= [ξ, S]P+(f op) · α+
B .

So α+
A ·Q+(f op) = P+(f op) · α+

B .

P+(A)
α+
A //

P+(fop)
��

Q+(A)

Q+(fop)
��

P+(B)
α+
B // Q+(B)
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Ad (b).

The same calculation as in (a) shows that α+
A is a well-defined map. We show that it is R-linear.

Suppose given [ξ, S], [ξ′, S ′] ∈ P+(A) and r, r′ ∈ R. Write T := S ∩ S ′ ∈ JA , cf. lemma 2.2.14.

Write α̂ := RΥS (α). We have(
[ξ, S] · r + [ξ′, S ′] · r′

)
α+
A = [ιST ξr + ιS

′

T ξ
′r′, T ]α+

A

= [(ιST ξr + ιS
′

T ξ
′r′)α̂, T ]

= [ιST ξα̂r + ιS
′

T ξ
′α̂r′, T ]

= [ξα̂, S] · r + [ξ′α̂, S ′] · r′

= [ξ, S]α+
A · r + [ξ, S ′]α+

A · r
′.

FT
ιST // FS

ξ
//
RΥ ◦ P α̂ //

RΥ ◦Q

Now the same calculation as in (a) shows that α+ is natural.

Lemma/Definition 2.3.10.

(a) The functor (−)+ : Ŝ → Ŝ shall be defined as follows.

– For P ∈ Ob Ŝ , let (−)+(P ) := P+, cf. definition 2.3.8.(a).

– For α ∈ Mor Ŝ , let (−)+(α) := α+, cf. definition 2.3.9.(a).

(b) The functor (−)+ : RŜ → RŜ shall be defined as follows.

– For P ∈ Ob(RŜ ), let (−)+(P ) := P+, cf. definition 2.3.8.(b).

– For α ∈ Mor(RŜ ), let (−)+(α) := α+, cf. definition 2.3.9.(b).

We do not distinguish between (−)+ : Ŝ → Ŝ and (−)+ : RŜ → RŜ in notation.

We have (−)+ ◦ RΥS = RΥS ◦ (−)+, cf. definitions 2.3.8 and 2.3.9.

Moreover, the functor (−)+ : RŜ → RŜ is additive.

RŜ

RΥS
��

(−)+

//
RŜ

RΥS
��

Ŝ
(−)+

// Ŝ

Proof. Ad (a). Suppose given P
α //Q

β
//N in Ŝ .

For A ∈ Ob S and [ξ, S] ∈ P+(A), we have

[ξ, S]
(
1+
P

)
A

= [ξ · 1P , S] = [ξ, S] = [ξ, S]
(
1P+

)
A
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and

[ξ, S] (α+β+)A = [ξ, S]α+
A β

+
A = [ξα, S] β+

A = [ξαβ, S] = [ξ, S] (αβ)+
A .

So 1+
P = 1P+ and (αβ)+ = α+β+.

Ad (b). The same calculation as in (a) shows that (−)+ is a functor.

We show that it is additive. Suppose given P
α //

β
//Q in RŜ . It suffices to show that (α+β)+ =

α+ + β+.

Suppose given A ∈ Ob S and [ξ, S] ∈ P+(A).

We have

[ξ, S](α + β)+
A = [ξ · RΥS (α + β), S]

and

[ξ, S](α+ + β+)A = [ξ · RΥS (α), S] + [ξ · RΥS (β), S] = [ξ · RΥS (α) + ξ · RΥS (β), S].

So it remains to show that ξ · RΥS (α + β) = ξ · RΥS (α) + ξ · RΥS (β).

Suppose given
(
B

f
//A
)
∈ S. We have

(f)
(
ξ · RΥS (α + β)

)
B

= (f)ξB ·
(
RΥS (α + β)

)
B

= (f)ξB · (α + β)B

= (f)ξB · (αB + βB)

= (f)ξB · αB + (f)ξB · βB
= (f)

(
ξB · RΥS (α)B + ξB · RΥS (β)B

)
= (f)

(
ξ · RΥS (α) + ξ · RΥS (β)

)
B
.

Proposition 2.3.11.

(a) Suppose given a presheaf P on S . The presheaf P+ is separated, cf. definition 2.2.7.(a).

(b) Suppose given an R-presheaf P on S . The R-presheaf P+ is separated, cf. defini-

tion 2.2.7.(b).

Proof. Ad (a).

Suppose given an object A ∈ Ob S , a covering S ∈ JA and a matching family ξ : FS ⇒ P+.

Suppose given amalgamations [ζ, U ], [η, V ] ∈ P+(A) of ξ, cf. definition 2.2.4, remark 2.2.6

and remark 2.3.3.(a). So U, V ∈ JA , ζ : FU ⇒ P and η : FV ⇒ P . We have to show that

[ζ, U ] = [η, V ].
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For
(
B

f
//A
)
∈ S, we have

[ζf , f ∗(U)] = [ζ, U ]P+(f op) = (f)ξB = [η, V ]P+(f op) = [ηf , f ∗(V )]

since [ζ, U ] and [η, V ] are amalgamations of ξ.

So we may choose W f ∈ JB with W f ⊆ f ∗(U) ∩ f ∗(V ) such that ι
f∗(U)

W f ζf = ι
f∗(V )

W f ηf .

We have T := {gf : f ∈ S, g ∈ W f} ∈ JA , cf. lemma 2.2.16. Note that T ⊆ U ∩ V .

Now it suffices to show that ιUT ζ = ιVT η.

Suppose given C
g
//B

f
//A in S with f ∈ S and g ∈ W f , i.e. gf ∈ T .

We obtain

(gf)ζC = (g)ζfC = (g)
(
ι
f∗(U)

W f

)
C
ζfC = (g)

(
ι
f∗(V )

W f

)
C
ηfC = (g)ηfC = (gf)ηC .

Thus ιUT ζ = ιVT η.

Ad (b).

It suffices to show that RΥ◦P+ = (RΥ◦P )+ is separated, cf. definition 2.3.8 and remark 2.2.10.

The result now follows from (a).

Proposition 2.3.12.

(a) Suppose given a separated presheaf P on S . The presheaf P+ is a sheaf, cf. defini-

tion 2.2.8.(a).

(b) Suppose given a separated R-presheaf P on S . The R-presheaf P+ is an R-sheaf, cf.

definition 2.2.8.(b).

Proof. Ad (a).

Suppose given an object A ∈ Ob S , a covering S ∈ JA and a matching family ξ : FS ⇒ P+.

Write (f)ξB =: [ξf , Tf ] for
(
B

f
//A
)
∈ S. So Tf ∈ JB and ξf : FTf ⇒ P .

Suppose given C
g
//B in S .

We observe that

[(ξf )
g, g∗(Tf )] = [ξf , Tf ]P

+(gop) = (f)ξB P
+(gop) = (f) FS(gop) ξC = (gf)ξC = [ξgf , Tgf ]

in P+(C) since ξ is a transformation.

FS(B)
ξB //

FS(gop)

��

P+(B)

P+(gop)
��

FS(C)
ξC // P+(C)
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So we may choose Qg,f ∈ JC with Qg,f ⊆ g∗(Tf ) ∩ Tgf such that ι
g∗(Tf )
Qg,f

(ξf )
g = ι

Tgf
Qg,f

ξgf , cf.

remark 2.3.3.(a).

The presheaf P+ is separated by proposition 2.3.11.(a). Thus it suffices to show that there

exists an amalgamation [ζ, U ] ∈ P+(A) of ξ, where U ∈ JA and ζ : FU ⇒ P .

Let U := {gf : f ∈ S, g ∈ Tf}. We have U ∈ JA by lemma 2.2.16.

For C ∈ Ob S , we define ζC : FU(C)→ P (C) as follows.

For C
g
//B

f
//A in S with f ∈ S and g ∈ Tf , let (gf)ζC := (g)(ξf )C ∈ P (C).

We want to show that ζC is a well-defined map. Suppose given C
g′
//B′

f ′
//A in S with

f ′ ∈ S, g′ ∈ Tf ′ and gf = g′f ′ =: u.

We have Q := Qg,f ∩Qg′,f ′ ∈ JC by lemma 2.2.14.

So we have the following diagram of inclusions in JA .

g∗(Tf ) ∩ Tu g′∗(Tf ′) ∩ Tu

Qg,f

OO

Qg′,f ′

OO

Q

99ee

We claim that (g)(ξf )C ∈ P (C) and (g′)(ξf ′)C ∈ P (C) are amalgamations of the matching

family ιTuQ ξu : FQ ⇒ P .

Suppose given
(
D h //C

)
∈ Q.

B
f

  

D h // C

g′   

g
>>

u // A

B′
f ′

>>

The naturality of ξf yields

(g)(ξf )C P (hop) = (g) FTf (h
op) (ξf )D = (hg)(ξf )D = (h)((ξf )

g)D = (h)
(
ι
g∗(Tf )
Qg,f

)
D

(
(ξf )

g
)
D

= (h)
(
ι
Tgf
Qg,f

)
D

(ξgf )D = (h)
(
ιTuQ
)
D

(ξu)D = (h)
(
ιTuQ ξu

)
D
.
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FTf (C)

FTf (hop)

��

(ξf )C
// P (C)

P (hop)

��

FTf (D)
(ξf )D

// P (D)

Similarly, the naturality of ξf ′ yields

(g′)(ξf ′)C P (hop) = (g′) FTf ′ (h
op) (ξf ′)D = (hg′)(ξf ′)D = (h)((ξf ′)

g′)D

= (h)
(
ι
g′∗(Tf ′ )

Qg′,f ′

)
D

(
(ξf ′)

g′
)
D

= (h)
(
ι
Tg′f ′

Qg′,f ′

)
D

(ξg′f ′)D = (h)
(
ιTuQ
)
D

(ξu)D

= (h)
(
ιTuQ ξu

)
D
.

This proves the claim.

So (g)(ξf )C = (g′)(ξf ′)C since P is separated.

We need to show that ζ = (ζC)C∈Ob S is natural.

Suppose given D h //C in S .

Suppose given C
g
//B

f
//A in S with f ∈ S and g ∈ Tf , i.e. gf ∈ U .

We have

(gf)ζC P (hop) = (g)(ξf )C P (hop) = (g) FTf (h
op) (ξf )D = (hg)(ξf )D = (hgf)ζD

= (gf) FU(hop) ζD .

FU(C)

FU (hop)

��

ζC // P (C)

P (hop)

��

FU(D)
ζD // P (D)

Suppose given
(
B

f
//A
)
∈ S.

We verify that [ζ, U ]P+(f op) = (f)ξB, cf. remark 2.2.6.

We have Tf ⊆ f ∗(U) since g ∈ Tf implies gf ∈ U , i.e. g ∈ f ∗(U). Moreover, ι
f∗(U)
Tf

ζf = ξf since

for
(
C

g
//B
)
∈ Tf , we have

(g)(ζf )C = (gf)ζC = (g)(ξf )C .

We conclude that

[ζ, U ]P+(f op) = [ζf , f ∗(U)] = [ξf , Tf ] = (f)ξB .

Ad (b).

It suffices to show that RΥ◦P+ = (RΥ◦P )+ is an R-sheaf, cf. definition 2.3.8 and remark 2.2.10.

The result now follows from (a) since RΥ ◦ P is separated by loc. cit.
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Definition 2.3.13.

(a) Recall that Ŝ is the category of presheaves on S , S̃ is the category of sheaves on S

and E = ES : S̃ → Ŝ is the inclusion functor. Cf. definitions 2.2.2.(a) and 2.2.8.(a).

Propositions 2.3.11.(a) and 2.3.12.(a) show that we may define the sheafification functor

(−)∼ as follows.

Let

(−)∼ :=
(
(−)+ ◦ (−)+

)∣∣S̃ : Ŝ → S̃ .

So E ◦(−)∼ = (−)++.

Suppose given P α //Q in Ŝ .

We write
(
P̃

α̃ //Q̃
)

:= (−)∼
(
P

α //Q
)

=
(
P++ α++

//Q++
)
.

(b) Recall that RŜ is the category of R-presheaves on S , RS̃ is the category of R-sheaves

on S and E = RES : RS̃ → RŜ is the inclusion functor. Cf. definitions 2.2.2.(b) and

2.2.8.(b).

Propositions 2.3.11.(b) and 2.3.12.(b) show that we may define the sheafification functor

(−)∼ as follows.

Let

(−)∼ :=
(
(−)+ ◦ (−)+

)∣∣RS̃
: RŜ → RS̃ .

So E ◦(−)∼ = (−)++.

We write
(
P̃

α̃ //Q̃
)

:= (−)∼
(
P

α //Q
)

=
(
P++ α++

//Q++
)
.

Note that RΥS maps R-sheaves to sheaves by remark 2.2.10. Thus we may restrict

RΥS |S̃
RS̃

: RS̃ → S̃ .

We have RΥS |S̃
RS̃
◦ (−)∼ = (−)∼ ◦ RΥS , cf. definition 2.3.10.(b).

RS̃ E //

RΥS |S̃
RS̃
��

RŜ
(−)∼

//

RΥS
��

RS̃

RΥS |S̃
RS̃

��

S̃ E // Ŝ
(−)∼

// S̃

2.3.2 Adjunction

2.3.2.1 Unit

Definition 2.3.14. Suppose given a presheaf P ∈ Ob Ŝ , an object A ∈ Ob S and an element

x ∈ P (A).
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Let βx := (x)γ−1
P,A : Fmax(A) ⇒ P , cf. lemma 1.2.2.

For an object B ∈ Ob S , we have βxB : HomS (B,A)→ P (B) : f 7→ (f)βxB = (x)P (f op).

Note that x is an amalgamation of βx, cf. remark 2.2.6. We will use this fact in lemma 2.3.27.

Remark 2.3.15. Suppose given an R-presheaf P ∈ Ob(RŜ ), an object A ∈ Ob S and an

element x ∈ P (A). Since x ∈ (RΥ ◦ P )(A), we have βx : Fmax(A) ⇒ RΥ ◦ P .

For x, x′ ∈ P (A) and r, r′ ∈ R, we have βx · r + βx
′ · r′ = βxr+x

′r′ .

Proof. For B
f
//A in S , we have

(f) (βx · r + βx
′ · r′)B = (f) βxB · r + (f) βx

′ · r′ = (x)P (f op) · r + (x′)P (f op) · r′

= (xr + x′r′)P (f op) = (f) βxr+x
′r′

B .

Lemma/Definition 2.3.16.

(a) Suppose given a presheaf P ∈ Ob Ŝ .

For an object A ∈ Ob S , let (eP )A : P (A) → P+(A) : x 7→ (x) (eP )A := [βx,max(A)], cf.

remark 2.3.3.(a).

This yields a morphism of presheaves eP :=
(
(eP )A

)
A∈Ob S

: P ⇒ P+.

(b) Suppose given a R-presheaf P ∈ Ob(RŜ ).

For an object A ∈ Ob S , let (eP )A : P (A) → P+(A) : x 7→ (x) (eP )A := [βx,max(A)], cf.

remark 2.3.3.(b).

This yields a morphism of R-presheaves eP :=
(
(eP )A

)
A∈Ob S

: P ⇒ P+.

We do not distinguish between the morphism eP of presheaves and the morphism eP of R-

presheaves in notation.

Proof. Ad (a). Suppose given B
f
//A in S .

We want to show that (eP )A P
+(f op) = P (f op) (eP )B .

Note that f ∗(max(A)) = max(B).

For x ∈ P (A), we have

(x) (eP )A P
+(f op) = [βx,max(A)]P+(f op) =

[
(βx)f , f ∗(max(A))

]
=
[
(βx)f ,max(B)

]
and

(x)P (f op) (eP )B =
[
β(x)P (fop),max(B)

]
.

So it suffices to show that (βx)f = β(x)P (fop) : Fmax(B) ⇒ P .
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Suppose given C
g
//B in S .

We have

(g)
(
(βx)f

)
C

= (gf)βxC = (x)P ((gf)op) = (x)P (f op)P (gop) = (g)
(
β(x)P (fop)

)
C
.

We conclude that eP is natural.

P (A)
(eP )A

//

P (fop)

��

P+(A)

P+(fop)
��

P (B)
(eP )B

// P+(B)

Ad (b). We show that (eP )A is R-linear.

Suppose given x, x′ ∈ P (A) and r, r′ ∈ R.

We have

(x) (eP )A · r + (x′) (eP )A · r′ = [βx,max(A)] · r + [βx
′
,max(A)] · r′ = [βx · r + βx

′ · r′,max(A)]

and

(xr + x′r′) (eP )A = [βxr+x
′r′ ,max(A)]

By remark 2.3.15, we have βx · r + βx
′ · r′ = βxr+x

′r′ .

Thus [βx · r + βx
′ · r′,max(A)] = [βxr+x

′r′ ,max(A)].

The same calculation as in (a) now shows that eP is natural.

Lemma/Definition 2.3.17.

(a) The tuple e := (eP )P∈Ob Ŝ is a transformation e : 1Ŝ ⇒ (−)+.

(b) The tuple e := (eP )P∈Ob(RŜ ) is a transformation e : 1
RŜ ⇒ (−)+.

We do not distinguish between e: 1Ŝ ⇒ (−)+ and e: 1
RŜ ⇒ (−)+ in notation.

Proof. Ad (a). Suppose given P α //Q in Ŝ .

For A ∈ Ob S and x ∈ P (A), we have

(x) (eP α
+)A = (x) (eP )A α

+
A = [βx,max(A)]α+

A = [βxα,max(A)]

and

(x) (α eQ)A = (x)αA (eQ)A =
[
β(x)αA ,max(A)

]
.
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So it suffices to show that βxα = β(x)αA : Fmax(A) ⇒ Q.

For B
f
//A in S , we have

(f) (βxα)B = (f) βxB αB = (x)P (f op)αB = (x)αAQ(f op) = (f) β
(x)αA
B .

P
eP //

α

��

P+

α+

��

Q
eQ

// Q+

Ad (b). The same calculation as in (a) shows that e is natural.

Remark 2.3.18.

(a) For a presheaf P ∈ Ob Ŝ , we have (eP )+ = eP+ : P+ ⇒ P++.

(b) For an R-presheaf P ∈ Ob(RŜ ), we have (eP )+ = eP+ : P+ ⇒ P++.

Moreover, eP+ is a monomorphism in RŜ .

Proof. Ad (a). Suppose given A ∈ Ob S and [ξ, S] ∈ P+(A).

We have [ξ, S] (eP )+
A = [ξ eP , S] and [ξ, S] (eP+)A = [β[ξ,S],max(A)].

So it suffices to show that ξ eP = ι
max(A)
S β[ξ,S] : FS ⇒ P+.

For
(
B

f
//A
)
∈ S, we have

(f) (ξ eP )B = (f) ξB (eP )B = [β(f)ξB ,max(B)]

and

(f)
(
ι
max(A)
S β[ξ,S]

)
B

= (f)
(
β[ξ,S]

)
B

= [ξ, S]P+(f op) = [ξf , f ∗(S)].

So it suffices to show that ι
max(B)
f∗(S) β(f)ξB = ξf : Ff∗(S) ⇒ P .

For
(
C

g
//B
)
∈ f ∗(S), we have

(g) (ι
max(B)
f∗(S) β(f)ξB)C = (g) (β(f)ξB)C = (f) ξB P (gop) = (f) FS(gop) ξC = (gf) ξC = (g) (ξf )C .

Ad (b). The same calculation as in (a) shows that (eP )+ = eP+ .

To show that eP+ is a monomorphism in RŜ , it suffices to show that (eP+)A : P+(A)→ P++(A)

is a monomorphism in Mod-R for A ∈ Ob S by remark 1.1.9.(b).

Suppose given A ∈ Ob S and [ξ, S] ∈ P+(A) with [ξ, S] (eP+)A = 0. We have to show that

[ξ, S] = 0.
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Since [β[ξ,S],max(A)] = [ξ, S] (eP+)A = 0, we may choose T ∈ JA with ιT β
[ξ,S] = 0.

So for
(
B

f
//A
)
∈ T , we have [ξf , f ∗(S)] = [ξ, S]P+(f op) = (f)β

[ξ,S]
B = 0. Therefore we may

choose Uf ∈ JB with Uf ⊆ f ∗(S) such that ι
f∗(S)
Uf

ξf = 0.

By lemma 2.2.16, we have V := {gf : f ∈ T, g ∈ Uf} ∈ JA . Moreover V ⊆ S since Uf ⊆ f ∗(S)

for f ∈ T .

For
(
B

f
//A
)
∈ T and

(
C

g
//B
)
∈ Uf , we have (gf)ξC = (g)ξfB = 0. We conclude that

ιSV ξ = 0 and therefore [ξ, S] = 0. So (eP+)A is a monomorphism in Mod-R.

Corollary 2.3.19. Suppose given an R-presheaf P : S op → Mod-R.

We have P+ ∼= 0 in RÂ if and only if P̃ ∼= 0 in RÂ.

Proof. Suppose that P+ ∼= 0 in RÂ. Then P̃ = P++ ∼= 0 in RÂ since (−)+ : RŜ → RŜ is

additive, cf. definition 2.3.10.(b).

Conversely, suppose that P̃ ∼= 0 in RÂ. Since P+
eP+

//P̃ is a monomorphism in RŜ by

remark 2.3.18.(b), we conclude that P+ ∼= 0 in RÂ.

Remark 2.3.20.

(a) By convention 24, we have

e ? e = (e ?1Ŝ ) · ((−)+ ? e) = e ·((−)+ ? e) : 1Ŝ ⇒ (−)+ ◦ (−)+

and

e ? e = (1Ŝ ? e) · (e ?(−)+) = e ·(e ?(−)+) : 1Ŝ ⇒ (−)+ ◦ (−)+,

so e ·((−)+ ? e) = e ·(e ?(−)+).

Remark 2.3.18.(a) shows that even (−)+ ? e = e ?(−)+ since ((−)+ ? e)P = (eP )+ and

(e ?(−)+) = eP+ for P ∈ Ob Ŝ .

(b) By convention 24, we have

e ? e = (e ?1
RŜ ) · ((−)+ ? e) = e ·((−)+ ? e) : 1

RŜ ⇒ E ◦(−)∼

and

e ? e = (1
RŜ ? e) · (e ?(−)+) = e ·(e ?(−)+) : 1

RŜ ⇒ E ◦(−)∼,

so e ·((−)+ ? e) = e ·(e ?(−)+).

Remark 2.3.18.(b) shows that even (−)+ ? e = e ?(−)+ since ((−)+ ? e)P = (eP )+ and

(e ?(−)+)P = eP+ for P ∈ Ob(RŜ ).
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Definition 2.3.21.

(a) Recall that (−)++ = (−)+ ◦ (−)+ = E ◦(−)∼ : Ŝ → Ŝ , cf. definition 2.3.13.(a).

Let ε := e ? e : 1Ŝ ⇒ E ◦(−)∼.

For a presheaf P ∈ Ob Ŝ , we have εP = eP · eP+ = eP ·(eP )+ : P ⇒ P++.

Cf. convention 24 and remark 2.3.20.(a).

(b) Recall that (−)++ = (−)+ ◦ (−)+ = E ◦(−)∼ : RŜ → RŜ , cf. definition 2.3.13.(b).

Let ε := e ? e : 1
RŜ ⇒ E ◦(−)∼.

For an R-presheaf P ∈ Ob(RŜ ), we have εP = eP · eP+ = eP ·(eP )+ : P ⇒ P++.

Cf. convention 24 and remark 2.3.20.(b).

We do not distinguish between ε : 1Ŝ ⇒ E ◦(−)∼ and ε : 1
RŜ ⇒ E ◦(−)∼ in notation.

2.3.2.2 Counit

Lemma/Definition 2.3.22.

(a) Suppose given a sheaf P ∈ Ob S̃ and an object A ∈ Ob S .

For a covering S ∈ JA and a matching family ξ : FS ⇒ P , let xξ ∈ P (A) denote the

unique amalgamation of ξ, i.e. (xξ)P (f op) = (f)ξB for all B
f
//A in S.

Let (nP )A : P+(A)→ P (A) : [ξ, S] 7→ [ξ, S] (nP )A := xξ .

This yields a morphism of presheaves nP :=
(
(nP )A

)
A∈Ob S

: P+ ⇒ P .

(b) Suppose given an R-sheaf P ∈ Ob(RS̃ ) and an object A ∈ Ob S .

For a covering S ∈ JA and a matching family ξ : FS ⇒ RΥ ◦ P , let xξ ∈ P (A) denote the

unique amalgamation of ξ, i.e. (xξ)P (f op) = (f)ξB for all B
f
//A in S.

Let (nP )A : P+(A)→ P (A) : [ξ, S] 7→ [ξ, S] (nP )A := xξ .

This yields a morphism of R-presheaves nP :=
(
(nP )A

)
A∈Ob S

: P+ ⇒ P .

We do not distinguish between the morphism nP of presheaves and the morphism nP of R-

presheaves in notation.

Proof. Ad (a). We show that (nP )A is well-defined.

Suppose given [ξ, S] = [ξ′, S ′] ∈ P+(A). We may choose T ⊆ S ∩ S ′ such that ιST ξ = ιS
′

T ξ
′.

The element xξ is an amalgamation of ιST ξ since we have (xξ)P (f op) = (f)ξB = (f)(ιST ξ)B for(
B

f
//A
)
∈ T ⊆ S.
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Similarly, the element xξ′ is an amalgamation of ιS
′

T ξ
′ since we have

(xξ′)P (f op) = (f)ξ′B = (f)(ιS
′

T ξ
′)B for

(
B

f
//A
)
∈ T ⊆ S ′.

So xξ and xξ′ are amalgamations of ιST ξ = ιS
′

T ξ
′. We conclude that xξ = xξ′ since P is a sheaf.

We show that nP is natural.

Suppose given B
f
//A in S .

For [ξ, S] ∈ P+(A), we have

[ξ, S] (nP )A P (f op) = (xξ)P (f op)

and

[ξ, S]P+(f op) (nP )B = [ξf , f ∗(S)] (nP )B = xξf .

So it suffices to show that (xξ)P (f op) is an amalgamation of ξf .

For
(
C

g
//B
)
∈ f ∗(S), we have gf ∈ S and thus

(xξ)P (f op)P (gop) = (xξ)P ((gf)op) = (gf)ξC = (g)ξfC .

We conclude that (nP )A P (f op) = P+(f op) (nP )B .

P+(A)
(nP )A

//

P+(fop)
��

P (A)

P (fop)

��

P+(B)
(nP )B

// P (B)

Ad (b). The same calculation as in (a) shows that (nP )A is well-defined.

We show that (nP )A is R-linear.

Suppose given coverings S, S ′ ∈ JA , matching families ξ : FS ⇒ RΥ ◦P , ξ′ : FS′ ⇒ RΥ ◦P and

r, r′ ∈ R. Write T := S ∩ S ′.

We have (
[ξ, S] · r + [ξ′, S ′] · r′

)
(nP )A = [ιST ξ · r + ιS

′

T ξ
′ · r′, T ] (nP )A = xιST ξ·r+ιS

′
T ξ′·r′

and

[ξ, S] (nP )A · r + [ξ′, S ′] (nP )A · r′ = xξ ·r + xξ′ ·r′.

So it suffices to show that xξ ·r + xξ′ ·r′ ∈ P (A) is an amalgamation of

ιST ξ · r + ιS
′

T ξ
′ · r′ : FT ⇒ RΥ ◦ P .
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For
(
B

f
//A
)
∈ T , we have

(xξ ·r + xξ′ ·r′)P (f op) = (xξ)P (f op) · r + (xξ′)P (f op) · r′ = (f)ξB · r + (f)ξ′B · r′

= (f) (ιST ξ)B · r + (f) (ιS
′

T ξ
′)B · r′ = (f) (ιST ξ · r + ιS

′

T ξ
′ · r′)B .

The same calculation as in (a) shows that nP is natural.

Lemma/Definition 2.3.23.

(a) The tuple n := (nP )P∈Ob S̃ is a transformation n: (−)+|S̃
S̃
⇒ 1S̃ .

(b) The tuple n := (nP )P∈Ob(RS̃ ) is a transformation n: (−)+|RS̃

RS̃
⇒ 1

RS̃ .

We do not distinguish between n: (−)+|S̃
S̃
⇒ 1S̃ and n: (−)+|RS̃

RS̃
⇒ 1

RS̃ in notation.

Proof. Ad (a). By proposition 2.3.12.(a), (−)+ maps S̃ to S̃ .

Suppose given P
α //Q in S̃ .

For A ∈ Ob S and [ξ, S] ∈ P+(A), we have

[ξ, S] (nP α)A = [ξ, S] (nP )A αA = (xξ)αA

and

[ξ, S] (α+ nQ)A = [ξ, S]α+
A (nQ)A = [ξα, S] (nQ)A = xξα .

So it suffices to show that (xξ)αA is an amalgamation of ξα : FS ⇒ Q.

For
(
B

f
//A
)
∈ S, we have

(xξ)αAQ(f op) = (xξ)P (f op)αB = (f) ξB αB = (f) (ξα)B .

P+ nP //

α+

��

P

α

��

Q+
nQ

// Q

Ad (b). By proposition 2.3.12.(b), (−)+ maps RS̃ to RS̃ . The same calculation as in (a)

shows that n is natural.

Remark 2.3.24.

(a) For a sheaf P ∈ Ob S̃ , we have (nP )+ = nP+ : P++ ⇒ P+.

(b) For an R-sheaf P ∈ Ob(RS̃ ), we have (nP )+ = nP+ : P++ ⇒ P+.
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Proof. Ad (a). Suppose given A ∈ Ob S and [ξ, S] ∈ P++(A), where ξ : FS ⇒ P+.

We have [ξ, S] (nP )+
A = [ξ nP , S] and [ξ, S] (nP+)A = xξ . Write [ζ, T ] := xξ ∈ P+(A), where

ζ : FT ⇒ P .

So it suffices to show that [ξ nP , S] = [ζ, T ] in P+(A).

Suppose given
(
B

f
//A
)
∈ S ∩ T . We have

(f) (ξ nP )B = (f) ξB (nP )B = (xξ)P
+(f op) (nP )B = [ζ, T ]P+(f op) (nP )B = [ζf , f ∗(T )] (nP )B

= xζf ∈ P (B).

So we have to show that xζf = (f) ζB , i.e. that (f) ζB ∈ P (B) is an amalgamation of

ζf : Ff∗(T ) ⇒ P .

In fact, for
(
C

g
//B
)
∈ f ∗(T ), we have

(f) ζB P (gop) = (f) FT (gop) ζC = (gf) ζC = (g) ζfC .

Ad (b). The same calculation as in (a) shows that (nP )+ = nP+ .

Remark 2.3.25.

(a) By convention 24, we have

n ? n =
(
(−)+|S̃

S̃
? n
)
· (n ?1S̃ ) =

(
(−)+|S̃

S̃
? n
)
· n: (−)+|S̃

S̃
◦ (−)+|S̃

S̃
⇒ 1S̃

and

n ? n =
(

n ?(−)+|S̃
S̃

)
· (1S̃ ? n) =

(
n ?(−)+|S̃

S̃

)
· n: (−)+|S̃

S̃
◦ (−)+|S̃

S̃
⇒ 1S̃ ,

so
(
(−)+|S̃

S̃
? n
)
· n =

(
n ?(−)+|S̃

S̃

)
· n.

Remark 2.3.24.(a) shows that even (−)+|S̃
S̃
?n = n ?(−)+|S̃

S̃
since

(
(−)+|S̃

S̃
?n
)
P

= (nP )+

and
(

n ?(−)+|S̃
S̃

)
P

= nP+ for P ∈ Ob S̃ .

(b) By convention 24, we have

n ? n =
(

(−)+|RS̃

RS̃
? n
)
· (n ?1

RS̃ ) =
(

(−)+|RS̃

RS̃
? n
)
· n: (−)+|RS̃

RS̃
◦ (−)+|RS̃

RS̃
⇒ 1

RS̃

and

n ? n =
(

n ?(−)+|RS̃

RS̃

)
· (1

RS̃ ? n) =
(

n ?(−)+|RS̃

RS̃

)
· n: (−)+|RS̃

RS̃
◦ (−)+|RS̃

RS̃
⇒ 1

RS̃ ,

so
(

(−)+|RS̃

RS̃
? n
)
· n =

(
n ?(−)+|RS̃

RS̃

)
· n.

Remark 2.3.24.(b) shows that even (−)+|RS̃

RS̃
? n = n ?(−)+|RS̃

RS̃
since(

(−)+|RS̃

RS̃
? n
)
P

= (nP )+ and
(

n ?(−)+|RS̃

RS̃

)
P

= nP+ for P ∈ Ob(RS̃ ).
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Definition 2.3.26.

(a) Recall that (−)+|S̃
S̃
◦ (−)+|S̃

S̃
= (−)∼ ◦ E: S̃ → S̃ , cf. definition 2.3.13.(a).

Let η := n ? n: (−)∼ ◦ E⇒ 1S̃ .

For a sheaf P ∈ Ob S̃ , we have ηP = nP+ · nP = (nP )+ · nP : P++ ⇒ P .

Cf. convention 24 and remark 2.3.25.(a).

(b) Recall that (−)+|RS̃

RS̃
◦ (−)+|RS̃

RS̃
= (−)∼ ◦ E: RS̃ → RS̃ , cf. definition 2.3.13.(b).

Let η := n ? n: (−)∼ ◦ E⇒ 1
RS̃ .

For an R-sheaf P ∈ Ob(RS̃ ), we have ηP = nP+ · nP = (nP )+ · nP : P++ ⇒ P .

Cf. convention 24 and remark 2.3.25.(b).

We do not destinguish between η : (−)∼ ◦ E⇒ 1S̃ and η : (−)∼ ◦ E⇒ 1
RS̃ in notation.

2.3.2.3 The sheafification theorem

Lemma 2.3.27.

(a) Suppose given a sheaf P ∈ Ob S̃ . We have eP · nP = 1P : P ⇒ P .

(b) Suppose given an R-sheaf P ∈ Ob(RS̃ ). We have eP · nP = 1P : P ⇒ P .

Proof. Ad (a). Suppose given A ∈ Ob S and x ∈ P (A).

We have

(x)(eP nP )A = (x)(eP )A (nP )A = [βx,max(A)](nP )A = x = (x)(1P )A

since (x)P (f op) = (f)βxB for B
f
//A in S shows that x is an amalgamation of βx.

Ad (b). The same calculation as in (a) shows that eP · nP = 1P .

Lemma 2.3.28.

(a) Suppose given a sheaf P ∈ Ob S̃ . We have nP · eP = 1P+ : P+ ⇒ P+.

(b) Suppose given an R-sheaf P ∈ Ob(RS̃ ). We have nP · eP = 1P+ : P+ ⇒ P+.

Proof. Ad (a). Suppose given A ∈ Ob S and [ξ, S] ∈ P+(A).

Note that (f)(βxξ)B = (xξ)P (f op) = (f)ξB for
(
B

f
//A
)
∈ S. So ι

max(A)
S βxξ = ξ and therefore

[βxξ ,max(A)] = [ξ, S].

We obtain

[ξ, S] (nP )A (eP )A = (xξ)(eP )A = [βxξ ,max(A)] = [ξ, S] = [ξ, S] (1P+)A .

Ad (b). The same calculation as in (a) shows that nP · eP = 1P+ .
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Corollary 2.3.29.

(a) Suppose given a presheaf P ∈ Ob Ŝ . The presheaf P is a sheaf if and only if eP is an

isomorphism in Ŝ .

(b) Suppose given an R-presheaf P ∈ Ob(RŜ ). The R-presheaf P is an R-sheaf if and only

if eP is an isomorphism in RŜ .

Proof. Ad (a). If P is a sheaf, then eP is an isomorphism with inverse nP by lemmata 2.3.27.(a)

and 2.3.28.(a). If eP is an isomorphism, then (eP )+ is also an isomorphism since (−)+ : Ŝ → Ŝ

is a functor. Consequently, P is a sheaf since it is isomorphic to the sheaf P++ via eP ·(eP )+.

Cf. lemma 2.2.11.(a).

Ad (b). The same argument as in (a) shows that P is a R-sheaf if and only if eP is an

isomorphism.

Theorem 2.3.30.

(a) Recall that S is a site, Ŝ is the category of presheaves on S and S̃ is the category

of sheaves on S . Recall that E: S̃ → Ŝ is the full and faithful inclusion functor and

(−)∼ : Ŝ → S̃ is the sheafification functor. Cf. definitions 2.2.1, 2.2.2.(a), 2.2.8.(a) and

2.3.13.(a).

The diagram

Ŝ ⊥

(−)∼

++
S̃

E

kk

with unit ε : 1Ŝ ⇒ E ◦(−)∼ and counit η : (−)∼ ◦ E⇒ 1S̃ is an adjunction.

Cf. convention 43 and definitions 2.3.21.(a) and 2.3.26.(a).

So (−)∼ : Ŝ → S̃ is left-adjoint to E: S̃ → Ŝ .

(b) Recall that R is a ring, S is a site, RŜ is the category of R-presheaves on S and RS̃

is the category of R-sheaves on S . Recall that E: RS̃ → RŜ is the full and faithful

inclusion functor and (−)∼ : RŜ → RS̃ is the sheafification functor. Cf. definitions 2.2.1,

2.2.2.(b), 2.2.8.(b) and 2.3.13.(b).

The diagram

RŜ ⊥

(−)∼

,,

RS̃
E

ll

with unit ε : 1
RŜ ⇒ E ◦(−)∼ and counit η : (−)∼ ◦ E⇒ 1

RS̃ is an adjunction.

Cf. convention 43 and definitions 2.3.21.(b) and 2.3.26.(b).

So (−)∼ : RŜ → RS̃ is left-adjoint to E: RS̃ → RŜ .
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Proof. Ad (a). For P ∈ Ob Ŝ , we have

((−)∼ ? ε)P · (η ? (−)∼)P = (εP )++ · ηP++ = (eP · eP+)++ · nP+++ · nP++

= (eP )++ · (eP+)++ · nP+++ · nP++
R2.3.18.(a)

= eP++ · eP+++ · nP+++ · nP++

=
L2.3.27.(a)

eP++ · nP++
L2.3.27.(a)

= 1P++ ,

so ((−)∼ ? ε) · (η ? (−)∼) = 1(−)∼ .

(−)∼
(−)∼?ε +3

1(−)∼ %-

(−)∼◦E ◦(−)∼

η?(−)∼

��
(−)∼

For P ∈ Ob S̃ , we have

(ε ? E)P · (E ? η)P = εP · ηP = eP · eP+ · nP+ · nP
L2.3.27.(a)

= eP · nP
L2.3.27.(a)

= 1P ,

so (ε ? E) · (E ? η) = 1E .

E ε?E +3

1E

$,

E ◦(−)∼◦E

E ?η
��

E

So (−)∼ a E.

Ad (b). The same calculation as in (a) shows that (−)∼ a E.

2.3.3 The category of R-sheaves is abelian

Lemma 2.3.31. Suppose given a monomorphism P
α //Q in RŜ . Then RΥS (α) : RΥ ◦ P →

RΥ ◦Q is monomorphic in Ŝ as well.

Proof. For A ∈ ObA, the morphism αA is a monomorphism in Mod-R by remark 1.1.9.(b) and

therefore injective. So RΥS (α)A = RΥ(αA) is injective as well. Thus RΥS (α) is a monomorphism

in Ŝ .

Lemma 2.3.32. Suppose given a monomorphism P α //Q in RŜ . Then P+ α+
//Q+ is

monomorphic in RŜ as well.

Proof. Suppose given N
β
//P+ in RŜ with βα+ = 0.

We want to show that β = 0.
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Suppose given A ∈ Ob S and x ∈ N(A). We have to prove that (x)βA = 0 in P+(A).

Write [ξ, S] := (x)βA ∈ P+(A).

We have [ξ · RΥS (α), S] = [ξ, S]α+
A = (x)βA α

+
A = 0. So there exists T ∈ JA with T ⊆ S such

that ιST ξ · RΥS (α) = 0. Since RΥS (α) is a monomorphism by lemma 2.3.31, we conclude that

ιST ξ = 0 and thus [ξ, S] = 0.

Lemma 2.3.33. Suppose given K
k //P

α //Q in RŜ such that k is a kernel of α. Then

RΥS (k) has the following factorisation property in Ŝ .

Suppose given T
t //

RΥ ◦ P in Ŝ with (x)tA · RΥS (α)A = 0 for A ∈ ObA and x ∈ T (A).

Then there exists a unique morphism T u //
RΥ ◦K in Ŝ such that u · RΥS (k) = t.

RΥ ◦K
RΥS (k)

//
RΥ ◦ P

RΥS (α)
//
RΥ ◦Q

T

u

OO

t

66

Proof. For A ∈ ObA, let L(A) := {x ∈ P (A) : (x)αA = 0} be the usual kernel of αA and

let L(A)
lA //P (A) be the inclusion morphism. For B

f
//A in S , let L(f) be the induced

morphism between the kernels L(A) and L(B). This yields the functor L : S op → Mod-R and

the transformation l = (lA)A∈Ob S : L→ P as in remark 1.1.9.(b). Moreover, l is a kernel of α.

It suffices to show the factorisation property for RΥS (l). Note that RΥS (l) is monomorphic by

lemma 2.3.31.

For A ∈ ObA and x ∈ T (A), we have (x)tA αA = (x)tA · RΥS (α)A = 0 and therefore (x)tA ∈
L(A). Thus we may restrict uA := tA|L(A). So uA lA = tA by construction. It remains to show

that u := (uA)A∈Ob S is natural. For B
f
//A in S , we have

uA L(f op) lB = uA lA P (f op) = tA P (f op) = T (f op) tB = T (f op)uB lB .

So uA L(f op) = T (f op)uB since lB is monomorphic.

T (A)
uA //

T (fop)

��

L(A)

L(fop)

��

lA // P (A)

P (fop)

��

T (B)
uB // L(B)

lB // P (B)

Lemma 2.3.34. Suppose given K k //P α //Q in RŜ such that k is a kernel of α. Then k+

is a kernel of α+ in RŜ .

Proof. The morphism k+ is a monomorphism by lemma 2.3.32.
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Suppose given T t //P+ in RŜ such that tα+ = 0.

K+ k+
// P+ α+

// Q+

T

t

==

We have to find T
u //K+ in RŜ such that uk+ = t.

Suppose given A ∈ Ob S . We want to define uA : T (A)→ K+(A) as follows.

Suppose given x ∈ T (A). Write [ξx, Sx] := (x)tA ∈ P+(A), where Sx ∈ JA and ξx : FSx ⇒ RΥ◦P .

We have [ξx · RΥS (α), Sx] = [ξx, Sx]α
+
A = (x)tA α

+
A = 0. So we may choose Ux ⊆ Sx such that

Ux ∈ JA and ιSxUx ξx · RΥS (α) = 0.

By lemma 2.3.33, there exists FUx
ζx
//
RΥ ◦K in RŜ such that ζx k = ιSxUx ξx .

RΥ ◦K
RΥS (k)

//
RΥ ◦ P

RΥS (α)
//
RΥ ◦Q

FUx

ζx

OO

ιSxUx

// FSx

ξx

OO

Let (x)uA := [ζx, Ux] ∈ K+(A).

We have to show that u := (uA)A∈Ob S is natural.

Suppose given B
f
//A in S and x ∈ T (A).

Since t is natural, we have, in P+(B),

[ξfx , f
∗(Sx)] = [ξx, Sx]P

+(f op) = (x)tA P
+(f op) = (x)T (f op) tB = [ξ(x)T (fop), S(x)T (fop)].

So we may choose W f
x ⊆ f ∗(Sx) ∩ S(x)T (fop) such that W f

x ∈ JB and

ι
f∗(Sx)

W f
x

ξfx = ι
S(x)T (fop)

W f
x

ξ(x)T (fop).

T (A)
tA //

T (fop)

��

P+(A)

P+(fop)
��

T (B)
tB // P+(B)

We have

(x)uAK
+(f op) = [ζx, Ux]K

+(f op) = [ζfx , f
∗(Ux)]

and

(x)T (f op)uB = [ζ(x)T (fop), U(x)T (fop)].
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Let V := W f
x ∩ U(x)T (fop) ∩ f ∗(Ux). So V ∈ JB, cf. lemma 2.2.14.

It suffices to show that ι
f∗(Ux)
V ζfx · RΥS (k) = ι

U(x)T (fop)

V ζ(x)T (fop) · RΥS (k) since RΥS (k) is a

monomorphism by lemma 2.3.31.

For
(
C

g
//B
)
∈ V , we have

(g) (ι
f∗(Ux)
V ζfx · RΥS (k))C = (g) (ζfx · RΥS (k))C = (gf) (ζx · RΥS (k))C = (gf) (ιSxUx ξx)C

= (gf) (ξx)C = (g) (ξfx)C = (g) (ιW
f
x

V ι
f∗(Sx)

W f
x

ξfx)C

= (g) (ιW
f
x

V ι
S(x)T (fop)

W f
x

ξ(x)T (fop))C

= (g) (ι
U(x)T (fop)

V ι
S(x)T (fop)

U(x)T (fop)
ξ(x)T (fop))C

= (g) (ι
U(x)T (fop)

V ζ(x)T (fop) · RΥS (k))C .

T (A)
uA //

T (fop)

��

K+(A)

K+(fop)
��

T (B)
uB // K+(B)

We show that uk+ = t.

For A ∈ Ob S and x ∈ T (A), we have

(x)uA k
+
A = [ζx, Ux] k

+
A = [ζx · RΥS (k), Ux] = [ιSxUx ξx, Ux] = [ξx, Sx] = (x)tA .

Theorem 2.3.35. Recall that R is a ring, S is a site and RS̃ is the category of R-sheaves on

S . Cf. definitions 2.2.1 and 2.2.8.(b).

The category of R-sheaves RS̃ is abelian.

Recall that RŜ is the category of R-presheaves on S , E : RS̃ → RŜ is the inclusion functor

and (−)∼ : RŜ → RS̃ is the sheafification functor. Cf. definitions 2.2.2.(b) and 2.3.13.(b).

The inclusion functor E is left-exact and the sheafification functor (−)∼ is exact.

We give formulas for kernels and cokernels in RS̃ in remark 2.3.36.

Proof. We use lemma 1.3.2.(c) to prove the assertions. The diagram

RŜ ⊥

(−)∼

,,

RS̃
E

ll

with unit ε : 1
RŜ ⇒ E ◦(−)∼ and counit η : (−)∼ ◦ E ⇒ 1

RS̃ is an adjunction, cf. theo-

rem 2.3.30.(b).
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The category RŜ = (Mod-R)(S op) is abelian since it is a functor category with values in an

abelian category, cf. remark 1.1.9.(c).

The category RS̃ is additive and the inclusion functor E: RS̃ → RŜ is full and faithful, cf.

proposition 2.2.13 and definition 2.3.13.(b).

It remains to show that (−)∼ preserves kernels.

Suppose given f ∈ Mor(RŜ ) and a kernel k ∈ Mor(RŜ ) of f in RŜ . By applying lemma

2.3.34 twice, we conclude that k++ is a kernel of f++ in RŜ . By lemma 1.1.8, k++ = k̃ is also

a kernel of f++ = f̃ in RS̃ .

Remark 2.3.36. Recall that the diagram

RŜ ⊥

(−)∼

,,

RS̃
E

ll

with unit ε : 1
RŜ ⇒ E ◦(−)∼ and counit η : (−)∼ ◦ E ⇒ 1

RS̃ is an adjunction, cf. theo-

rem 2.3.30.(b).

Suppose given P
f
//Q in RS̃ . Suppose given a kernel K k //P of f in RŜ and a cokernel

Q c //C of f in RŜ .

A kernel of f in RS̃ is given by k.

A cokernel of f in RS̃ is given by η−1
Q · c̃ = εQ · c̃ = c · εC = c · eC · eC+ .

Moreover, the diagram

K
k // P

f
// Q

eQ
��

c // C

eC
��

Q+

eQ+

��

c+ // C+

eC+

��

Q̃
c̃ // C̃

commutes.

Proof. We show that a kernel of f in RS̃ is given by k. Choose a kernel L l //P of f in RS̃ .

Then l is a kernel of f in RŜ as well since E is left-exact, cf. theorem 2.3.35. So L ∼= K in

RŜ . Since RS̃ is closed under isomorphisms by proposition 2.2.13, we conclude that K is a

sheaf. Thus k is a kernel of f in RS̃ as well.

A cokernel of f in RS̃ is given by η−1
Q · c̃ = εQ · c̃ since we have η−1

Q = E(η−1
Q ) = εE(Q) = εQ , cf.

lemma 1.3.2.(c). The formulas now follow from loc. cit. and from the fact that e : 1
RŜ ⇒ (−)+

is natural, cf. definition 2.3.17.(b).
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2.4 Exact categories as sites

Suppose given a ring R.

Suppose given an exact category A = (A, E). Cf. definition 1.5.1.

We will endow A with a Grothendieck topology JE in definition 2.4.1 below. We will often

write A = (A, JE) for the resulting site.

So A can be viewed as an exact category or as a site, depending on the context.

2.4.1 Coverings

Lemma/Definition 2.4.1. For A ∈ ObA, let JEA := {S ∈ Sieves(A) : there exists p ∈ Ee∩S}.
The tuple JE :=

(
JEA
)
A∈ObA is a Grothendieck topology on A.

Proof. For A ∈ ObA, we have 1A ∈ Ee ∩max(A) by (E3). So max(A) ∈ JEA and therefore (G1)

holds.

Suppose given B
f
//A in A and S ∈ JEA . Choose

(
P �p //A

)
∈ Ee ∩ S. By (E7), there exists

a pullback

P ′

f ′

��

�p
′
// B

f
��

P �p // A

in A with p′ ∈ Ee . We have p′ ∈ f ∗(S) since p′f = f ′p ∈ S. So f ∗(S) ∈ JEB and therefore (G2)

holds.

Suppose given A ∈ ObA and S ∈ JEA . Suppose given a sieve T on A such that f ∗(T ) ∈ JEB for(
B

f
//A
)
∈ S. Choose

(
B �p //A

)
∈ Ee∩S. Since p∗(T ) ∈ JEB , we may choose q ∈ Ee∩p∗(T ).

So qp ∈ T and qp ∈ Ee by (E5). We conclude that T ∈ JEA and therefore (G3) holds.

For the remainder of this section 2.4, we will work with the site A = (A, JE).

So for A ∈ ObA, a covering of A is a sieve on A that contains a pure epimorphism.

Remark 2.4.2. Suppose given a pure epimorphism P �p //A in A. The sieve generated by p

covers A, i.e.

Sp =
{
g ∈ MorA : there exists f ∈ MorA such that g = fp} ∈ JEA .

Cf. definition 2.1.6.



89

Lemma 2.4.3. Suppose given an R-presheaf F ∈ Ob(RÂ). Suppose given an object A ∈ ObA
and [ξ, S] ∈ F+(A).

There exists a pure epimorphism
(
P �p //A

)
∈ S with (p)ξP = 0 if and only if [ξ, S] = 0.

Proof. Suppose given a pure epimorphism
(
P �p //A

)
∈ S with (p)ξP = 0.

Since Sp ⊆ S, we have [ξ, S] = [ιSSpξ, Sp]. For B
f
//P in A, we have

(fp)ξB = (p) FS(f op) ξB = (p)ξP F (f op) = (0)F (f op) = 0.

So ιSSpξ = 0 and thus [ιSSpξ, Sp] = 0.

Conversely, suppose that [ξ, S] = 0 = [0, S]. So there exists a covering T ⊆ S of A with

ιST ξ = 0. Choosing a pure epimorphism
(
P �p //A

)
∈ T ⊆ S, we obtain (p)ξP = 0.

2.4.2 Sheaves are quasi-left-exact functors

Definition 2.4.4. An R-presheaf F : Aop → Mod-R is called quasi-left-exact if and only if for

each pullback of the form

Q
g
//

g′

��

P

_p
��

P �p // A.

in A, where p is a pure epimorphism, the sequence

F (A)
F (pop)

//F (P )
F (g′ op)−F (gop)

//F (Q)

is left-exact in Mod-R.

We will see in lemma 2.4.7 that the quasi-left-exact R-presheaves are precisely the R-sheaves.

The term quasi-left-exact was chosen since in case F is additive it means that F is left-exact.

Cf. lemma 2.4.8 and proposition 2.4.13 below.

Remark 2.4.5. Thomason and Trobaugh [15, p. 400] use the term ”left exact” for what we

call quasi-left-exact.

Remark 2.4.6. An R-presheaf F : Aop → Mod-R is quasi-left-exact if and only if for each pure

short exact sequence B •i //P �p //A in A, the sequence

F (A)
F (pop)

// F (P )
F
(
( i1 )

op
)
−F
(
( 0

1 )
op
)
// F (B ⊕ P )

is left-exact in Mod-R.
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Proof. Suppose given a pure short exact sequence B •i //P �p //A in A.

We show that the diagram

B ⊕ P
( 0

1 )
//

( i1 )
��

P

_p
��

P �p // A

is a pullback.

Suppose given x, y : T → P in A such that xp = yp. So (y − x)p = 0.

For ( s t ) : T → B ⊕ P with ( s t ) ( 0
1 ) = x and ( s t ) ( i1 ) = y, we necessarily have t = x and

si = y − x. Since i is monomorphic, s is uniquely determined by x and y.

It now suffices to show that there exists a morphism ( s t ) : T → B ⊕ P with ( s t ) ( 0
1 ) = x and

( s t ) ( i1 ) = y.

Since i is a kernel of p, there exists w : T → B with wi = y−x. The morphism ( w x ) : T → B⊕P
satisfies ( w x ) ( 0

1 ) = x and ( w x ) ( i1 ) = y − x+ x = y.

Now suppose given an arbitrary pullback

Q
g
//

g′

��

P

_p
��

P �p // A.

in A.

Since the diagram

B ⊕ P
( 0

1 )
//

( i1 )
��

P

_p
��

P �p // A

is a pullback as well, there is an isomorphism ( u v ) : Q→ B ⊕ P such that ( u v ) ( 0
1 ) = g and

( u v ) ( i1 ) = g′.

The diagram

F (A)
F (pop)

// F (P )

F (g′ op)−F (gop) ++

F
(
( i1 )

op
)
−F
(
( 0

1 )
op
)
// F (B ⊕ P )

F ((u v )op)
��

F (Q)
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commutes since(
F
(

( i1 )op )− F( ( 0
1 )op ))F (( u v )op) = F

(
( i1 )op )F (( u v )op)− F

(
( 0

1 )op )F (( u v )op)

= F
((

( u v ) ( i1 )
)op)− F(( ( u v ) ( 0

1 )
)op)

= F (g′ op)− F (gop).

Since F (( u v )op) is an isomorphism, the sequence

F (A)
F (pop)

// F (P )
F
(
( i1 )

op
)
−F
(
( 0

1 )
op
)
// F (B ⊕ P )

is left-exact in Mod-R if and only if the sequence

F (A)
F (pop)

// F (P )
F (g′ op)−F (gop)

// F (Q)

is left-exact in Mod-R.

Lemma 2.4.7. Suppose given an R-presheaf F : Aop → Mod-R.

The R-presheaf F is an R-sheaf if and only if F is quasi-left-exact.

Proof. Suppose that F is quasi-left-exact.

Suppose given A ∈ ObA, S ∈ JA and ξ : FS ⇒ RΥ ◦ F .

We have to show that ξ has a unique amalgamation x ∈ F (A).

Choose a pure epimorphism
(
P �p //A

)
∈ S and a pullback

Q
g
//

g′

��

P

_p
��

P �p // A.

The sequence F (A)
F (pop)

//F (P )
F (g′ op)−F (gop)

//F (Q) is left-exact since F is quasi-left-exact.

We have

(p)ξP (F (g′ op)− F (gop)) = (p)(FS(g′ op) ξQ − FS(gop) ξQ) = (g′p)ξQ − (gp)ξQ

= (gp)ξQ − (gp)ξQ = 0.

So there exists precisely one x ∈ F (A) with (x)F (pop) = (p)ξP . In particular, there exists at

most one amalgamation of ξ.

It suffices to show that x is an amalgamation.

Suppose given
(
B

f
//A
)
∈ S.
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Choose a pullback

P ′
p′
//

f ′

��

B

f
��

P �p // A.

We have

(x)F (f op)F (p′ op) = (x)F (pop)F (f ′ op) = (p)ξP F (f ′ op) = (p) FS(f ′ op) ξP ′ = (f ′p)ξP ′

= (p′f)ξP ′ = (f) FS(p′ op) ξP ′ = (f)ξB F (p′ op).

The morphism F (p′ op) is monomorphic since F is quasi-left-exact. Thus (x)F (f op) = (f)ξB .

Conversely, suppose that F is an R-sheaf.

Suppose given a pure epimorphism P �p //A and a pullback

Q
g
//

g′

��

P

_p
��

P �p // A.

We have to show that the sequence F (A)
F (pop)

//F (P )
F (g′ op)−F (gop)

//F (Q) is left-exact.

Suppose given y ∈ F (P ) with (y)(F (g′ op)− F (gop)) = 0, i.e. (y)F (g′ op) = (y)F (gop).

Recall that Sp ∈ JEA , cf. remark 2.4.2.

We want to define ξ : FSp ⇒ RΥ ◦ F .

For B ∈ ObA, let ξB : Sp ∩HomA(B,A)→ F (B) : fp 7→ (y)F (f op).

This is well-defined since in case fp = f ′p for f, f ′ ∈ HomA(B,P ), there exists u : B → Q such

that f = ug and f ′ = ug′ by the pullback property and so

(y)F (f op) = (y)F (gop)F (uop) = (y)F (g′ op)F (uop) = (y)F (f ′ op).

For C
g
//B

f
//P in A, we have

(fp)ξB F (gop) = (y)F (f op)F (gop) = (y)F ((gf)op) = (gfp)ξC = (fp) FSp(g
op) ξC .

Thus ξ is natural.

Since F is an R-sheaf, there exists a unique x ∈ F (A) such that (x)F (pop) = y since this

equation implies (x)F ((fp)op) = (x)F (pop)F (f op) = (y)F (f op) = (fp)ξB for B
f
//P in A.

We conclude that the sequence F (A)
F (pop)

//F (P )
F (g′ op)−F (gop)

//F (Q) is left-exact.



93

Lemma 2.4.8. Suppose given an additive R-presheaf F : Aop → Mod-R, i.e. suppose F to be

an additive functor. The following three statements are equivalent.

(a) The R-presheaf F is a sheaf.

(b) The R-presheaf F is quasi-left-exact.

(c) The R-presheaf F is left-exact.

Proof. The statements (a) and (b) are equivalent by lemma 2.4.7. We use remark 2.4.6 to show

that (b) and (c) are equivalent.

Suppose given a pure short exact sequence B •i //P �p //A in A.

The diagram

F (A)
F (pop)

// F (P )
F (iop)

//

F
(
( i0 )

op
)

**

F (B)

F
(
( 1

0 )
op
)

��

F (B ⊕ P )

F
(

( 1 0 )op
)

��

F (B)

commutes.

Since F is additive, we have

F
(

( i1 )op )− F( ( 0
1 )op ) = F

(
( i0 )op ).

The morphism F
(

( 1
0 )op ) is monomorphic since F

(
( 1

0 )op ) · F( ( 1 0 )op ) = F
(
1op
)

= 1.

Thus the sequence

F (A)
F (pop)

// F (P )
F
(
( i1 )

op
)
−F
(
( 0

1 )
op
)
// F (B ⊕ P )

is left-exact in Mod-R if and only if the sequence

F (A)
F (pop)

// F (P )
F (iop)

// F (B)

is left-exact in Mod-R.

Lemma 2.4.9. Suppose given an R-presheaf F : Aop → Mod-R. If F is an additive functor,

then F+ is additive as well.
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Proof. At first, we want to show that F+(0A) ∼= 0Mod-R in Mod-R.

Suppose given [ξ, S] ∈ F+(0A). Choose a pure epimorphism
(
P � //0A

)
∈ S.

Consider the commutative diagram

FS(0A)
ξ0A //

FS(0op)
��

F (0A)

F (0op)
��

FS(P )
ξP // F (P )

in Set. We have (0)ξP = (0) FS(0op) ξP = (0)ξ0A F (0op) = 0 since F (0op) = 0 by assumption.

We conclude that [ξ, S] = 0 and, consequently, F+(0A) ∼= 0Mod-R in Mod-R.

Now suppose given A,B ∈ ObA. Write i := ( 1 0 ) : A→ A⊕B and j := ( 0 1 ) : B → A⊕B.

It suffices to show that ( F+(iop) F+(jop) ) : F+(A ⊕ B) → F+(A) ⊕ F+(B) is monomorphic in

Mod-R, cf. lemma 1.1.3.

Suppose given [ξ, S] ∈ F+(A⊕ B) with [ξ, S] ( F+(iop) F+(jop) ) = 0. So ξ : FS ⇒ F . We have to

show that [ξ, S] = 0.

Since [ξ, S] ( F+(iop) F+(jop) ) =
(
[ξi, i∗(S)], [ξj, j∗(S)]

)
, we have [ξi, i∗(S)] = 0 and [ξj, j∗(S)] = 0.

By lemma 2.4.3, we may choose pure epimorphisms
(
PA

�pA //A
)
∈ i∗(S) and(

PB
�pB //B

)
∈ j∗(S) with (pA)ξiPA = 0 and (pB)ξjPB = 0.

Choose a pure epimorphism
(
C �e //A⊕B

)
∈ S.

By (E7), there exist pullbacks

CA
�eA //

cA
��

A

•i
��

C �e // A⊕B

CB
�eB //

cB
��

B

•j
��

C �e // A⊕B

in A with eA and eB purely epimorphic.

Again by (E7), there exist pullbacks

QA
�qA //

fA
��

CA

_ eA
��

PA
�pA // A

QB
�qB //

fB
��

CB

_ eB
��

PB
�pB // B

in A with qA and qB purely epimorphic.

By (E5) and lemma 1.5.11, the morphism
(
qA eA 0

0 qB eB

)
: QA⊕QB → A⊕B is purely epimorphic.

We have (
qA eA 0

0 qB eB

)
= ( 1

0 ) qA eA i+ ( 0
1 ) qB eB j =

(
( 1

0 ) qA cA + ( 0
1 ) qB cB

)
e ∈ S.
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It suffices to show that
(
qA eA 0

0 qAeB

)
ξQA⊕QB = 0 by lemma 2.4.3.

Note that the morphism ( F (( 1 0 )op) F (( 0 1 )op) ) : F (QA ⊕ QB) → F (QA) ⊕ F (QB) is an isomor-

phism since F is additive.

Since ξ is natural, we have

ξQA⊕QB ( F (( 1 0 )op) F (( 0 1 )op) ) = ( ξQA⊕QBF (( 1 0 )op) ξQA⊕QBF (( 0 1 )op) )

= ( FS(( 1 0 )op)ξQA FS(( 0 1 )op)ξQB )

= ( FS(( 1 0 )op) FS(( 0 1 )op) )
(
ξQA 0

0 ξQB

)
.

FS(QA ⊕QB)

( FS(( 1 0 )op) FS(( 0 1 )op) )

��

ξQA⊕QB // F (QA ⊕QB)

(F (( 1 0 )op) F (( 0 1 )op) )

��

FS(QA)⊕ FS(QB)

(
ξQA 0

0 ξQB

)
// F (QA)⊕ F (QB)

We obtain(
qA eA 0

0 qAeB

)
ξQA⊕QB ( F (( 1 0 )op) F (( 0 1 )op) ) =

(
qA eA 0

0 qAeB

)
( FS(( 1 0 )op) FS(( 0 1 )op) )

(
ξQA 0

0 ξQB

)
=
(

( qA eA 0 ) , ( 0 qB eB )
) ( ξQA 0

0 ξQB

)
=
(
qA eA i, qB eB j

) ( ξQA 0

0 ξQB

)
=
(
fA pA i, fB pB j

) ( ξQA 0

0 ξQB

)
=
(
(fA pA i)ξQA , (fB pB j)ξQB

)
=
(
(pA i) FS(f op

A ) ξQA , (pB j) FS(f op
B ) ξQB

)
=
(
(pA i) ξPA F (f op

A ), (pB j) ξPB F (f op
B )
)

=
(
(pA) ξiPA F (f op

A ), (pB) ξjPB F (f op
B )
)

=
(
(0)F (f op

A ), (0)F (f op
B )
)

= 0.

Thus
(
qA eA 0

0 qAeB

)
ξQA⊕QB = 0.

2.4.3 Effaceable presheaves

Definition 2.4.10. An R-presheaf F : Aop → Mod-R is called effaceable if and only if for each

A ∈ ObA and each x ∈ F (A) there exists a pure epimorphism P �p //A with (x)F (pop) = 0.

Lemma 2.4.11. Suppose given an R-presheaf F ∈ Ob(RÂ).

The following five statements are equivalent.
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(i) F is effaceable.

(ii) F+ ∼= 0 in RÂ

(iii) F̃ ∼= 0 in RÂ

(iv) eF = 0: F ⇒ F+ in RÂ, cf. definition 2.3.16.(b)

(v) εF = 0: F ⇒ F̃

Proof. The equivalence of (ii) and (iii) was shown in corollary 2.3.19.

Since εF = eF · eF+ , the equivalence of (iv) and (v) follows from eF+ monomorphic, which was

shown in remark 2.3.18.(b).

Ad (i) ⇒ (ii).

Suppose given A ∈ ObA and [ξ, S] ∈ F+(A). So ξ : FS ⇒ RΥ ◦ F .

Choose a pure epimorphism
(
P �p //A

)
∈ S.

Since F is effaceable, we may choose a pure epimorphism Q �q //P for (p)ξP ∈ F (P ) such that

(p)ξP F (qop) = 0.

Recall that Sqp ∈ JEA , cf. remark 2.4.2.

For U
f
//Q in A, we have

(fqp)ξU = (p) FS((fq)op) ξU = (p)ξP F ((fq)op) = (p)ξP F (qop)F (f op) = (0)F (f op) = 0.

So ιSSqp ξ = 0 and therefore [ξ, S] = 0 ∈ F+(A).

We conclude that F+(A) ∼= 0 in Mod-R for A ∈ ObA.

Ad (ii) ⇒ (iv).

The codomain of eF is a zero object by assumption.

Ad (iv) ⇒ (i).

Suppose given A ∈ ObA and x ∈ F (A). We have [βx,max(A)] = (x) (eF )A = 0 ∈ F+(A).

By lemma 2.4.3, there exists a pure epimorphism P �p //A in A with

(x)F (pop) = (p)βxP = 0.
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2.4.4 An example: quasi-left-exact but not left-exact

Lemma 2.4.12. Suppose given an abelian category B. Suppose given the following commuta-

tive diagram in B.

X ′ x′ //

f ′

��

X x′′ //

f
��

X ′′

f ′′

��

Y ′
y′
//

g′

��

Y
y′′
//

g

��

Y ′′

g′′

��

Z ′
z′ // Z

z′′ // Z ′′

Suppose that the rows and columns are short exact sequences, i.e. that

X ′
x′ // X

x′′ // X ′′, Y ′
y′
// Y

y′′
// Y ′′, Z ′

z′ // Z
z′′ // Z ′′, X ′

f ′
// Y ′

g′
// Z ′,

X
f
// Y

g
// Z and X ′′

f ′′
// Y ′′

g′′
// Z ′

are short exact sequences.

The sequence X ′
x′f
//Y

( g y′′ )
//Z ⊕ Y ′′ is left-exact.

Proof. Suppose given T
t //Y in B with t · ( g y′′ ) = 0. So tg = 0 and ty′′ = 0. We conclude

that there exist T a //X and T
b //Y ′ in B with af = t and by′ = t.

Since the diagram

X ′
x′ //

f ′

��

X

f
��

Y ′
y′
// Y

is a pullback by the kernel-cokernel-criterion lemma 1.1.2.(a), there exists T u //X ′ such that

ux′ = a and uf ′ = b.

Thus ux′f = af = t.

The induced morphism is unique since x′f is a monomorphism as composite of monomorphisms.

T a

��

b

!!

u

  

X ′ •
x′
//

•f ′
��

X �x′′ //

•f
��

X ′′

•f ′′
��

Y ′ •
y′
//

_g′

��

Y �y
′′
//

_g
��

Y ′′

_g′′
��

Z ′ •z
′
// Z �z′′ // Z ′′
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Example 2.4.13. Suppose given a field K. For
(
X

f
//Y
)
,
(
X ′

f ′
//Y ′
)
∈ Mor(mod-K), let

X ⊗X ′ f⊗f
′
//Y ⊗ Y ′ denote the tensor product over K.

We consider the site (mod-K)op, cf. definitions 2.2.1 and 2.4.1.

The K-presheaf F : mod-K → Mod-K defined by

F
(
X

f
//Y
)

=
(
X ⊗X f⊗f

//Y ⊗ Y
)

for X
f
//Y in mod-K is quasi-left-exact but not left-exact.

I learned this from Fernando Muro [11].

Proof. We show that F is not left-exact. It suffices to show that F is not additive.

If F was additive, then

F (K ⊕K)
(F( 1

0 ) F( 0
1 ) )

// F (K)⊕ F (K)

= (K ⊕K)⊗ (K ⊕K)
( ( 1

0 )⊗( 1
0 ) ( 0

1 )⊗( 0
1 ) )

// (K ⊗K)⊕ (K ⊗K)

would be an isomorphism in Mod-K, cf. [14, prop. 4]. Abbreviate f := ( ( 1
0 )⊗( 1

0 ) ( 0
1 )⊗( 0

1 ) ).

Since f isK-linear, we may argue by counting dimensions. In fact, dimK((K⊕K)⊗(K⊕K)) = 4

and dimK((K ⊗K)⊕ (K ⊗K)) = 2. So f can not be an isomorphism and thus F can not be

left-exact.

We show that F is quasi-left-exact.

Suppose given a short exact sequence C i //B
p
//A in mod-K.

We have to show that the sequence

F (C)
F (i)

// F (B)
F ( p 1 )−F ( 0 1 )

// F (A⊕B)

= C ⊗ C i⊗i
// B ⊗B ( p 1 )⊗( p 1 )−( 0 1 )⊗( 0 1 )

// (A⊕B)⊗ (A⊕B)

is left-exact in Mod-K, cf. remark 2.4.6.

Note that

(A⊕B)⊗(A⊕B)
( ( 1

0 )⊗( 1
0 ) ( 1

0 )⊗( 0
1 ) ( 0

1 )⊗( 1
0 ) ( 0

1 )⊗( 0
1 ) )

// (A⊗A)⊕(A⊗B)⊕(B⊗A)⊕(B⊗B)

and

(A⊗A)⊕(A⊗B)⊕(B⊗A)⊕(B⊗B)


( 1 0 )⊗( 1 0 )
( 1 0 )⊗( 0 1 )
( 0 1 )⊗( 1 0 )
( 0 1 )⊗( 0 1 )


// (A⊕B)⊗(A⊕B)
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are mutually inverse in Mod-K.

We have(
( p 1 )⊗ ( p 1 )− ( 0 1 )⊗ ( 0 1 )

)
·
(

( 1
0 )⊗( 1

0 ) ( 1
0 )⊗( 0

1 ) ( 0
1 )⊗( 1

0 ) ( 0
1 )⊗( 0

1 )
)

= ( p⊗p p⊗1 1⊗p 0 ) .

So it remains to show that i⊗ i is a kernel of

B ⊗B ( p⊗p p⊗1 1⊗p 0 )
// (A⊗ A)⊕ (A⊗B)⊕ (B ⊗ A)⊕ (B ⊗B)

For X
f
//Y in mod-K, let ker(f) ⊆ X denote the usual kernel.

Note that p⊗ p = (1⊗ p)(p⊗ 1) = (p⊗ 1)(1⊗ p), so ker(p⊗ p) ⊇ ker(p⊗ 1) ∩ ker(1⊗ p).

We have ker(( p⊗p p⊗1 1⊗p 0 )) = ker(p⊗ p) ∩ ker(p⊗ 1) ∩ ker(1⊗ p) = ker(p⊗ 1) ∩ ker(1⊗ p).

So it suffices to show that i⊗ i is a kernel of ( p⊗1 1⊗p ).

This follows from lemma 2.4.12 applied to the diagram

C ⊗ C 1⊗i
//

i⊗1
��

C ⊗B 1⊗p
//

i⊗1
��

C ⊗ A
i⊗1
��

B ⊗ C 1⊗i
//

p⊗1
��

B ⊗B 1⊗p
//

p⊗1
��

B ⊗ A
p⊗1
��

A⊗ C 1⊗i
// A⊗B 1⊗p

// A⊗ A.
The rows and columns are short exact since for X ∈ Ob(mod-K), the functors

−⊗X : mod-K → Mod-K and X ⊗− : mod-K → Mod-K are exact.

Remark 2.4.14. If we compose the K-presheaf F : mod-K → Mod-K from the preceding

example 2.4.13 with the forgetful functor Υ: Mod-K → Mod-Z, we obtain the Z-presheaf

Υ ◦ F : mod-K → Mod-Z which is also quasi-left-exact but not left-exact.

2.5 The Gabriel-Quillen-Laumon immersion theorem

Suppose given an exact category A = (A, E). Cf. definition 1.5.1.

Recall that we endowed A with the Grothendieck topology JE in definition 2.4.1. We will often

write A = (A, JE) for the resulting site.

So A can be viewed as an exact category or as a site, depending on the context.

2.5.1 The Gabriel-Quillen-Laumon category

Definition 2.5.1. Let GQL(A, E) be the full subcategory of ZÂ whose objects are the left-

exact functors from Aop to Mod-Z. We call GQL(A, E) the Gabriel-Quillen-Laumon category

of (A, E).
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We abbreviate GQL(A) = GQL(A, E) if unambiguous.

For historical remarks, see e.g. [2, rem. A.4]. Some denote the Gabriel-Quillen-Laumon category

by Lex(A, E).

Theorem 2.5.2. Recall that A = (A, E) is an exact category, yielding the site A = (A, JE) as

in definition 2.4.1. Recall that the category of Z-sheaves ZÃ is abelian by theorem 2.3.35.

The category GQL(A) is a full additive subcategory of ZÃ and it is closed under isomorphisms.

Moreover, kernels and cokernels of morphisms in GQL(A) formed in ZÃ lie again in GQL(A):

Suppose given K
k //F

α //G
c //C in ZÂ such that k is a kernel of α and c is a cokernel of

α in ZÂ. If F,G ∈ Ob(GQL(A)), then K,C ∈ Ob(GQL(A)).

In particular, GQL(A) is an abelian category.

We give formulas for kernels and cokernels in GQL(A) in remark 2.5.5.

Proof. By lemmata 2.4.7 and 2.4.8, the objects of GQL(A) are Z-sheaves and therefore objects

of ZÃ. So GQL(A) is a full subcategory of ZÃ. Moreover, an object F ∈ Ob(ZÃ) is an object

of GQL(A) if and only if F is an additive functor. By remark 1.1.9.(e), GQL(A) contains the

zero objects of ZÃ and it contains F ⊕ G for F,G ∈ Ob(GQL(A)). Thus GQL(A) is a full

additive subcategory of ZÃ. It is closed under isomorphisms by remark 1.1.9.(f).

Suppose given F α //G in GQL(A). Suppose given a kernel K k //F and a cokernel G c //C

of α in ZÂ.

A kernel of f in ZÃ is given by K k //F and a cokernel of f in ZÃ is given by G
η−1
G · c̃

//C̃ ,

where η : (−)∼ ◦ E⇒ 1
RS̃ is the counit of the adjunction

ZÂ ⊥

(−)∼

,,

ZÃ.
E

kk

as in theorem 2.3.30.(b). Cf. remark 2.3.36.

The functors K and C are additive by remark 1.1.9.(b). By applying lemma 2.4.9 twice, we

conclude that C̃ is additive as well. So kernels and cokernels of morphisms in GQL(A) formed

in ZÃ lie again in GQL(A).

The induced morphism in a kernel-cokernel-factorisation of α is an isomorphism in the abelian

category ZÃ and thus also in the full subcategory GQL(A) of ZÃ.
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Remark 2.5.3. We have the following inclusion diagram of full subcategories of RÂ.

ZÂ

ZÃ

E

99

Add(Aop,Mod-Z)

hh

GQL(A)

66ee

Note that all these categories are abelian.

The inclusion functors from GQL(A) to ZÃ and from Add(Aop,Mod-Z) to ZÂ are exact.

The inclusion functors from GQL(A) to Add(Aop,Mod-Z) and from ZÃ to ZÂ are left-exact.

Cf. theorem 2.3.35 and remark 1.1.9.(h).

Definition 2.5.4. Suppose given A
f
//B in A.

For D ∈ ObA, we have the usual kernel Kf (D)
(kf )D

//HomA(D,A) of (ZyA(f))D in Mod-Z,

where Kf (D) = {h ∈ HomA(D,A) : hf = 0} and (kf )D is the inclusion morphism.

Remark 1.1.9.(b) yields the functor Kf : Aop → Mod-Z and the transformation

kf : Kf ⇒ ZyA(A) such that kf is a kernel of ZyA(f) in ZÂ.

For E h //D in A and g ∈ Kf (D), we have (g) Kf (h
op) = hg.

For D ∈ ObA, we have the usual cokernel HomA(D,B)
(c◦f )D

//HomA(D,B)/HomA(D,A)f

of (ZyA(f))D in Mod-Z, where (c◦f )D is the residue class morphism.

We abbreviate g := g + HomA(D,A)f for g ∈ HomA(D,B) if unambiguous.

Remark 1.1.9.(b) yields the functor C◦f : Aop → Mod-Z and the transformation

c◦f : ZyA(B) ⇒ C◦f such that c◦f is a cokernel of ZyA(f) in ZÂ. For E h //D in A and

g ∈ HomA(D,B), we have C◦f (D) = HomA(D,B)/HomA(D,A)f and g C◦f (h
op) = hg ∈

HomA(E,B)/HomA(E,A)f .

Moreover, let
(
ZyA(B)

cf
//Cf

)
:=
(
ZyA(B)

ε
ZyA(B)·(c◦f )++

//(C◦f )
++
)
.

ZyA(B)

cf

((

c◦f
//

ε
ZyA(B)

��

C◦f
εC◦
f

��

ZyA(B)++

(c◦f )++
// Cf
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Remark 2.5.5. Recall that the diagram

ZÂ ⊥

(−)∼

++

ZÃ
E

kk

with unit ε : 1
ZÂ ⇒ E ◦(−)∼ and counit η : (−)∼ ◦ E ⇒ 1

ZÃ is an adjunction, cf. theo-

rem 2.3.30.(b).

Suppose given F
α //G in GQL(A) ⊆ ZÃ. Suppose given a kernel K k //F of α in ZÂ and a

cokernel G c //C of α in ZÂ.

A kernel of α in GQL(A) is given by k.

A cokernel of α in GQL(A) is given by η−1
G · c̃ = εG · c̃ = c · εC = c · eC · eC+ .

Moreover, the diagram

K
k // F

α // G

εG

��

eG
��

c // C

εC

��

eC
��

G+

eG+

��

c+ // C+

eC+

��

G̃ c̃ // C̃

commutes.

Cf. remark 2.3.36 and theorem 2.5.2.

In particular, for A
f
//B in A and α = ZyA(f), we may choose k = kf and c = c◦f . Thus a

cokernel of ZyA(f) in GQL(A) is given by cf = c◦f · εC◦f
= c◦f · eC◦f

· e(C◦f )+ .

Cf. definition 2.5.4.

2.5.2 The immersion theorem

Definition 2.5.6.

Recall that for X ∈ ObA, the Z-Yoneda functor ZyA(X) = ZyA,X : Aop → Mod-Z is left-exact,

cf. definition 1.2.3.(b). Thus we may define

Y(A,E) := ZyA |GQL(A,E) : A → GQL(A, E).

We abbreviate Y = YA = Y(A,E) if unambiguous.

Remark 2.5.7. Suppose given F
α //G in GQL(A). Suppose given a cokernel G c //C of α

in ZÂ. The morphism α is epimorphic in GQL(A) if and only if C is effaceable, cf. lemma 2.4.11

and remark 2.5.5. Recall that C is effaceable if and only if for all X ∈ ObA and all x ∈ C(X),

there exists a pure epimorphism P �p //X in A such that (x)C(pop) = 0, cf. definition 2.4.10.
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In particular, suppose given A
f
//B in A. The morphism ZyA(f) is epimorphic in GQL(A)

if and only if C◦f is effaceable. Now C◦f is effaceable if and only if for all X h //B in A, there

exists P u //A and a pure epimorphism P �p //X in A such that ph = uf , cf. definition 2.5.4.

P �p //

u
��

X

h
��

A
f
// B

Proof. Suppose given A
f
//B , X h //B and a pure epimorphism P

p
//X in A.

Note that C◦f (X) = HomA(X,B)/HomA(X,A)f .

We have (h) C◦f (p
op) = ph ∈ HomA(P,B)/HomA(P,A)f .

So (h) C◦f (p
op) = 0 if and only if there exists P u //A in A such that ph = uf .

Theorem 2.5.8. Recall that A = (A, E) is an exact category and that the Gabriel-Quillen-

Laumon category GQL(A) is the full subcategory of ZÃ whose objects are the left-exact functors

from Aop to Mod-Z, cf. definition 2.5.1. Recall from theorem 2.5.2 that GQL(A) is an abelian

category.

The functor YA : A → GQL(A) is a closed immersion, i.e. it is full, faithful and exact, it detects

exactness and the essential image Imess(YA) is closed under extensions, cf. definition 1.5.8.

Proof. The functor YA is full, faithful and additive since it is the restriction of the full, faithful

and additive Yoneda functor ZyA : A → ZÂ. Cf. definition 1.2.3.(b).

We show that YA is exact and that it detects exactness.

Suppose given A
f
//B

g
//C in A.

Suppose that the sequence A
f
//B

g
//C is pure short exact in A.

The sequence(
YA(A)

YA(f)
// YA(B)

YA(g)
// YA(C)

)
=
(

ZyA(A) ZyA(f)
//
ZyA(B) ZyA(g)

//
ZyA(C)

)
is left-exact in ZÂ, cf. definition 1.2.3.(b). Therefore this sequence is left-exact in GQL(A) as

well, cf. remark 2.5.5. We have to show that it is exact in GQL(A). It suffices to prove that

ZyA(g) is epimorphic in GQL(A). Thus we have to show that the cokernel C◦g of ZyA(g) in ZÂ
is effaceable, cf. remark 2.5.7.

Suppose given X
h //C in A.
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Choose a pullback

P
p
//

u
��

X

h
��

B
g
// C

in A. So p is a pure epimorphism in A with ph = ug.

We conclude that C◦p is effaceable. Thus ZyA(g) is epimorphic in GQL(A) and, consequently,

the sequence
(
YA(A)

YA(f)
//YA(B)

YA(g)
//YA(C)

)
is exact in GQL(A).

Conversely, suppose that the sequence(
YA(A)

YA(f)
// YA(B)

YA(g)
// YA(C)

)
=
(

ZyA(A) ZyA(f)
//
ZyA(B) ZyA(g)

//
ZyA(C)

)
is exact in GQL(A). So it is left-exact in ZÂ, cf. remark 2.5.3. Thus f is a kernel of g in A,

cf. definition 1.2.3.(b). It suffices to show that g is a pure epimorphism. By remark 2.5.7, the

cokernel C◦g of ZyA(g) in ZÂ is effaceable. So for C
1C //C in A, we may choose P u //B and

a pure epimorphism P
p
//C in A such that p = p1C = ug. By the obscure axiom 1.5.13.(b),

we conclude that g is purely epimorphic. Thus the sequence A
f
//B

g
//C is purely short

exact in A.

P
p
//

u
��

C

1C
��

B
g
// C

We show that Imess(YA) is closed under extensions.

Suppose given A,B ∈ ObA and a short exact sequence ZyA(A)
f
//F

g
//
ZyA(B) in GQL(A).

We have to find X ∈ ObA such that F ∼= ZyA(X) in GQL(A).

For D ∈ ObA, we have the usual cokernel HomA(D,B)
cD //HomA(D,B)/ Im(gD) of fD

in Mod-Z, where cD is the projection morphism and Im(gD) is the set-theoretic image of the

map gD . We abbreviate h := h+ Im(gD) for h ∈ HomA(D,B) if unambiguous.

Remark 1.1.9.(b) yields the functor C : Aop → Mod-Z and the transformation c : ZyA(B)⇒ C

such that c is a cokernel of g in ZÂ. For E
k //D in A and h ∈ HomA(D,B), we have

C(D) = HomA(D,B)/ Im(gD) and hC(kop) = kh ∈ HomA(E,B)/ Im(gE).

Since g is epimorphic in GQL(A), the cokernel C of g in ZÂ is effaceable, cf. remark 2.5.7. So

for 1B ∈ HomA(B,B)/ Im(gB), we may choose a pure short exact sequence I i //P
p
//B in

A such that

p = (1B)C(pop) = 0 ∈ HomA(P,B)/ Im(gP ).



105

Thus we may choose x ∈ F (P ) with (x)gP = p.

Let α := (x)Zγ
−1
F,P : ZyA(P ) ⇒ F , cf. lemma 1.2.2.(b) and definition 1.2.3.(b). Note that

(1P )αP = x and αg = ZyA(p).

Choose a pullback

Q
g′

//

q

��

ZyA(P )

ZyA(p)

��

F
g

//
ZyA(B)

in GQL(A). By the kernel-cokernel-criterion, lemma 1.1.2, the morphism g′ is epimorphic in

GQL(A) and we may choose a commutative diagram

ZyA(A)

1
��

f ′
// Q

g′
//

q

��

ZyA(P )

ZyA(p)

��

ZyA(A)
f

// F
g

//
ZyA(B)

in GQL(A) such that f ′ is a kernel of g′.

For 1
ZyA(P ) and α, we may choose ZyA(P ) u //Q in GQL(A) such that ug′ = 1

ZyA(P ) and uq = α.

ZyA(P )
1

((
u
""

α

��

Q
g′

//

q

��

ZyA(P )

ZyA(p)

��

F
g

//
ZyA(B)

So the sequence ZyA(A)
f ′
//Q

g′
//
ZyA(P ) is split short exact. Since ZyA is additive, we may

choose an isomorphism ZyA(A⊕ P ) v //Q in GQL(A) such that vg′ = ZyA ( 0
1 ).

Cf. convention 38.

Let r := vq. We obtain the pullback

ZyA(A⊕ P )

r

��

ZyA( 0
1 )

//
ZyA(P )

ZyA(p)

��

F
g

//
ZyA(B)

in GQL(A). Since ZyA is exact, ZyA(p) is epimorphic. Hence r is epimorphic.
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Again by the kernel-cokernel-criterion, lemma 1.1.2, and by the fullness of ZyA , we may choose

a commutative diagram

ZyA(I)

ZyA( a b )

��

1 //
ZyA(I)

ZyA(i)

��

ZyA(A⊕ P )

r

��

ZyA( 0
1 )

//
ZyA(P )

ZyA(p)

��

F
g

//
ZyA(B)

in GQL(A) such that ZyA ( a b ) is a kernel of r. Note that ZyA(b) = ZyA ( a b ) · ZyA ( 0
1 ) = ZyA(i),

so b = i by the faithfulness of ZyA.

Moreover, we have

(
I

( a i )
// A⊕ P

)
=
(
I

( 0 1 )
// A⊕ I

( 1 0
a 1 )

// A⊕ I
( 1 0

0 i ) // A⊕ P
)

in A, where ( 0 1 ) is purely monomorphic, ( 1 0
a 1 ) is isomorphic with inverse ( 1 0

−a 1 ) and ( 1 0
0 i ) is

purely monomorphic by lemma 1.5.11.(b).

Thus ( a i ) is purely monomorphic as composite of pure monomorphisms. Choose a cokernel

A⊕ P
( de )

//X of ( a i ) in A. Since YA is exact, ZyA ( de ) is a cokernel of ZyA ( a i ). Since r is also

a cokernel of ZyA ( a b ), we conclude that F ∼= ZyA(X) in GQL(A).

2.5.3 An elementary description of cokernels in GQL(A)

We shall give a description of cokernels in the Gabriel-Quillen-Laumon category GQL(A) with-

out using the language of sheaves. This is possible but probably not very helpful.

We will not use the results of section 2.5.3 in the sequel.

For a pure epimorphism P �p //A in A, let Kp •
kp
//P be a kernel of p.

Lemma/Definition 2.5.9. Suppose given an additive Z-presheaf F : Aop → Mod-Z.

Suppose given C ∈ ObA.

Let Fz
0 (C) denote the set of all pairs (x, P �p //C ), where p is a pure epimorphism in A and

x ∈ F (P ) such that (x)F (kop
p ) = 0.

For (x, P �p //C ), (x′, P ′ �p
′
//C ) ∈ Fz

0 (C), let (x, P
p
//C ) ∼ (x′, P ′

p′
//C ) if and only if
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there exists a commutative diagram

P

�
p

  

Q

q
>>

q′ ��

C

P ′

>
p′

??

in A such that qp = q′p′ is a purely epimorphic and such that (x)F (qop) = (x′)F (q′ op).

This defines an equivalence relation on Fz
0 (C). Let Fz(C) := Fz

0 (C)/∼ denote the factor set.

Let [x, P �p //C ] ∈ Fz(C) denote the equivalence class of (x, P �p //C ) ∈ Fz
0 (C).

We shall construct mutually inverse maps

F+(C)
uFC // Fz(C).
vFC

oo

Suppose given [ξ, S] ∈ F+(C), cf. remark 2.3.3. Choose a pure epimorphism
(
P �p //C

)
∈ S

and let

[ξ, S]uFC := [(p)ξP , P
�p //C ].

This definition is independent of the choice of the pure epimorphism.

Conversely, suppose given [x, P �p //C ] ∈ Fz(C). For X ∈ ObA, let

p
xξX : Sp ∩HomA(X,C)→ F (X) :

(
X

g
//P

p
//C
)
7→ (x)F (gop).

Let p
xξ := (pxξX)X∈ObA and let [x, P �p //C ]vFC := [pxξ, Sp].

Suppose given D
f
//C in A. We shall define Fz(f op) : Fz(C)→ Fz(D).

Suppose given [x, P �p //C ] ∈ Fz(C).

Choose a commutative diagram

P ′ �p
′
//

f ′

��

D

f
��

P �p // C

in A such that p′ is a pure epimorphism. This is possible since we may e.g. form the pullback

of f and p.
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Let [x, P �p //C ]Fz(f op) := [(x)F (f ′ op), P ′ �p
′
//D ]. This definition is independent of the

choice of the commutative diagram.

By defining the Z-module structure on Fz(C) via uFC for C ∈ ObA, the maps uFC , vFC and

Fz(f op) become Z-linear for D
f
//C in A.

We obtain a Z-presheaf Fz : Aop → Mod-Z and an isotransformation

uF := (uFC)C∈ObA : F+ ⇒ Fz.

Proof.
1. We show that ∼ defines an equivalence relation on Fz

0 (C).

Using identities, we see that ∼ is reflexive. By construction, ∼ is symmetric.

Suppose given (x, P �p //C ), (x′, P ′ �p
′
//C ), (x′′, P ′′ �p

′′
//C ) ∈ Fz

0 (C) such that

(x, P �p //C ) ∼ (x′, P ′ �p
′
//C ) and (x′, P ′ �p

′
//C ) ∼ (x′′, P ′′ �p

′′
//C ).

We may choose commutative diagrams

P

�
p

  

Q

q
>>

q′ ��

C

P ′

>
p′

??

P ′

�
p′

  

R

r′
>>

r′′   

C

P ′′

<
p′′

>>

in A such that qp = q′p′ and r′p′ = r′′p′′ are pure epimorphisms and such that

(x)F (qop) = (x′)F (q′ op) and (x′)F (r′ op) = (x′′)F (r′′ op).

Choose a pullback

Q

�
q′p′

��

S

@s
??

�
t
��

C

R

>
r′p′

??

in A. Note that s and t are purely epimorphic.

The diagram

P

�
p

  

S

sq
>>

tr′′   

C

P ′′

<
p′′

>>
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commutes in A since sqp = sq′p′ = tr′p′ = tr′′p′′, which is, moreover, purely epimorphic.

Moreover, we have (sq′ − tr′)p′ = sq′p′ − tr′p′ = 0. So there exists S u //Kp′ in A such

that ukp′ = sq′ − tr′ since kp′ is a kernel of p′.

We have

(x)F ((sq)op)− (x′′)F ((tr′′)op) = (x)F (qop)F (sop)− (x′′)F (r′′ op)F (top)

= (x′)F (q′ op)F (sop)− (x′)F (r′ op)F (top)

= (x′)F ((sq′ − tr′)op)

= (x′)F ((ukp′)
op)

= (x′)F (kop
p′ )F (uop)

= (0)F (uop)

= 0,

thus (x)F ((sq)op) = (x′′)F ((tr′′)op).

We conclude that ∼ is transitive.

P

jp

��

Q

q
>>

q′   

P ′

�
p′   

S

Os

GG

o
t

��

C

P ′

<p′
>>

R

r′
>>

r′′   

P ′′

S
p′′

II

2. We show that uFC is a well-defined map.

Suppose given [ξ, S] ∈ F+(C). Choose a pure epimorphism
(
P �p //C

)
∈ S. We have

(p)ξP F (kop
p ) = (p) FS(kop

p ) ξKp = (kpp)ξKp = (0Kp,C)ξKp

= (0Kp,C) FS(0op
Kp

) ξKp = (0Kp,C) ξKpF (0op
Kp

)

= 0
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since F is additive.

Suppose given another pure epimorphism
(
P ′ �p

′
//C
)
∈ S.

Choose a pure epimorphism q ∈ Sp ∩ Sp′ . So there exist Q a //P and Q a′ //P ′ such

that ap = q = a′p′. So the diagram

P

�
p

  

Q

a

>>

a′ ��

�q // C

P ′

>
p′

??

commutes, the morphism q = ap = a′p′ is purely epimorphic and we have

(p)ξP F (aop) = (p) FS(aop) ξQ = (ap)ξQ = (q)ξQ

= (a′p′)ξQ = (p′) FS(a′ op) ξQ

= (p′)ξP ′ F (a′ op).

Suppose given [ξ′, S ′] ∈ F+(C) such that [ξ, S] = [ξ′, S ′]. We may choose a pure epimor-

phism
(
P �p //C

)
∈ S ∩ S ′. Since we already know that the definition is independent of

the choice of the epimorphism, we conclude that it is also independent of the choice of

the representative:

[ξ, S]uFC = [(p)ξP , P
�p //C ] = [ξ′, S ′]uFC .

3. We show that vFC is a well-defined map.

Suppose given [x, P �p //C ] ∈ Fz(C). Suppose given X
g
//

h
//P in A such that gp = hp.

So (g − h)p = 0 and thus we may choose X u //Kp in A such that ukp = g − h since kp
is a kernel of p. We have

(x)F (gop)− (x)F (hop) = (x)(F (gop)− F (hop)) = (x)F ((g − h)op) = (x)F ((ukp)
op)

= (x)F (kop
p )F (uop) = (0)F (uop) = 0.

We conclude that (x)F (gop) = (x)F (hop).

Thus p
xξX : Sp ∩HomA(X,C)→ F (X) is well-defined.

Suppose given Y
h //X in A. For X

g
//P in A, we have

(gp) pxξX F (hop) = (x)F (gop)F (hop) = (x)F ((hg)op) = (hg) pxξY = (g) FSp(h
op) pxξY .
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Thus p
xξ is natural.

FSp(X)
p
xξX //

FSp (hop)

��

F (X)

F (hop)

��

FSp(Y )
p
xξY // F (Y )

Suppose [x, P �p //C ] = [x′, P ′ �p
′
//C ]. Then we have a commutative diagram

P

�
p

  

Q

q
>>

q′ ��

C

P ′

>
p′

??

in A such that p, p′ are purely epimorphic, such that qp = q′p′ is purely epimorphic and

such that (x)F (qop) = (x′)F (q′ op). Note that Sqp ⊆ Sp ∩ Sp′ . For R r //Q in A, we

have

(rqp) pxξR = (x)F ((rq)op) = (x)F (qop)F (rop) = (x′)F (q′ op)F (rop) = (x′)F ((q′r)op)

= (rq′p′) p
′

x′ξR = (rqp) p
′

x′ξR .

We conclude that [pxξ, Sp] =
[
p′

x′ξ, Sp′
]
.

So the definition is independent of the choice of the representative.

4. We show that uFC and vFC are mutually inverse.

Suppose given [ξ, S] ∈ F+(C). Choose a pure epimorphism
(
P �p //C

)
∈ S.

We have

(([ξ, S])uFC)vFC = ([(p)ξP , P
p
//C ])vFC =

[
p

(p)ξP
ξ, Sp

]
.

Note that Sp ⊆ S. For X
g
//P in A, we have

(gp) p
(p)ξP

ξX = (p)ξP F (gop) = (p) FS(gop) ξX = (gp)ξX .

Thus [ξ, S] =
[

p
(p)ξP

ξ, Sp

]
and, consequently, uFC · vFC = 1.

Conversely, suppose given [x, P �p //C ] ∈ Fz(C). We have

(([x, P �p //C ])vFC )uFC = ([pxξ, Sp])u
F
C = [(p) pxξP , P

�p //C ]

and (p) pxξP = (x)F (1op) = x.

Thus [(p) pxξP , P
�p //C ] = [x, P �p //C ] and, consequently, vFC · uFC = 1.
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5. We show that Fz(f op) is a well-defined map.

Suppose given D
f
//C in A and [x, P �p //C ] ∈ Fz(C).

Choose a pullback

Q �q //

r
��

D

f
��

P �p // C

in A. For a commutative diagram

P ′ �p
′
//

f ′

��

D

f
��

P �p // C

in A such that p′ is a pure epimorphism, we obtain P ′
u //Q in A such that uq = p′ and

ur = f ′. Thus the diagram

P ′

�
p′

  

P ′

1

>>

u
  

D

Q

>
q

>>

commutes in A and uq = p′ is a pure epimorphism. We have

(x)F (f ′ op)F (1op) = (x)F ((ur)op) = (x)F (rop)F (uop)

and, consequently, [(x)F (f ′ op), P ′ �p
′
//D ] = [(x)F (rop), Q �q //D ]. We conclude that

this definition is independent of the choice of the commutative diagram.

Moreover, let Kp′
` //Kp be the induced morphism between the kernels such that the

diagram

Kp′ •
kp′
//

`
��

P ′ �p
′
//

f ′

��

D

f

��

Kp •
kp
// P �p // C

commutes. We obtain

(x)F (f ′ op)F (kop
p′ ) = (x)F ((kp′f

′)op) = (x)F ((`kp)
op) = (x)F (kop

p )F (`op) = (0)F (`op) = 0.
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So indeed [(x)F (f ′ op), P ′ �p
′
//D ] ∈ Fz(D).

Now suppose given [x′, P ′ �p
′
//C ] ∈ Fz(C) such that [x, P �p //C ] = [x′, P ′ �p

′
//C ].

There exists a commutative diagram

P

�
p

  

Q

q
>>

q′ ��

C

P ′

>
p′

??

in A such that qp = q′p′ is purely epimorphic.

Choose a pullback

R �r //

s
��

D

f
��

Q �qp // C

in A. Note that r is purely epimorphic. We obtain the commutative diagrams

R �r //

sq
��

D

f
��

P �p // C

and

R �r //

sq′

��

D

f
��

P �p
′
// C

in A. Thus [(x)F ((sq)op), R �r //D ] = [(x′)F ((sq′)op), R �r //D ].

We conclude that this definition is independent of the choice of a representative.

6. We show that uF is natural.

Suppose given D
f
//C in A and [ξ, S] ∈ F+(C). Choose a pure epimorphism(

P �p //C
)
∈ S and a pullback

P ′ �p
′
//

f ′

��

D

f
��

P �p // C

in A. Note that p′ is purely epimorphic and that p′ ∈ f ∗(S) since p′f = f ′p ∈ S. We

have

[ξ, S]uFC F
z(f op) = [(p)ξP , P

�p //C ]Fz(f op) = [(p)ξP F (f ′ op), P ′ �p
′
//D ]

= [(p) FS(f ′ op) ξP ′ , P
′ �p

′
//D ] = [(f ′p)ξP ′ , P

′ �p
′
//D ]

= [(p′f)ξP ′ , P
′ �p

′
//D ] = [(p′)ξfP ′ , P

′ �p
′
//D ]

= [ξf , f ∗(S)]uFC = [ξ, S]F+(f op)uFC ,
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cf. definition 2.3.7.

Thus uFC F
z(f op) = F+(f op)uFC .

F+(C)
uFC //

F+(fop)
��

Fz(C)

Fz(fop)
��

F+(D)
uFD // Fz(D)

Lemma/Definition 2.5.10. Suppose given an additive Z-presheaf F : Aop → Mod-Z.

Suppose given C ∈ ObA.

Let F̆0(C) denote the set of all pairs (x, Q �q //P �p //C ), where p and q are pure epimorphisms

in A and x ∈ F (Q) such that the following two conditions hold. Let r denote the induced

morphism between the kernels Kqp and Kp such that the diagram

Kqp

r

��

•
kqp

// Q

_ q
��

�qp // C

1
��

Kp •
kp
// P �p // C

commutes in A.

• (x)F (kop
q ) = 0

• There exists V
v //Kqp in A such that vr is a pure epimorphism and such that

(x)F ((vkqp)
op) = 0.

For (x, Q �q //P �p //C ), (x′, Q′ �q
′
//P ′ �p

′
//C ) ∈ F̆0(C), let

(x, Q �q //P �p //C ) ∼ (x′, Q′ �q
′
//P ′ �p

′
//C ) if and only if there exists a commutative diagram

Q

�
q

  

P

�
p

  

M

m

@@

m′

��

C

P ′

=
p′

>>

Q′

=
q′

>>

in A such that mqp = m′q′p′ is purely epimorphic and such that (x)F (mop) = (x′)F (m′ op).
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This defines an equivalence relation on F̆0(C). Let F̆ (C) := F̆0(C)/∼ denote the factor set.

Let [x, Q �q //P �p //C ] ∈ F̆ (C) denote the equivalence class of (x, Q �q //P �p //C ) ∈ F̆0(C).

The map

Fzz(C)
sFC−−−→ F̆ (C)

[[x, Q �q //P ], P �p //C ] 7−−−→ [x, Q �q //P �p //C ]

is a bijection with inverse

F̆ (C)
tFC−−→Fzz(C)

[x, Q �q //P �p //C ] 7−−−→ [[x, Q �q //P ], P �p //C ].

By defining the Z-module structure on F̆ (C) via sFC , we obtain Fzz(C) ∼= F̆ (C) in Mod-Z.

By lemma 2.5.9, we have the isotransformations

F++ (uF )+

∼
// (Fz)+ uF

z

∼
// Fzz.

Thus

F̃ (C) = F++(C) ∼= (Fz)+(C) ∼= Fzz(C) ∼= F̆ (C)

in Mod-Z.

Proof.

1. We show that ∼ defines an equivalence relation on F̆0(C).

Using identities, we see that ∼ is reflexive.

By construction, ∼ is symmetric.

Suppose given

(x, Q �q //P �p //C ), (x′, Q′ �q
′
//P ′ �p

′
//C ), (x′′, Q′′ �q

′′
//P ′′ �p

′′
//C ) ∈ F̆0(C)

such that (x, Q �q //P �p //C ) ∼ (x′, Q′ �q
′
//P ′ �p

′
//C ) and

(x′, Q′ �q
′
//P ′ �p

′
//C ) ∼ (x′′, Q′′ �q

′′
//P ′′ �p

′′
//C ).
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We may choose commutative diagrams

Q

�
q

  

P

�
p

  

M

m

@@

m′

��

C

P ′

=
p′

>>

Q′

=
q′

>>

and

Q′

�
q′

!!

P ′

�
p′

  

L

`′

@@

`′′

��

C

P ′′

<
p′′

>>

Q′′

<
q′′

==

in A such that mqp and `′q′p′ are purely epimorphic and such that

(x)F (mop) = (x′)F (m′ op) and (x′)F (`′ op) = (x′′)F (`′′ op).

Let r denote the induced morphism between the kernels Kq′p′ and Kp′ such that the

diagram

Kq′p′

r

��

•
kq′p′

// Q

_ q′
��

�q
′p′
// C

1

��

Kp′ •
kp′

// P ′ �p
′
// C

commutes in A. There exists V v //Kq′p′ in A such that vr is a pure epimorphism and

such that (x′)F ((vkq′p′)
op) = 0.

Choose a pullback

S �s //

_t
��

M

_m′q′p′
��

L �`′q′p′
// C

in A. Note that s and t are purely epimorphic. We have (sm′q′− t`′q′)p′ = 0. So we may

choose S
j
//Kp′ in A such that sm′q′ − t`′q′ = jkp′ .

Choose a pullback

Y �y //

z

��

S

j
��

V �vr // Kp′

in A. Note that y is purely epimorphic. We have

(ysm′ − yt`′ − zvkq′p′)q′ = ysm′q′ − yt`′q′ − zvkq′p′q′ = y(sm′q′ − t`′q′)− zvrkp′
= yjkp′ − yjkp′ = 0.
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So we may choose Y k //Kq′ in A such that ysm′ − yt`′ − zvkq′p′ = kkq′ , i.e.

ysm′ − yt`′ = zvkq′p′ + kkq′ .

We obtain

(x′)F ((ysm′)op)− (x′)F ((yt`′)op) = (x′)F ((ysm′ − yt`′)op) = (x′)F ((zvkq′p′ + kkq′)
op)

= (x′)F ((vkq′p′)
op)F (zop) + (x′)F (kop

q′ )F (kop) = 0

and thus

(x)F ((ysm)op) = (x)F (mop)F ((ys)op) = (x′)F (m′ op)F ((ys)op)

= (x′)F ((ysm′)op) = (x′)F ((yt`′)op) = (x′)F (`′ op)F ((yt)op)

= (x′′)F (`′′ op)F ((yt)op) = (x′′)F ((yt`′′)op).

Moreover, the diagram

Q

�
q

!!

P

�
p

  

Y

ysm

@@

yt`′′

��

C

P ′′

<
p′′

>>

Q′′

<
q′′

==

commutes in A and ysmqp is purely epimorphic.

We conclude that ∼ is transitive.

2. We want to show that sFC and tFC are well-defined maps.

Suppose given Q
q
//P

p
//C in A such that q and p are purely epimorphic. Suppose

given x ∈ F (Q) such that (x)F (kop
q ) = 0.

Let r denote the induced morphism between the kernels kqp and kp such that the diagram

Kqp

r

��

•
kqp

// Q

_ q
��

�qp // C

1
��

Kp •
kp
// P �p // C

commutes in A. By lemma 1.1.2.(a), the diagram

Kqp

r

��

•
kqp

// Q

_ q
��

Kp •
kp
// P
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is a pullback and thus r is purely epimorphic.

We have [x, Q �q //P ]Fz(kop
p ) = [(x)F (kop

qp ), Kqp
�r //Kp ].

So [x, Q �q //P ]Fz(kop
p ) = 0 if and only if there exists V v //Kqp in A such that vr is

purely epimorphic and such that (x)F ((vkqp)
op) = 0.

Thus [[x, Q �q //P ], P �p //C ] ∈ Fzz(C) if and only if [x, Q �q //P �p //C ] ∈ F̆ (C).

Now suppose given [[x, Q �q //P ], P �p //C ], [[x′, Q′ �q
′
//P ′ ], P ′ �p

′
//C ] ∈ Fzz(C) such

that [[x, Q �q //P ], P �p //C ] = [[x′, Q′ �q
′
//P ′ ], P ′ �p

′
//C ].

So we may choose a commutative diagram

P

�
p

  

R

r

>>

r′   

C

P ′

=
p′

>>

in A such that rp is purely epimorphic and such that

[x, Q �q //P ]Fz(rop) = [x′, Q′ �q
′
//P ′ ]Fz(r′ op).

Choose pullbacks

S

s′

��

�s // R

r
��

Q �q // P

and

T

t′

��

�t // R

r′

��

Q′ �q
′
// P ′

in A. Note that s and t are purely epimorphic. We have

[(x)F (s′ op), S �s //R ] = [x, Q �q //P ]Fz(rop) = [x′, Q′ �q
′
//P ′ ]Fz(r′ op)

= [(x′)F (t′ op), T �t //R ].

So we may choose a commutative diagram

S

�s

��

U

u

??

u′ ��

R

T

?
t

??

in A such that us is purely epimorphic and such that

(x)F (s′ op)F (uop) = (x′)F (t′ op)F (u′ op).
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We obtain the commutative diagram

Q

�
q

  

P

�
p

  

U

us′

@@

u′t′

��

C

P ′

=
p′

>>

Q′

=
q′

>>

in A with us′qp = usrp purely epimorphic and (x)F ((us′)op) = (x′)F ((u′t′)op).

So [x, Q �q //P �p //C ] = [x′, Q′ �q
′
//P ′ �p

′
//C ].

Conversely, suppose given [x, Q �q //P �p //C ], [x′, Q′ �q
′
//P ′ �p

′
//C ] ∈ F̆ (C) such that

[x, Q �q //P �p //C ] = [x′, Q′ �q
′
//P ′ �p

′
//C ].

We may choose a commutative diagram

Q

�
q

  

P

�
p

  

M

m

@@

m′

��

C

P ′

=
p′

>>

Q′

=
q′

>>

in A such that mqp = m′q′p′ is purely epimorphic and such that (x)F (mop) =

(x′)F (m′ op).

We have [x, Q �q //P ]Fz((mq)op) = [(x)F (mop), M 1 //M ] and, similarly,

[x′, Q′ �q
′
//P ′ ]Fz((m′q′)op) = [(x′)F (m′ op), M 1 //M ].

Thus [[x, Q �q //P ], P �p //C ] = [[x′, Q′ �q
′
//P ′ ], P ′ �p

′
//C ].

3. The maps sFC and tFC are mutually inverse by construction.



Chapter 3

Localisation

Suppose given an abelian category A.

From after remark 3.1.2 on, we will suppose given a thick subcategory N of A.

3.1 Thick subcategories

3.1.1 Definition and basic properties

Definition 3.1.1. A full non-empty subcategory N of A is called thick in A if for each short

exact sequence A
f
//B

g
//C in A, we have B ∈ ObN if and only if A,C ∈ ObN .

Remark 3.1.2. A full non-empty subcategory N of A is thick in A if and only if it is closed

under extensions, subobjects and factor objects. Cf. convention 40.

Suppose given a thick subcategory N of A for the remainder of this chapter 3.

Remark 3.1.3.

We use the term thick in the sense of [13, defn. 19.5.4]. Some use the ’Serre subcategory’

instead.

Lemma 3.1.4. Suppose given n ∈ N0 and an exact sequence

A0
a0 // A1

a1 // A2
a2 // · · · an−2

// An−1
an−1

// An

in A.

Suppose that i ∈ [1, n− 1] and that Ai−1, Ai+1 ∈ ObN . Then Ai ∈ ObN as well.
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Proof. Choose images

Ai−1
ai //

�
pi

!!

Ai
ai+1

//

�
pi+1

!!

Ai+1

Ii

•
ji

??

Ii+1

•
ji+1

<<

in A. We have Ii ∈ ObN since Ai−1 ∈ ObN and, similarly, Ii+1 ∈ ObN since Ai+1 ∈ ObN .

Thus Ai ∈ ObN since Ii, Ii+1 ∈ ObN .

Lemma 3.1.5. The thick subcategory N of A is a full additive subcategory of A which is

closed under isomorphisms.

Proof. Choose an object A ∈ ObN . The sequence 0A
0 //A 1 //A is short exact in A and,

consequently, we have 0A ∈ ObN .

Suppose given objects A,B ∈ ObN . The sequence A
( 1 0 )

//A⊕B
( 0

1 )
//B is short exact in A so

that we have A⊕B ∈ ObN . Thus N is a full additive subcategory of A.

Suppose given an isomorphism A
f
//B in A with A ∈ ObN . The sequence 0A

0 //A
f
//B

is short exact in A and, consequently, we have B ∈ ObN .

Remark 3.1.6. Suppose given A
f
//B in N . Suppose given a kernel K k //A of f in A and

a cokernel B c //C of f in A. Then k is a kernel of f in N and c is a cokernel of f in N as

well.

Thus N is an abelian category and the inclusion functor from N to A is exact.

Remark 3.1.7. The subcategory N op of Aop is a thick subcategory of Aop. So we may use

duality arguments.

Corollary 3.1.8. Suppose given an abelian category B and an exact functor F : A → B. Recall

that the kernel of F is the full subcategory Ker(F ) of A defined by

Ob(Ker(F )) := {A ∈ ObA : F (A) ∼= 0B in B},

cf. convention 41.

The kernel Ker(F ) of F is a thick subcategory of A.

Cf. remark 3.2.19 below.

Proof. Since F is additive, we have F (0A) ∼= 0B in B. Thus Ker(F ) is non-empty.

Suppose given a short exact sequence A •
f
//B �g //C in A. Since F is exact, the sequence

F (A)
F (f)

//F (B)
F (g)

//F (C) is short exact in B.

We have F (B) ∼= 0B if and only if F (A), F (C) ∼= 0B in B by lemma 1.1.7.

Thus B ∈ Ob(Ker(F )) if and only if A,C ∈ Ob(Ker(F )).
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3.1.2 Generating thick subcategories

We will not use the results of this section 3.1.2 in the remaining sections 3.2 and 3.3 of chapter 3.

Suppose given a full subcategory M of A.

3.1.2.1 Definition and basic properties

Remark 3.1.9. An arbitrary intersection of thick subcategories of A is thick. More precisely,

suppose given a set I and thick subcategories Li of A for i ∈ I. Then
⋂
{Li : i ∈ I} is a thick

subcategory of A.

Definition 3.1.10. Let

A〈M〉 :=
⋂
{L : L is a thick subcategory of A such that M⊆ L}

denote the thick subcategory generated by M in A. We write 〈M〉 := A〈M〉 if unambiguous.

Note that 〈M〉 is the smallest thick subcategory of A containing M. Cf. remark 3.1.9.

We present two ways of describing thick subcategories generated by a full subcategory in the

sections 3.1.2.2 and 3.1.2.3.

Remark 3.1.11. Suppose given an abelian category B and an exact functor F : A → B.

If M⊆ Ker(F ), then 〈M〉 ⊆ Ker(F ).

So if F (M) ∼= 0B for M ∈ ObM, then F (A) ∼= 0B for A ∈ Ob(〈M〉).

Proof. By corollary 3.1.8, the kernel Ker(F ) of F is a thick subcategory of A.

So if M ⊆ Ker(F ), then 〈M〉 ⊆ Ker(F ) since 〈M〉 is the smallest thick subcategory of A
containing M.

3.1.2.2 Recursive description

Definition 3.1.12. Suppose given a full subcategory L of A.

An object A ∈ ObA is called L-thick if one of the following three statements holds.

• We have A ∈ ObL.

• There exists a short exact sequence L • //A � //L′ in A with L,L′ ∈ ObL.

• There exists a short exact sequence B • //L � //B′ in A with L ∈ ObL and

A ∈ {B,B′}.
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Proposition 3.1.13. Let M0 be the full subcategory of A defined by

Ob(M0) := {A ∈ ObA : A ∼= M in A for some M ∈ ObM∪ {0A}}.

For i ∈ Z>0 , let Mi be the full subcategory of A defined recursively by

Ob(Mi) := {A ∈ ObA : A is (Mi−1)-thick}.

We have

〈M〉 =
⋃

i∈Z≥0

Mi .

Proof. By construction, M0 and, consequently,
⋃
i∈Z≥0

Mi are non-empty and we have

M⊆M0 ⊆
⋃
i∈Z≥0

Mi . Note that Mj ⊆Mj+1 for j ∈ Z≥0 .

Suppose given a short exact sequence A
f
//B

g
//C in A.

Suppose that B ∈ Ob
(⋃

i∈Z≥0
Mi

)
. So there exists j ∈ Z≥0 such that B ∈ Ob(Mj). By

definition, A and C are Mj-thick and thus A,C ∈ Ob(Mj+1) ⊆ Ob
(⋃

i∈Z≥0
Mi

)
.

Suppose that A,C ∈ Ob
(⋃

i∈Z≥0
Mi

)
. So there exists j ∈ Z≥0 such that A,C ∈ Ob(Mj). By

definition, B is Mj-thick and thus B ∈ Ob(Mj+1) ⊆ Ob
(⋃

i∈Z≥0
Mi

)
.

We conclude that
⋃
i∈Z≥0

Mi is thick.

Suppose given a thick subcategory L of A such that M⊆ L.

By lemma 3.1.5, we have M0 ⊆ L.

Now suppose that Mj ⊆ L for some j ∈ Z≥0 . Suppose given an Mj-thick object A ∈ ObA.

Then A ∈ ObL since L is a thick subcategory of L. Thus Mj+1 ⊆ L.

By induction, we conclude that
⋃
i∈Z≥0

Mi ⊆ L.

So
⋃
i∈Z≥0

Mi is the smallest thick subcategory containing M.

3.1.2.3 Description using filtrations

We proceed in two steps. At first, we construct a subcategory 〈M〉sf of A that is closed under

subobjects and factor objects. Then we use filtrations to construct a subcategory 〈〈M〉sf〉filt of

A that is also closed under extensions and show that 〈M〉 = 〈〈M〉sf〉filt in caseM is non-empty.

In case M is empty, the objects of 〈M〉 are precisely of the zero objects of A.

Definition 3.1.14. Suppose given M,C ∈ ObA. We say that C is a subfactor of M in A if
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there exists a diagram

A •a // B •b //

�
c
  

M

C

in A such that A •a //B �c //C is short exact.

Lemma 3.1.15. Suppose given M,C ∈ ObA. The following three statements are equivalent.

(a) C is a subfactor of M in A, i.e. there exists a diagram

A •a // B •b //

�
c
  

M

C

in A such that A •a //B �c //C is short exact.

(b) There exists a commutative diagram

A •a // B •b //

�
c
  

M �x // X �y // Y

C

•
d

>>

in A such that A •a //B �c //C and C •d //X �y //Y are short exact.

(c) There exists a diagram

M �x // X �y // Y

C

•
d

>>

in A such that C •d //X �y //Y is short exact.

In particular, C is a subfactor of M in A if and only if C is a subfactor of M in Aop.

Proof. Ad (a)⇔(b). Note that (b) implies (a). Conversely, choose a cokernel M x //X of ab

and a cokernel M z //Y of b. By lemma 1.1.1, we obtain an exact sequence

0 // C d // X
y
// Y // 0

in A such that bx = cd.

Ad (b)⇔(c). This is dual to (a)⇔(b).
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Lemma/Definition 3.1.16. Let A〈M〉sf be the full subcategory of A defined by

Ob(A〈M〉sf) := {C ∈ ObA : there exists M ∈ ObM such that C is a subfactor of M in A}.

We have M ⊆ A〈M〉sf and (A〈M〉sf)op = Aop〈Mop〉sf . Moreover, the subcategory A〈M〉sf of

A is closed under subobjects and factor objects.

Suppose given a thick subcategory L of A such that M⊆ L. Then A〈M〉sf ⊆ L.

We abbreviate 〈M〉sf := A〈M〉sf if unambiguous.

Proof. Suppose given M ∈ ObM. The diagram

0 //M
1 //

1 !!

M

M

in A shows that M is a subfactor of M . Thus M ∈ Ob(A〈M〉sf).
We conclude that M⊆ A〈M〉sf .

Suppose given C ∈ ObA and M ∈ ObM. By lemma 3.1.15, C is a subfactor of M in A if and

only if C is a subfactor of M in Aop. Thus (A〈M〉sf)op = Aop〈Mop〉sf .

Suppose given M ∈ ObM and C ∈ ObA such that C is a subfactor of M . We may choose a

diagram

A •a // B •b //

�
c
  

M

C

in A such that A •a //B �c //C is short exact.

Suppose given C �d //D in A, i.e. a factor object of C. Choose a kernel Z •z //B of cd. So we

obtain the diagram

Z •z // B •b //

�
cd   

M

D

in A and Z •z //B �cd //D is short exact. So D is a subfactor of M as well.

Thus A〈M〉sf is closed under factor objects.

Dually, we conclude that A〈M〉sf is closed under subobjects.

Now suppose given a thick subcategory L of A such that M⊆ L.
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Suppose given M ∈ ObM and C ∈ ObA such that C is a subfactor of M . We may choose a

diagram

A •a // B •b //

�
c
  

M

C

in A such that A •a //B �c //C is short exact.

Since L is closed under subobjects, we have B ∈ ObL. Since L is closed under factor objects,

we conclude that C ∈ ObL.

Thus A〈M〉sf ⊆ L.

Definition 3.1.17. Suppose given X ∈ ObA. For n ∈ Z≥1 , a sequence

X1 •
x1 // X2 •

x2 // X3 •
x3 // · · · •

xn−2
// Xn−1 •

xn−1
// Xn •

xn // Xn+1

in A is called an M-filtration of X in A if the following two conditions hold.

• X1 ∈ ObM and Xn+1 = X.

• For i ∈ [1, n], there exists a cokernel Xi+1
�mi //Mi of xi in A such that Mi ∈ ObM.

The object X is called M-filtering in A if there exists an M-filtration of X in A.

Lemma 3.1.18. Suppose given X ∈ ObA.

The object X is M-filtering in A if and only if X is Mop-filtering in Aop.

Proof. Suppose that X is M-filtering in A.

By duality, it suffices to show that X is Mop-filtering in Aop.

We may choose n ∈ Z≥1 , an M-filtration

X1 •
x1 // X2 •

x2 // X3 •
x3 // · · · •

xn−2
// Xn−1 •

xn−1
// Xn •

xn // Xn+1

of X in A and cokernels Xi+1
�mi //Mi of xi such that Mi ∈ ObM for i ∈ [1, n].

We want to construct an Mop-filtration of X in Aop.

Let Y0 := X, Yn := Mn and qn := mn . Note that X �qn //Yn is a cokernel of xn .

For i ∈ [1, n− 1], we choose a cokernel X �qi //Yi of xixi+1 · · ·xn . Let y1 := q1 .
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By lemma 1.1.1, we obtain a commutative diagram

0 //

""

Mi−1

•`i−1

��

Xi

•
xi···xn

""

9
mi−1

<<

Xi−1

•
xi−1

<<

•
xi−1···xn

// X �qi−1
//

�
qi

##

Yi−1

_yi
��

Yi

in A such that the sequence Mi−1 •
`i−1

//Yi−1
�yi //Yi is short exact for i ∈ [2, n].

We obtain the sequence

Yn •
yop
n // Yn−1 •

yop
n−1
// Yn−2 •

yop
n−2
// · · · •

yop
3 // Y2 •

yop
2 // Y1 •

yop
1 // Y0

in Aop. We have Yn = Mn ∈ ObM and Y0 = X. Moreover, X1
(x1x2···xn)op

//Y0 is a cokernel of

yop
1 = qop

1 in Aop such that X1 ∈ ObM. For i ∈ [2, n], Yi−1

`op
i−1
//Mi−1 is a cokernel of yop

i in

Aop such that Mi−1 ∈ ObM.

Thus X is Mop-filtering in Aop.

Lemma/Definition 3.1.19. Let A〈M〉filt be the full subcategory of A defined by

Ob(A〈M〉filt) := {X ∈ ObA : X is M-filtering in A}.

We have (A〈M〉filt)
op = Aop〈Mop〉filt by lemma 3.1.18.

If M contains a zero object of A, then M⊆ A〈M〉filt .

Suppose given a thick subcategory L of A such that M⊆ L. Then A〈M〉filt ⊆ L.

We abbreviate 〈M〉filt := A〈M〉filt if unambiguous.

Proof. Suppose that Z ∈ ObM is a zero object of A. Suppose given M ∈ ObM. The

sequence M
1 //M is an M-filtration of M in A since M

0 //Z is a cokernel of 1M . Thus

M ∈ Ob(〈M〉filt). We conclude that M⊆ 〈M〉filt .

Suppose given a thick subcategory L of A such that M⊆ L.

Suppose given X ∈ Ob(〈M〉filt).

We may choose n ∈ Z≥1 , an M-filtration

X1 •
x1 // X2 •

x2 // X3 •
x3 // · · · •

xn−2
// Xn−1 •

xn−1
// Xn •

xn // Xn+1
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of X in A and cokernels Xi+1
�mi //Mi of xi such that Mi ∈ ObM for i ∈ [1, n].

By definition, we have X1 ∈ ObM⊆ ObL.

Suppose that Xi ∈ ObL for some i ∈ [1, n]. The sequence Xi •
xi //Xi+1

�mi //Mi is short exact

such that Xi,Mi ∈ ObL. Since L is closed under extensions, we have Xi+1 ∈ ObL.

Inductively, we conclude that X = Xn+1 ∈ ObL.

Thus A〈M〉filt ⊆ L.

Lemma 3.1.20. Suppose that M is non-empty and that it is closed under subobjects and

factor objects. Then M ⊆ 〈M〉filt and 〈M〉filt is closed under subobjects, factor objects and

extensions in A. I.e. 〈M〉filt is a thick subcatgory of A containing M, cf. remark 3.1.2.

Proof. Since M is non-empty and closed under subobjects, M contains the zero objects of A.

Therefore M⊆ 〈M〉filt , cf. definition 3.1.19.

We will use the kernel-cokernel-criterion lemma 1.1.2 repeatedly without comment.

We show that 〈M〉filt is closed under subobjects.

Suppose given a monomorphism W •z //X in A such that X is M-filtering.

We may choose n ∈ Z≥1 , an M-filtration

X1 •
x1 // X2 •

x2 // X3 •
x3 // · · · •

xn−2
// Xn−1 •

xn−1
// Xn •

xn // Xn+1

of X in A and cokernels Xi+1
�mi //Mi of xi such that Mi ∈ ObM for i ∈ [1, n].

We want to construct an M-filtration of W in A.

Let Wn+1 := W and zn+1 := z.

Recursively, choose pullbacks

Wi •
wi //

•zi
��

Wi+1

•zi+1

��

Xi •
xi // Xi+1

and cokernels Wi
�̀i //Li of wi in A for i ∈ [1, n]. Note that the induced morphism between

the cokernels Li and Mi is monomorphic and thus Li ∈ ObM for i ∈ [1, n]. Moreover, we have

W1 ∈ ObM since X1 ∈ ObM.

Thus the sequence

W1 •
w1 //W2 •

w2 //W3 •
w3 // · · · •

wn−2
//Wn−1 •

wn−1
//Wn •

wn //Wn+1

is an M-filtration of W . We conclude that W ∈ Ob(〈M〉filt).
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Dually, 〈M〉filt is closed under factor objects.

We show that 〈M〉filt is closed under extensions.

Suppose given a short exact sequence X •
f
//Y �g //Z in A such that X and Z areM-filtering.

We may choose n ∈ Z≥1 , an M-filtration

Z1 •
z1 // Z2 •

z2 // Z3 •
z3 // · · · •

zn−2
// Zn−1 •

zn−1
// Zn •

zn // Zn+1

of Z in A and cokernels Zi+1
�mi //Mi of zi such that Mi ∈ ObM for i ∈ [1, n].

Let Yn+1 := Y , gn+1 := g and fn+1 := f .

Recursively, choose pullbacks

Yi •
yi //

_gi

��

Yi+1

_gi+1

��

Zi •
zi // Zi+1 ,

cokernels Yi
�ci //Ci of yi and kernels X •

fi //Yi of gi in A for i ∈ [1, n]. Note that the induced

morphism between the cokernels Ci and Mi is monomorphic and thus Ci ∈ ObM for i ∈ [1, n].

Note that Y1
�g1
//Z1 is a cokernel of f1 such that Z1 ∈ ObM.

Since X is M-filtering, we may choose k ∈ Z≥1 , an M-filtration

X1 •
x1 // X2 •

x2 // X3 •
x3 // · · · •

xn−2
// Xn−1 •

xn−1
// Xn •

xn // Xn+1

of X in A and cokernels Xi+1
�̀i //Li of xi such that Li ∈ ObM for i ∈ [1, n].

The sequence

X1 •
x1 // X2 •

x2 // · · · •
xn−1

// Xn •
xn // Xn+1 •

f1
// Y1 •

y1
// Y2 •

y2
// · · · •

yn−1
// Yn •

yn
// Yn+1

is an M-filtration of Y . We conclude that Y ∈ Ob(〈M〉filt).

Proposition 3.1.21. Suppose that M is non-empty. Then we have 〈M〉 = 〈〈M〉sf〉filt .

Proof. By lemmata 3.1.16 and 3.1.20, 〈〈M〉sf〉filt is a thick subcategory of A containing M.

Suppose given a thick subcategory L of A containing M.

We have 〈M〉sf ⊆ L, cf. definition 3.1.16 and, consequently, 〈〈M〉sf〉filt ⊆ L, cf. definition 3.1.19.

Thus we obtain

〈〈M〉sf〉filt ⊆
⋂
{L : L is a thick subcategory of A such that M⊆ L} ⊆ 〈〈M〉sf〉filt

so that

〈〈M〉sf〉filt =
⋂
{L : L is a thick subcategory of A such that M⊆ L} = 〈M〉.
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3.1.3 N -quasi-isomorphisms

Definition 3.1.22. Suppose given A
f
//B in A.

The morphism f is called an N -quasi-isomorphism if and only if there exists a kernel K •k //A

of f and a cokernel B �c //C of f in A such that K,C ∈ ObN .

Often we will denote an N -quasi-isomorphism by A
f +3B .

Remark 3.1.23. Suppose given A
f
//B in A. Since N ⊆ A is closed under isomorphisms by

lemma 3.1.5, the morphism f is an N -quasi-isomorphism if and only if for all kernels K •
k
//A

of f and for all cokernels B �c //C of f in A, we have K,C ∈ ObN .

Example 3.1.24. Isomorphisms in A are N -quasi-isomorphisms since N contains the zero

objects of A by lemma 3.1.5. In particular, identities are N -quasi-isomorphisms.

A zero morphism A 0 //B in A is an N -quasi-isomorphism if and only if A,B ∈ ObN .

Lemma 3.1.25. Suppose given A
f
//B

g
//C in A. Suppose that K •k //A is a kernel of f

and that C �r //R is a cokernel of g. If fg is an N -quasi-isomorphism, then K,R ∈ ObN .

Proof. Choose a kernel L ` //A of fg, a kernel M m //B of g, a cokernel B
p
//P of f and

a cokernel C
q
//Q of fg in A.

Lemma 1.1.1 yields the commutative diagram

M c //

•
m

  

P

d

��

B
g

��

>
p

??

L •` //

b

>>

A

f
>>

fg
+3 C �q //

�
r
��

Q

e
��

K

a

__

•
k

>>

R

in A, where the sequence

0 // K •
a
// L

b //M
c // P

d // Q �e // R // 0

is exact. Since fg is an N -quasi-isomorphism, we have L,Q ∈ ObN . Now L ∈ ObN implies

K ∈ ObN and Q ∈ ObN implies R ∈ ObN .

Lemma 3.1.26. Suppose given A
f
//B

g
//C in A. If two out of the three morphisms f , g

and fg are N -quasi-isomorphisms, then so is the third.

In other words:
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• If f and g are N -quasi-isomorphisms in A, then so is fg.

• If f and fg are N -quasi-isomorphisms in A, then so is g.

• If g and fg are N -quasi-isomorphisms in A, then so is f .

Proof. Choose a kernel K •k //A of f , a kernel L •` //A of fg, a kernel M •m //B of g, a

cokernel B �p //P of f , a cokernel C �q //Q of fg in A and a cokernel C �r //R of g.

Lemma 1.1.1 yields the commutative diagram

M
c //

•
m

  

P

d

��

B
g

��

>
p

??

L •` //

b

>>

A

f
>>

fg
// C �q //

�
r
��

Q

e
��

K

a

__

•
k

>>

R

in A, where the sequence

0 // K •
a
// L b //M c // P d // Q �e // R // 0

is exact. We will use lemma 3.1.4 repeatedly.

Suppose that f and g are N -quasi-isomorphisms. Then K,P,M,R ∈ ObN .

Now K,M ∈ ObN implies L ∈ ObN . Moreover, P,R ∈ ObN implies Q ∈ ObN . Thus fg is

an N -quasi-isomorphism.

Suppose that f and fg are N -quasi-isomorphisms. Then K,P, L,Q ∈ ObN .

Now L, P ∈ ObN implies M ∈ ObN . Moreover, Q ∈ ObN implies R ∈ ObN . Thus g is an

N -quasi-isomorphism.

Suppose that fg and g are N -quasi-isomorphisms. Then L,Q,M,R ∈ ObN .

Now M,Q ∈ ObN implies P ∈ ObN . Moreover L ∈ ObN implies K ∈ ObN . Thus f is an

N -quasi-isomorphism.

Lemma 3.1.27. Suppose given an N -quasi-isomorphism A
f +3B in A.

(a) Suppose given a pullback

A′
f ′
//

g′

��

B

g

��

A
f +3 B

in A. Then f ′ is an N -quasi-isomorphism as well.
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(b) Suppose given a pushout

A
f +3

g
��

B

g′

��

A′
f ′
// B′

in A. Then f ′ is an N -quasi-isomorphism as well.

Proof. Ad (a). Choose a kernel K •k //A of f , a kernel K ′ •k
′
//A′ of f ′, a cokernel B �c //C

of f and a cokernel B′ �c′ //C ′ of f ′ in A.

By the kernel-cokernel-criterion lemma 1.1.2, there exists an isomorphism K ′ u
∼
//K and a

monomorphism C ′ •v //C .

Now K ∈ ObN implies K ′ ∈ ObN and C ∈ ObN implies C ′ ∈ ObN . Thus f ′ is an

N -quasi-isomorphism.

K ′ •k
′
//

u ∼
��

A′
f ′ +3

g′

��

B′

g

��

�v′ // C ′

•v
��

K •k // A
f +3 B �v // C

Ad (b). This is dual to (a).

Lemma 3.1.28. Suppose given A
f
//B in A. Suppose given an image

A
f

//

~
p
��

B

I

•
i

??

of f .

The following three statements are equivalent.

(a) There exists an N -quasi-isomorphism B
t +3T in A such that ft = 0.

(b) We have I ∈ ObN .

(c) There exists an N -quasi-isomorphism S
s +3A in A such that sf = 0.

Proof. Ad (a)⇒(b). Choose a kernel K •k //B of t in A. We have pit = ft = 0 and thus it = 0

since p is epimorphic. So there exists I u //K in A with uk = i. Moreover, u is monomorphic

since so is i. Now K ∈ ObN implies I ∈ ObN .

A
f

//

~
p
��

B t // T

I

•i
77

•
u
// K

•
k

>>
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Ad (b)⇒(a). Choose a cokernel B �c //C of i. So I •i //B is a kernel of c and C
0 //0 is a

cokernel of c. We conclude that c is an N -quasi-isomorphism with fc = pic = 0.

Ad (b)⇔(c). This is dual to (b)⇔(a).

3.2 Construction of the quotient category

3.2.1 Definition and duality

Lemma/Definition 3.2.1. Suppose given A,B ∈ ObA.

Let ND(A,B) denote the set of all diagrams of the form A
f
//S Bsks in A such that s is

an N -quasi-isomorphism. Given an element
(
A

f
//S Bsks

)
∈ ND(A,B), then f is called

its numerator and s is called its denominator. ND is short for numerator-denominator. For(
A

f
//S Bsks

)
,
(
A

g
//T Btks

)
∈ ND(A,B), let

(
A

f
//S Bsks

)
∼
(
A

g
//T Btks

)
if and only if there exist N -quasi-isomorphisms S u +3U and T

v +3U in A such that fu = gv

and su = tv.

S

u
��

A

g
''

f
77

U B

s
ck

ts{
T

v

KS

This defines an equivalence relation on ND(A,B). Let ND(A,B)/∼ denote the factor set.

Let f/s denote the equivalence class of
(
A

f
//S B

sks
)
∈ ND(A,B).

Proof.

Suppose given
(
A

f
//S B

sks
)
,
(
A

g
//T B

tks
)

and
(
A

h //W B
wks

)
∈ ND(A,B).

Using identities, we see that ∼ is reflexive:

S

1
��

A

f ''

f
77

S B

s
ck

ss{
S

1

KS

Cf. example 3.1.24.

By construction, ∼ is symmetric.
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Suppose that(
A

f
//S Bsks

)
∼
(
A

g
//T Btks

)
and

(
A

g
//T Btks

)
∼
(
A h //W Bwks

)
.

So there exist N -quasi-isomorphism S
u +3U , T v +3U , T x +3X and T

y +3X in A such

that fu = gv, su = tv, gx = hy and tx = wy.

Choose a pushout

T

x
��

v +3 U

x′

��

X
v′
// P

in A. The morphisms v′ and x′ areN -quasi-isomorphisms by lemma 3.1.27.(b). The composites

ux′ and yv′ are N -quasi-isomorphisms by lemma 3.1.26.

We have fux′ = gvx′ = gxv′ = hyv′ and sux′ = tvx′ = txv′ = wyv′. Thus ∼ is transitive.

S

u
��

A

h

!!

g

''

f
77

U x′

#+

B

w

y�

s
ck

ts{T

x
��

v

KS

P

X

v′

3;

W

y

KS

Remark 3.2.2. Suppose given A,B ∈ ObA.

Suppose given
(
A

f
//S B

sks
)
,
(
A

g
//T B

tks
)
∈ ND(A,B).

For an N -quasi-isomorphism S u +3U in A, we have f/s = fu/su.

If
(
A

f
//S Bsks

)
∼
(
A

g
//T Btks

)
, then there exist N -quasi-isomorphisms S u +3U and

T
v +3U in A such that fu = gv and su = tv. In this case, we have

f/s = fu/su = gv/tv = g/t.

Lemma/Definition 3.2.3. The quotient category A//N of A by N shall be defined as follows.

• Let Ob(A//N ) := ObA.

• For A,B ∈ ObA, let HomA//N (A,B) := ND(A,B)/∼, cf. definition 3.2.1.
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• Suppose given A
f
//S B

sks g
//T C

tks in A, representing A
f/s
//B

g/t
//C in A//N .

We want to define the composite f/s · g/t in A//N .

Choose a commutative diagram

B
g
//

s
��

T

s′

��
S

g′
// P

in A such that s′ is an N -quasi-isomorphism. This is possible since we may e.g. form the

pushout of g and s, cf. lemma 3.1.27.(b).

Let f/s · g/t := fg′/ts′. This definition is independent of the choice of the commutative

diagram and of the choice of the representatives of the equivalence classes.

C

t
��

B

s
��

g
// T

s′

��
A

f
// S

g′
// P

The identitiy morphism of A ∈ Ob(A//N ) is
(
A

1/1
//A
)
∈ HomA//N (A,A).

Proof. Suppose given A
f
//S Bsks g

//T Ctks h //U Duks in A, representing

A
f/s
//B

g/t
//C

h/u
//D in A//N .

Choose a pushout

B
g
//

s
��

T

ŝ
��

S
ĝ
// Q

in A. For a commutative diagram

B
g
//

s
��

T

s′

��
S

g′
// P

in A such that s′ is an N -quasi-isomorphism, there exists Q
q
//P in A with ŝq = s′ and

ĝq = g′. Note that q is an N -quasi-isomorphism by lemma 3.1.26.
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Thus fg′/ts′ = fĝq/tŝq = fĝ/tŝ.

B
g
//

s
��

T

ŝ
�� s′


�

S

g′ 00

ĝ
// Q

q

�#
P

So the definition of the composite of f/s an g/t is independent of the choice of the commutative

diagram.

Suppose given A
f ′
//S ′ Bs′ks g′

//T ′ Ct′ks in A, representing A
f ′/s′

//B
g′/t′

//C in A//N with

f/s = f ′/s′ and g/t = g′/t′. So there exist N -quasi-isomorphisms S x +3X , S ′ x′ +3X ,

T
y +3Y and T ′

y′ +3Y in A such that fx = f ′x′, sx = s′x′, gy = g′y′ and ty = t′y′.

Choose a pushout

B

sx
��

gy
// Y

b
��

X a
// P

in A. Note that b is an N -quasi-isomorphism by lemma 3.1.27.(b). Since the diagrams

B
g
//

s
��

T

yb
��

S
xa // P

and

B
g′
//

s′

��

T ′

y′b
��

S ′
x′a // P

commute in A, we have f/s · g/t = fxa/tyb = f ′x′a/t′y′b = f ′/s′ · g′/t′.

P

S

x
��

T

y
��

A

f ′ ''

f
77

X

a

@@

B

s

go

s′ow g′ ++

g

33

Y

b

Zb

C

t
ck

t′s{
S ′
x′

KS

T ′

y′

KS

So the definition of the composite of f/s an g/t is independent of the choice of the representa-

tives of the equivalence classes.

We want to show that (f/s · g/t) · h/u = f/s · (g/t · h/u).
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Choose commutative diagrams (e.g. pushouts)

B
g
//

s
��

T

s′

��
S

g′
// P,

C
h //

t
��

U

t′

��
T h′ // Q

and

T
h′ //

s′

��

Q

s′′

��
P h′′ // R

in A. So the diagram

D

u
��

C

t
��

h // U

t′

��
B

s
��

g
// T

s′

��

h′ // Q

s′′

��
A

f
// S

g′
// P

h′′ // R

commutes in A. Thus we have

(f/s · g/t) · h/u = fg′/ts′ · h/u = fg′h′′/ut′s′′ = f/s · gh′/ut′ = f/s · (g/t · h/u).

We want to show that 1A/1A · f/s = f/s and f/s · 1B/1B = f/s.

The diagram

B

1
��

B

s
��

1 // B

s
��

A
f
//

1
��

S

1
��

1 // S

A 1 // A
f
// S

commutes in A, thus we have 1A/1A · f/s = f/s = f/s · 1B/1B .

Remark 3.2.4. Suppose given A
f
//S B

sks 1 //B C
tks in A.

We have

f/s = f/1S · 1S/s, (s/1S)−1 = 1S/s and f/s · 1B/t = f/ts

in A//N .

Suppose given A
f
//B B

1ks g
//T C

tks in A, representing A
f/1
//B

g/t
//C in A//N .

We have f/1B · g/t = fg/t in A//N .
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Proof. Suppose given A
f
//S Bsks 1 //B Ctks in A.

The diagram

B

s
��

S
1 //

1
��

S

1
��

A
f
// S

1 // S

commutes in A. Thus we have f/s = f/1S · 1S/s.

The diagram

S

1
��

B s //

s
��

S

1
��

S

1
��

1 // S

1
��

1 // S

B
s // S

1 // S

commutes in A. Thus we have s/1S · 1S/s = s/s = 1B/1B and 1S/s · s/1S = 1S/1S .

The diagram

C

t
��

B
1 //

s
��

B

s
��

A
f
// S

1 // S

commutes in A. Thus we have f/s · 1B/t = f/ts.

Suppose given A
f
//B B1ks g

//T Ctks in A.

The diagram

C

t
��

B
g
//

1
��

T

1
��

A
f
// B

g
// T

commutes in A, thus we have f/1B · g/t = fg/t.
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Remark 3.2.5. Suppose given n ∈ N and A
fi //Si B

siks in A, representing A
fi/si

//B in

A//N for i ∈ [1, n]. We may chooseN -quasi-isomorphisms B x +3X and Si
ti +3X for i ∈ [1, n]

in A such that fi/si = fiti/x for i ∈ [1, n].

So for a finite number of morphisms with same domain and codomain in A//N , we may choose

representatives such that they have a common denominator.

Proof. We use induction on n ∈ N.

Suppose given A
fi //Si B

siks in A for i ∈ [1, n+ 1] and N -quasi-isomorphisms B x +3X and

Si
ti +3X for i ∈ [1, n] in A such that fi/si = fiti/x for i ∈ [1, n].

Choose a pushout

B
x +3

sn+1

��

X

t
��

Sn+1 z
+3 Y

inA. Then fn+1/sn+1 = fn+1z/sn+1z = fn+1z/xt and fi/si = fiti/x = fitit/xt for i ∈ [1, n].

Lemma/Definition 3.2.6. The localisation functor LA,N : A → A//N of A by N shall be

defined as follows.

• For A ∈ ObA, let LA,N (A) := A.

• For
(
A

f
//B
)
∈ MorA, let LA,N (f) := f/1B .

We abbreviate L := LA,N if unambiguous.

Proof. For A
f
//B

g
//C in A, we have L(fg) = fg/1C = f/1B · g/1C = L(f) · L(g) by

remark 3.2.4. Moreover, L(1A) = 1A/1A , cf. definition 3.2.3.

Lemma/Definition 3.2.7. The duality functor DA,N : (A//N )op → Aop//N op of A by N shall

be defined as follows.

• For A ∈ ObA, let DA,N (A) := A.

• Suppose given A
f
//S B

sks in A, representing A
f/s
//B in A//N .

Choose a commutative diagram

S◦
f◦
//

s◦
��

B

s
��

A
f
// S
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in A such that s◦ is an N -quasi-isomorphism. This is possible since we may e.g. form the

pullback of f and s, cf. lemma 3.1.27.(a).

Let DA,N ((f/s)op) := f op
◦ /s

op
◦ . This definition is independent of the choice of the commu-

tative diagram and of the choice of the representative of the equivalence class.

The functor DA,N is an isomorphism of categories with inverse Dop
Aop,N op .

Moreover, we have DA,N ((f/1S)op) = f op/1op
A for A

f
//S in A.

Proof. Suppose given A
f
//S B

sks in A.

Choose a pullback

P
f ′
//

s′

��

B

s
��

A
f
// S

in A. For a commutative diagram

S◦
f◦
//

s◦
��

B

s
��

A
f
// S

in A such that s◦ is an N -quasi-isomorphism, there exists S◦
u //P in A with uf ′ = f◦ and

us′ = s◦. Note that u is an N -quasi-isomorphism by lemma 3.1.26.

Thus f ′ op/s′ op = f ′ opuop/s′ opuop = f op
◦ /s

op
◦ .

So the definition of DA,N ((f/s)op) is independent of the choice of the commutative diagram.

Suppose given A
g
//T B

tks in A with f/s = g/t. So there exist N -quasi-isomorphisms

S
x +3X and T

y +3X in A such that fx = gy and sx = ty.

Choose a pullback

P
a //

b
��

B

s
��

A
f
// S

in A. Note that b is an N -quasi-isomorphism by lemma 3.1.27.(a).

We have (bg − at)y = bgy − aty = bfx− asx = (bf − as)x = 0. By lemma 3.1.28, there exists

an N -quasi-isomorphism Q
q +3P such that q(bg − at) = 0.
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Since the diagrams

Q
qa
//

qb
��

B

s
��

A
f
// S

and

Q
qa
//

qb
��

B

t
��

A
g
// T

commute in A, we have DA,N ((f/s)op) = (qa)op/(qb)op = DA,N ((g/t)op).

Q
q +3 P

b

	�

a

��

S

x��
A

g
''

f

>>

X B
s

\d

ts{
T

y

KS

So the definition of DA,N ((f/s)op) is independent of the choice of the representative of the

equivalence class.

Suppose given A
f
//S Bsks g

//T Ctks in A.

Choose pullbacks

S◦
f◦
//

s◦
��

B

s

��
A

f
// S,

T◦
g◦
//

t◦
��

C

t
��

B
g
// T

and

Q
h //

u

��

T◦

t◦
��

S◦
f◦
// B

and a pushout

B
g
//

s
��

T

s′

��
S

g′
// P

in A.

So the diagram

Q h //

u

��

T◦

t◦
��

g◦
// C

t
��

S◦

s◦
��

f◦
// B

g
//

s
��

T

s′

��
A

f
// S

g′
// P
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commutes in A.

We have

DA,N ((g/t)op · (f/s)op) = DA,N ((f/s · g/t)op) = DA,N (fg′/ts′) = (hg◦)
op/(us◦)

op.

Since the diagram

A

sop
◦
��

B

top
◦
��

fop
◦ // S◦

uop

��

C
gop
◦ // T◦

hop
// Q

commutes in Aop, we conclude that

DA,N ((g/t)op) · DA,N ((f/s)op)) = gop
◦ /t

op
◦ · f op

◦ /s
op
◦ = (hg◦)

op/(us◦)
op = DA,N ((g/t)op · (f/s)op).

The diagram

A
f
//

1
��

S

1
��

A
f
// S

commutes in A, so DA,N ((f/1S)op) = f op/1op
A .

In particular, we have DA,N ((1A/1A)op) = 1op
A /1

op
A .

We want to show that Dop
Aop,N op ◦ DA,N = 1(A//N )op .

Suppose given A
f
//S Bsks in A.

Choose a pullback

S◦
f◦
//

s◦
��

B

s
��

A
f
// S

in A. Since the diagram

S
fop
//

sop

��

A

sop
◦
��

B
fop
◦ // S◦

commutes in Aop, we have(
Dop
Aop,N op ◦ DA,N

)
((f/s)op) = Dop

Aop,N op(f op
◦ /s

op
◦ ) = (f/s)op.

Dually, we have Dop
A,N ◦ DAop,N op = 1(Aop//N op)op and thus DA,N ◦ Dop

Aop,N op = 1Aop//N op .
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Lemma 3.2.8. Suppose given A
f
//S B

sks in A, representing A
f/s
//B in A//N .

The following three statements are equivalent.

(a) The morphism f/s is an isomorphism in A//N .

(b) The morphism f/1S is an isomorphism in A//N .

(c) The morphism f is an N -quasi-isomorphism in A.

In this case, we have (f/s)−1 = s/f .

Proof. By remark 3.2.4, we have f/s = f/1S · 1S/s, where 1S/s is an isomorphism in A//N .

Thus (a) and (b) are equivalent.

If f is an N -quasi-isomorphism in A, then f/1S is an isomorphism in A//N with inverse 1S/f

by loc. cit.

Suppose that f/1S is an isomorphism in A//N and suppose given S
g
//T A

tks in A such

that g/t is the inverse of f/1S in A//N .

Thus 1A/1A = f/1S ·g/t = fg/t by loc. cit. We conlude that there exist N -quasi-isomorphisms

A u +3U and T
v +3U in A such that u = fgv and u = tv. By lemma 3.1.26, fg is an

N -quasi-isomorphism.

Choose a kernel K •k //A of f and a cokernel S �c //C of f in A. We have K ∈ ObN by

lemma 3.1.25.

Dually, (f/1S)op is an isomorphism in (A//N )op and, consequently, DA,N ((f/1S)op) = f op/1op
A

is an isomorphism in Aop//N op, cf. definition 3.2.7. Since cop is a kernel of f op in Aop, we have

C ∈ Ob(N op) = ObN as seen above.

Therefore f is an N -quasi-isomorphism.

3.2.2 The quotient category is additive

Lemma/Definition 3.2.9. Suppose given A,B ∈ ObA. The set HomA//N (A,B) becomes an

abelian group with the following addition.

Suppose given A
f
//S B

sks and A
g
//T B

tks in A, representing A
f/s
//B and A

g/t
//B

in A//N .

Choose a commutative diagram

B
s +3

t
��

S

u
��

T v +3 U
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in A such that u and v are N -quasi-isomorphisms. This is possible since we may e.g. form the

pushout of t and s, cf. lemma 3.1.27.(b).

Let f/s+ g/t := (fu+ gv)/su. This definition is independent of the choice of the commutative

diagram and of the choice of the representatives of the equivalence classes.

Note that f/s = fu/su and g/t = gv/tv, so

f/s+ g/t = fu/su+ gv/tv = fu/su+ gv/su = (fu+ gv)/su.

The zero element of HomA//N (A,B) is 0A,B/1B. We have 0A,B/1B = 0A,W/w for all N -quasi-

isomorphisms B w +3W in A.

For A
f̂
//S in A, we have (f + f̂)/s = f/s + f̂/s. In particular, the additive inverse of f/s

in HomA//N (A,B) is (−f)/s.

Note that for a finite number of morphisms from A to B inA//N , we may choose representatives

such that they have a common denominator by remark 3.2.5.

Proof. Choose a pushout

B
s +3

t
��

S

p
��

T q
+3 P

in A. For a commutative diagram

B s +3

t
��

S

u
��

T v +3 U

in A such that u and v are N -quasi-isomorphisms, there exists P r //U in A with pr = u and

qr = v. Note that r is an N -quasi-isomorphism by lemma 3.1.26.

Thus (fp+ gq)/sp = (fp+ gq)r/spr = (fpr + gqr)/su = (fu+ gv)/su.

So the definition of f/s+ g/t is independent of the choice of the commutative diagram.

Suppose given A
f ′
//S ′ Bs′ks and A

g′
//T ′ Bt′ks in A with f/s = f ′/s′ and g/t = g′/t′. So

there exist N -quasi-isomorphisms S x +3X , S ′ x′ +3X , T
y +3Y and T ′

y′ +3Y in A such that

fx = f ′x′, sx = s′x′, gy = g′y′ and ty = t′y′.

Choose a pushout

B
sx +3

ty
��

X

a
��

Y
b
+3 Q
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in A. Note that a and b are N -quasi-isomorphisms by lemma 3.1.27.(b).

Since the diagrams

B
s +3

t
��

S

xa
��

T
yb +3 Q

and

B
s′ +3

t′

��

S

x′a
��

T
y′b +3 Q

commute in A, we have f/s+ g/t = (fxa+ gyb)/sxa = (f ′x′a+ g′y′b)/s′x′a = f ′/s′ + g′/t′.

S

x
��
X

a

}�

S ′
x′

KS

A

f ′
11

f

99

g
--

g′

%%

Q B
s′

bj

t

t|

s

U]

t′

�	

T

y
��
Y

b

Zb

T ′

y′

KS

So the definition of f/s+g/t is independent of the choice of the representatives of the equivalence

classes.

For all N -quasi-isomorphisms B w //W in A, we have 0A,B/1B = (0A,B · w)/w = 0A,W/w.

For A
f̂
//S in A, we have (f + f̂)/s = f/s+ f̂/s since the diagram

B s +3

s
��

S

1
��

S
1 +3 S

commutes in A.

Suppose given three morphisms from A to B in A//N , which we may assume to be represented

by A
f
//S Bsks , A

g
//S Bsks and A h //S Bsks in A by remark 3.2.5.

We have

f/s+ g/s = (f + g)/s = (g + f)/s = g/s+ f/s,
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(f/s+ g/s) + h/s = ((f + g)/s) + h/s = (f + g + h)/s = f/s+ (g + h)/s

= f/s+ (g/s+ h/s),

0A,S/s+ f/s = (0A,S + f)/s = f/s = (f + 0A,S)/s = f/s+ 0A,S/s

and

f/s+ (−f)/s = (f − f)/s = 0A,S/s = (−f + f)/s = (−f)/s+ f/s.

Lemma 3.2.10. The quotient category A//N is preadditive.

Proof. Suppose given A
f
//S B

sks
g
//

h
//T C

tks ` //U D
uks in A, cf. remark 3.2.5. We

have to show that f/s · (g/t+ h/t) = f/s · g/t+ f/s · h/t and that

(g/t+ h/t) · `/u = g/t · `/u+ h/t · `/u.

Choose a pushout

C
` //

t
��

U

v
��

T
`′
// P

in A. We have

(g/t+ h/t) · `/u = (g + h)/t · `/u = (g + h)`′/uv = (g`′ + h`′)/uv = g`′/uv + h`′/uv

= g/t · `/u+ h/t · `/u.

Write D := DA,N : (A//N )op → Aop//N op. Since D is an isomorphism of categories, it suffices

to show that D((f/s · (g/t+ h/t))op) = D((f/s · g/t+ f/s · h/t)op). At first, we want to show

that D((g/t+ h/t)op) = D((g/t)op) +D((h/t)op).

Choose pullbacks

P ′
g′
//

t′

��

C

t
��

B
g
// T,

P̃ h̃ //

t̃
��

C

t
��

B h // T,

and

Q x′ +3

x̃
��

P ′

t′

��
P̃

t̃ +3 B

in A. Since the diagrams

Q
x′g′
//

x′t′

��

C

t
��

B
g
// T,

Q
x̃h̃ //

x′t′

��

C

t
��

B h // T

and

Q
x′g′+x̃h̃

//

x′t′

��

C

t
��

B
g+h

// T
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commute in A, we have

D((g/t)op) = (x′g′)op/(x′t′)op,

D((h/t)op) = (x̃h̃)op/(x′t′)op

and

D((g/t+ h/t)op) = D(((g + h)/t)op) = (x′g′ + x̃h̃)op/(x′t′)op.

Thus D((g/t+ h/t)op) = D((g/t)op) +D((h/t)op).

Q x′ +3

x̃
��

P ′

t′

��

g′

��

P̃
h̃ //

t̃ �#

C

t
��

B
g
))

h

55 T

We conclude that

D((f/s · (g/t+ h/t))op) = D((g/t+ h/t)op) · D((f/s)op)

=
(
D((g/t)op) +D((h/t)op)

)
· D((f/s)op)

= D((g/t)op) · D((f/s)op) +D((h/t)op) · D((f/s)op)

= D((f/s · g/t)op) +D((f/s · h/t)op)

= D((f/s · g/t+ f/s · h/t)op).

Lemma 3.2.11. Suppose given a zero object Z ∈ ObA. Then Z is a zero object in A//N as

well.

Suppose given a direct sum A
i // C
p

oo
q
// B

j
oo in A. Then A

i/1
// C

p/1
oo

q/1
// B

j/1
oo is a direct sum in

A//N as well.

Proof. The object Z is a zero object in A//N since 1Z/1Z = 0Z/1Z .

We have

i/1C · p/1A = ip/1A = 1A/1A ,

j/1C · q/1B = jq/1B = 1B/1B

and

p/1A · i/1C + q/1B · j/1C = (pi+ qj)/1C = 1C/1C .
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Proposition 3.2.12. The quotient category A//N is additive. Moreover, the localisation

functor L = LA,N : A → A//N is additive.

Proof. The quotient category A//N is additive by lemmata 3.2.9, 3.2.10 and 3.2.11.

For A
f
//

g
//B in A, we have L(f + g) = (f + g)/1B = f/1B + g/1B = L(f) + L(g),

cf. definition 3.2.9.

Lemma 3.2.13. Suppose given A
f
//S B

sks in A, representing A
f/s
//B in A//N . The

following four statements are equivalent.

(a) We have f/s = 0 in A//N .

(b) There exists an N -quasi-isomorphism S
u +3U such that fu = 0 in A.

(c) We have f/1S = 0 in A//N .

(d) There exists an N -quasi-isomorphism V v +3A such that vf = 0 in A.

Proof. Ad (a)⇔(c). By remark 3.2.4, we have f/s = f/1S ·1S/s, where 1S/s is an isomorphism

in A//N . Thus (a) and (c) are equivalent.

Ad (b)⇔(d). This follows from lemma 3.1.28.

Ad (c)⇔(b). We have f/1S = 0 = 0A,S/1S in A//N if and only if there exist N -quasi-

isomorphisms S u +3U and S
w +3U such that fu = 0 and u = w, i.e. if and only if there

exists an N -quasi-isomorphism S
u +3U such that fu = 0 in A.

Remark 3.2.14. Suppose given an object N ∈ ObA. Then N is a zero object in A//N if and

only if N ∈ ObN .

Proof. Suppose that N is a zero object in A//N . Since 1N/1N = 0, lemma 3.2.13 yields an

N -quasi-isomorphism N
s +3S such that s = 1N · s = 0 in A. Therefore N ∈ ObN , cf.

example 3.1.24.

Conversely, if N ∈ ObN , then 0N is an N -quasi-isomorphism.

Thus 1N/1N = 1N · 0N/1N · 0N = 0N/0N , cf. lemma 3.2.9.

3.2.3 The quotient category is abelian

Lemma 3.2.15. Suppose given K •k //A
f
//B �c //C in A such that k is a kernel of f and

c is a cokernel of f .

(a) The morphism f/1B is epimorphic in A//N if and only if C ∈ ObN .

(b) The morphism f/1B is monomorphic in A//N if and only if K ∈ ObN .



149

Proof. Ad (a). Suppose that f/1B is epimorphic in A//N .

We have f/1B ·c/1C = fc/1C = 0/1C . So c/1C = 0 since f/1B is epimorphic. By lemma 3.2.13,

there exists an N -quasi-isomorphism C
u +3U such that cu = 0 in A. Since c is epimorphic in

A, we conclude that u = 0. Thus C ∈ ObN , cf. example 3.1.24.

Conversely, suppose that C ∈ ObN . Thus c/1C = 0 in A//N , cf. remark 3.2.14. Suppose given

B
g
//T C

tks in A, representing B
g/t
//C in A//N , such that fg/t = f/1B · g/t = 0. By

lemma 3.2.13, there exists an N -quasi-isomorphism T
u +3U such that fgu = 0 in A. Since c

is a cokernel of f , there exists C a //U in A such that gu = ca. So g/t = gu/tu = ca/tu =

c/1C · a/tu = 0. We conclude that f/1B is epimorphic in A//N .

Ad (b). Note that kop is a cokernel of f op in Aop. The morphism f/1B is monomorphic if and

only if f op/1op
A = DA,N ((f/1B)op) is epimorphic in Aop//N op. We have K ∈ ObN if and only if

K ∈ Ob(N op). The result now follows from (a).

Lemma 3.2.16. Suppose given K •k //A
f
//B �c //C in A such that k is a kernel of f and

c is a cokernel of f .

(a) The morphism c/1C is a cokernel of f/1B in A//N .

(b) The morphism k/1A is a kernel of f/1B in A//N .

Proof. Ad (a). We have f/1B · c/1C = fc/1C = 0/1C .

By lemma 3.2.15.(a), c/1C is an epimorphism since C //0 is a cokernel of c in A.

Suppose given B
g
//T C

tks in A such that fg/t = f/1B · g/t = 0. By lemma 3.2.13, there

exists an N -quasi-isomorphism T u +3U in A such that fgu = 0. Since c is a cokernel of f in

A, there exists C a //U in A such that gu = ca. Thus g/t = gu/tu = ca/tu = c/1C · a/tu.

Ad (b). The morphism k/1A is a kernel of f/1B in A//N if and only if kop/1op
A = DA,N ((k/1A)op)

is a cokernel of f op/1op
A = DA,N ((f/1B)op) in Aop//N op. Moreover, kop is a cokernel f op in Aop.

The result now follows from (a).

Lemma 3.2.17. Suppose given A
f
//S Bsks in A, representing A

f/s
//B in A//N .

Suppose given a kernel-cokernel-factorisation

K •k // A

~
p

��

f
// S �c // C

I
1 // I

•
i

??

of f in A. Then

K •
k/1
// A

~
p/1 ��

f/s
// B �sc/1

// C

I
1/1
// I

•
i/s

??
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is a kernel-cokernel-factorisation of f/s in A//N .

Proof. We have p/1I · 1I/1I · i/s = pi/s = f/s.

We will use lemma 3.2.16 repeatedly.

The morphism k/1A is a kernel of f/1S and, consequently, of f/s = f/1S · 1S/s in A//N , cf.

remark 3.2.4.

The morphism p/1I is a cokernel of k/1A in A//N .

Note that the diagrams

A
f/1
//

1/1
��

S

1/s
��

c/1
// C

1/1
��

A
f/s
// B

sc/1
// C

and

I
i/1
//

1/1
��

S

1/s
��

c/1
// C

1/1
��

I
i/s
// B

sc/1
// C

are isomorphisms in (A//N )∆2 .

Thus sc/1 is a cokernel of f/s and i/s is a kernel of sc/1 in A//N .

Theorem 3.2.18. Recall that A is an abelian category and N is a thick subcategory of A.

Recall that A//N is the quotient category of A by N and L = LA,N : A → A//N is the

localisation functor. Cf. definitions 3.2.3 and 3.2.6.

The quotient category A//N is abelian and the localisation functor L: A → A//N is exact.

Moreover, Ker(L) = N . In particular, L(N) ∼= 0A//N for N ∈ ObN .

Proof. The category A//N is abelian by proposition 3.2.12 and lemma 3.2.17.

The functor L is additive by proposition 3.2.12.

Suppose given a short exact sequence A •
f
//B �g //C in A. By lemma 3.2.16, L(f) = f/1B is

a kernel of L(g) = g/1C and L(g) is a cokernel of L(f). Thus the sequence A
f/1
//B

g/1
//C is

short exact in A//N .

Suppose given N ∈ ObA. By remark 3.2.14, L(N) = N is a zero object in A//N if and only if

N ∈ ObN . Thus Ker(L) = N .

Remark 3.2.19. The thick subcategories of A are precisely the kernels of exact functors from

A to abelian categories. Cf. corollary 3.1.8 and theorem 3.2.18.
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Lemma 3.2.20. Each short exact sequence in A//N is isomorphic to the image of a short

exact sequence in A under L.

More precisely, suppose given A
f
//S B

sks g
//T D

tks in A, representing a short exact

sequence A •
f/s
//B �g/t //D in A//N .

Choose a kernel-cokernel-factorisation

K •k // B

�
p

��

g
// T �c // C

I
1 // I

•
i

??

of g in A. Then there exists a morphism K
h/u
//A in A//N such that

K
k/1
//

h/u
��

B
p/1

//

1/1
��

I

i/t
��

A
f/s
// B

g/t
// D

is an isomorphism in (A//N )∆2 .

Proof. The sequence K
k/1
//B

p/1
//I is short exact in A//N since L is exact, cf. theorem 3.2.18.

The morphism k/1B is a kernel of g/t = g/1T · 1T/t in A//N by lemma 3.2.16.(b) and re-

mark 3.2.4. Since f/s is a kernel of g/t by assumption, there exists an isomorphism K ∼
h/u
//A

in A//N such that h/u · f/s = k/1B .

Since g/1T = g/t · t/1T is epimorphic, we have C ∈ ObN by lemma 3.2.15.(a). Therefore i is

an N -quasi-isomorphism in A. So i/t is an isomorphism in A//N , cf. lemma 3.2.8.

Finally, we have p/1I · i/t = pi/t = g/t.

3.3 The universal property

Theorem 3.3.1. Recall thatA is an abelian category andN is a thick subcategory ofA. Recall

that A//N is the quotient category of A by N and L = LA,N : A → A//N is the localisation

functor. Cf. definitions 3.2.3 and 3.2.6.

The category A//N is abelian and L is exact with Ker(L) = N by theorem 3.2.18.

Suppose given an abelian category B.

(a) Suppose given an exact functor F : A → B satisfying N ⊆ Ker(F ).
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There exists a unique exact functor F̂ : A//N → B such that F̂ ◦ L = F .

A F //

L
��

B

A//N
F̂

<<

For A
f/s
//B in A//N , we have F̂ (f/s) = F (f) · F (s)−1.

(b) Suppose given exact functors F,G : A → B with N ⊆ Ker(F ) and N ⊆ Ker(G) and a

transformation α : F ⇒ G.

There exists a unique transformation α̂ : F̂ ⇒ Ĝ such that α̂ ? L = α.

A

L

��

F
++

G

33α �� B

A//N

F̂

@@

Ĝ

KK

α̂ �"

For A ∈ ObA = Ob(A//N ), we have α̂A = αA .

Proof. Ad (a). Suppose given an N -quasi-isomorphism A
f +3B in A. Choose a kernel

K •k //A of f and a cokernel B �c //C in A. So K,C ∈ ObN . We have F (K) ∼= 0B ∼= F (C)

by assumption. Since F is exact, F (k) is a kernel of F (f) and F (c) is a cokernel of F (f) in B.

We conclude that F (f) is an isomorphism in B.

Suppose given A
f
//S Bsks in A.

Given a functor F̃ : A//N → B with F̃ ◦ L = F , we necessarily have

F̃ (f/s) = F̃ (f/1S · 1S/s) = F̃ (f/1S · (s/1S)−1) = F̃ (L(f)) · F̃ (L(s)−1) = F̃ (L(f)) · F̃ (L(s))−1

= F (f) · F (s)−1,

cf. remark 3.2.4.

Let F̂ (A) := F (A) and let F̂ (f/s) := F (f) · F (s)−1.

This is well-defined since for A
g
//T B

tks in A with f/s = g/t, there exist N -quasi-

isomorphisms S u +3U and T v +3U in A such that fu = gv and su = tv. Therefore

F (f) · F (s)−1 = F (f) · F (u) · F (u)−1 · F (s)−1 = F (fu) · F (su)−1

= F (gv) · F (tv)−1 = F (g) · F (v) · F (v)−1 · F (t)−1 = F (g) · F (t)−1.

Suppose given A
f
//S B

sks g
//T C

tks in A.
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Choose a pushout

B
g
//

s
��

T

s′

��
S

g′
// P

in A. We have

F̂ (f/s · g/t) = F̂ (fg′/ts′)

= F (fg′) · F (ts′)−1

= F (f) · F (g′) · F (ts′)−1

= F(f) · F (s)−1 · F (s) · F (g′) · F (ts′)−1

= F(f) · F (s)−1 · F (sg′) · F (ts′)−1

= F(f) · F (s)−1 · F (gs′) · F (ts′)−1

= F̂ (f/s) · F̂ (gs′/ts′)

= F̂ (f/s) · F̂ (g/t)

and F̂ (1A/1A) = F (1A) · F (1A)−1 = 1F (A).

So F̂ is in fact a functor.

For A
f
//B in A, we have F̂ (L(f)) = F̂ (f/1B) = F (f) · F (1B)−1 = F (f). Thus F̂ ◦ L = F .

The functor F̂ is additive since

F̂ (f/s+ g/s) = F̂ ((f + g)/s) = F (f + g) · F (s)−1 = (F (f) + F (g)) · F (s)−1

= F (f) · F (s)−1 + F (g) · F (s)−1 = F̂ (f/s) + F̂ (g/s)

for A
f
//

g
//S B

soo in A.

Suppose given A
f
//S B

sks g
//T C

tks in A, representing a short exact sequence

A •
f/s
//B �g/t //C in A//N . By lemma 3.2.20, there exists a short exact sequence X •i //Y �p //Z

in A such that A •
f/s
//B �g/t //C and X •

L(i)
//Y �L(p)

//Z are isomorphic in (A//N )∆2 .

By assumption,

F̂
(
X •

L(i)
//Y �L(p)

//Z
)

=
(
X •

F (i)
//Y �F (p)

//Z
)

is short exact and thus F̂
(
A •

f/s
//B �g/t //C

)
is short exact in B as well since F̂ is a functor.

We conclude that F̂ is exact.
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Ad (b). Given a transformation α̃ : F̂ ⇒ Ĝ with α̃?L = α, we necessarily have α̃A = α̃L(A) = αA
for A ∈ ObA.

Let α̂A := αA for A ∈ ObA. We want to show that α̂ := (α̂A)A∈ObA : F̂ ⇒ Ĝ is natural.

Suppose given A
f
//S Bsks in A. We have

F̂ (f/s) · α̂B ·G(s) = F (f) · F (s)−1 · αB ·G(s)

= F (f) · F (s)−1 · F (s) · αS
= F (f) · αS
= αA ·G(f)

= αA ·G(f) ·G(s)−1 ·G(s)

= α̂A · Ĝ(f/s) ·G(s).

We conclude that F̂ (f/s) · α̂B = α̂A · Ĝ(f/s) since G(s) is an isomorphism in B.

Finally, we have α̂ ? L = α by construction.

Remark 3.3.2. Suppose given an abelian category B, exact functors F,G : A → B with

N ⊆ Ker(F ) and N ⊆ Ker(G) and a transformation α : F ⇒ G. Let F̂ and Ĝ be the unique

exact functors with F̂ ◦ L = F and Ĝ ◦ L = G provided by theorem 3.3.1.(a). Let α̂ : F̂ ⇒ Ĝ

be the unique transformation satisfying α̂ ? L = α provided by theorem 3.3.1.(b).

If α is an isotransformation, then α̂ is an isotransformation as well.

Proof. Let β := α−1 and let β̂ : Ĝ ⇒ F̂ be the unique transformation satisfying β̂ ? L = β

provided by theorem 3.3.1.(b). We have (α̂β̂) ?L = (α̂ ?L)(β̂ ?L) = αβ = 1F = 1F̂ ?L and thus

α̂β̂ = 1F̂ . Similarly, we obtain β̂α̂ = 1Ĝ .

Lemma 3.3.3. Suppose given P ∈ ObA such that ZyA,P : A → Mod-Z is exact and such

that N ⊆ Ker(ZyA,P ), cf. definition 1.2.4.(b). Let ZŷA,P : A//N → Mod-Z be the unique exact

functor with ZŷA,P ◦ L = ZyA,P provided by theorem 3.3.1.(a).

Then ZŷA,P ∼= ZyA//N ,P in (Mod-Z)A//N and, consequently, ZyA//N ,P is exact.

In other words: If P is projective in A such that HomA(P,X) = 0 for all X ∈ ObN , then P

is projective in A//N as well.

Proof. By remark 3.3.2 and theorem 3.3.1.(a), it suffices to show that ZyA//N ,P ◦L ∼= ZyA,P in

(Mod-Z)A.

For X ∈ ObA, let

LP,X : HomA(P,X)→ HomA//N (P,X) : h 7→ L(h)

denote the induced morphism in Mod-Z.
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We want to show that LP,X is bijective.

Suppose given h ∈ HomA(P,X) such that h/1 = L(h) = 0. By lemma 3.2.13, there exists

an N -quasi-isomorphism X s +3S in A such that hs = 0. Choose a kernel K •k //X of s.

Note that K ∈ ObN . Since hs = 0, there exists P
u //K in A such that uk = h. Since

N ⊆ Ker(ZyA,P ), we have u = 0 and thus h = 0. We conclude that LP,X is injective.

Suppose given P
g
//S X

sks in A, representing P
g/s
//X in A//N . Choose an image

X �p //I •
j
//S and a cokernel S �c //C of s in A. Note that C ∈ ObN and that c is a

cokernel of j. Since N ⊆ Ker(ZyA,P ), we have gc = 0 and thus there exists P u //I in A such

that uj = g. Moreover, since P is projective in A, there exists P v //X in A such that vp = u

and thus vs = vpj = uj = g.

X

_p
��

s

y�

I

•j
��

P g
//

u

88
v

@@

S

_ c
��

C

We conclude that L(v) = v/1 = vs/s = g/s. Thus LP,X is surjective.

It remains to show that
(

LP,X
)
X∈ObA : ZyA,P ⇒ ZyA//N ,P ◦L is natural.

Suppose given X
f
//Y in A. For w ∈ HomA(P,X), we have

(w) LP,X ZyA//N ,P (L(f)) = L(w) ZyA//N ,P (L(f)) = L(w) L(f) = L(wf) = (wf) LP,Y

= (w) ZyA,P (f) LP,Y .

HomA(P,X)

ZyA,P (f)
��

LP,X
// HomA//N (P,X)

ZyA//N ,P (L(f))
��

HomA(P, Y )
LP,Y

// HomA//N (P, Y )

Remark 3.3.4. In general, there are objects in A that become projective in A//N without

satisfying the assumptions of lemma 3.3.3.

Let e.g. A = N = Mod-Z. Then Z is projective in A, we have HomA(Z,Z) 6= 0 and Z is also

projective in A//N since Z ∼= 0 in A//N .



Chapter 4

The universal abelian category of an

exact category

4.1 Adelman’s construction for additive categories

Suppose given an additive category A.

We give an overview of Adelman’s construction [1] of the universal abelian category Adel(A)

of the additive category A. For details, see e.g. [14, chapters 3 and 4].

4.1.1 The Adelman category

Recall that ∆2 denotes the poset category of [0, 2] ⊆ Z. This category has three objects 0, 1,

2 and three non-identity morphisms 0 // 1, 1 // 2, 0 // 2. Cf. convention 11.

We denote the objects and morphisms of the functor category A∆2 as follows.

We write A =
(
A0

a0 // A1
a1 // A2

)
for A ∈ Ob(A∆2) and A

f
��

B

 =


A0

f0

��

a0 // A1

f1

��

a1 // A2

f2

��

B0
b0 // B1

b1 // B2


for A

f
//B in A∆2 .

The Adelman category Adel(A) of A is defined as factor category of A∆2 :

Adel(A) = A∆2/ JA .

The equivalence class of f ∈ Mor(A∆2) in Adel(A) is denoted by [f ] or [f0, f1, f2]. For A
[f ]
//

[g]
//B

156
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in Adel(A), we have [f ] = [g] if and only if there exist morphisms s : A1 → B0 and t : A2 → B1

in A such that sb0 + a1t = f1 − h1 .

The category Adel(A) is abelian. Kernels and cokernels of a morphism A
[f ]
//B in Adel(A)

are formed as follows.

A kernel of [f ] is given by K(f)
[k(f)]

//A , where

K(f) =
(
A0 ⊕B0

( a0 0
0 1 )

// A1 ⊕B0

(
a1 f1

0 −b0

)
// A2 ⊕B1

)
and k(f) =

(
( 1

0 ) , ( 1
0 ) , ( 1

0 )
)
.

A cokernel of [f ] is given by B
[c(f)]

//C(f), where

C(f) =
(
B0 ⊕ A1

(
b0 0
f1 −a1

)
// B1 ⊕ A2

(
b1 0
0 1

)
// B2 ⊕ A2

)
and c(f) := (( 1 0 ) , ( 1 0 ) , ( 1 0 )).

A0 ⊕B0

( 1
0 )
��

( a0 0
0 1 )

// A1 ⊕B0

( 1
0 )
��

(
a1 f1

0 −b0

)
// A2 ⊕B1

( 1
0 )
��

A0

f0

��

a0 // A1

f1

��

a1 // A2

f2

��

B0

( 1 0 )
��

b0 // B1

( 1 0 )
��

b1 // B2

( 1 0 )
��

B0 ⊕ A1 (
b0 0
f1 −a1

) // B1 ⊕ A2 (
b1 0
0 1

) // B2 ⊕ A2

4.1.2 The inclusion functor and duality

The inclusion functor IA : A → Adel(A) is defined by

IA
(
X

f
//Y
)

=
(
0 //X //0

) [0,f,0]−−−→
(
0 //Y //0

)
for X

f
//Y in A.

The functor IA is full, faithful and additive.

Moreover, we have an isomorphism of categories DA : Adel(A)op → Adel(Aop) with

DA(A) =
(
A2

aop
1 // A1

aop
0 // A0

)
and DA([f ]op) =

[
f op

2 , f op
1 , f op

0

]
for A

[f ]
// B in Adel(A).

Note that DA ◦(IA)op = IAop .
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Lemma 4.1.1. Suppose given X
f
//Y in A.

(a) A kernel of IA(X)
IA(f)

//IA(Y ) in Adel(A) is given by
(
0 //X

f
//Y
) [0,1,0]

//IA(X).

(b) A cokernel of IA(X)
IA(f)

//IA(Y ) in Adel(A) is given by IA(Y )
[0,1,0]

//
(
X

f
//Y //0

)
.

0

��

// X

1
��

f
// Y

��

0

��

// X

f
��

// 0

��

0

��

// Y

1
��

// 0

��

X
f
// Y // 0

Proof. Ad (a). A kernel of IA(f) is given by K(0, f, 0)
[k(0,f,0)]

//A , where

K(0, f, 0) =
(

0⊕ 0 0 // X ⊕ 0

(
0 f
0 0

)
// 0⊕ Y

)
and k(0, f, 0) =

(
( 1

0 ) , ( 1
0 ) , ( 1

0 )
)
.

Using the isomorphisms 0⊕ 0 //0, X ⊕ 0
( 1

0 )
//X and 0⊕ Y

( 0
1 )
//Y in A, [14, lem. 29] yields

the assertion.

Ad (b). This is dual to (a) using the isomorphism of categories DA : Adel(A)op → Adel(Aop).

Lemma 4.1.2. Suppose given X
f
//Y

g
//Z in A.

The diagram

IA(X)
IA(f)

// IA(Y )

[0,1,0]

%%

IA(g)
// IA(Z)

[0,1,0]

%%(
0 // X

[0,1,0]

99

f
// Y
) (

0 // Y

[0,1,1]
��

g
//

[0,1,0]

99

Z
) (

X
f
// Y // 0

) (
Y g

// Z // 0
)

(
X

f
// Y

g
//

[1,1,0]

DD

Z
)

is a homology diagram of IA(X)
IA(f)

//IA(Y )
IA(g)

//IA(Z) in Adel(A), cf. definition 1.6.1.

Proof. This is a consequence of lemma 4.1.1 and [14, th. 42].
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4.1.3 Adelman’s construction for additive functors

Suppose given an additive category B and an additive functor F : A → B.

The functor Adel(F ) : Adel(A)→ Adel(B) is defined by

(Adel(F ))(X) :=
(
F (X0)

F (x0)
// F (X1)

F (x1)
// F (X2)

)
for X ∈ Ob(Adel(A)) and

(Adel(F ))([f ]) := [F (f0), F (f1), F (f2)]

for [f ] ∈ Mor(Adel(A)).

The functor Adel(F ) is exact.

4.1.4 The homology functor in the abelian case

Suppose given an abelian category B.

The homology functor HB : Adel(B)→ B was constructed in [14, def. 53 and 55]. The functor

HB is exact and we have HB ◦ IB = 1B .

We will use the following lemma for calculations involving HB .

Lemma 4.1.3.

(a) Suppose given
(
X

f
//Y

g
//Z
)
∈ Ob(Adel(B)) and a homology diagram

X
f

// Y

�
d   

g
// Z

�c

��

K

•k
>>

L

�
p
��

•
`

??

D C

H

•
j

>>

of X
f
//Y

g
//Z in B, cf. definition 1.6.1.

Then HB
(
X

f
//Y

g
//Z
) ∼= H in B. In particular, we have HB

(
X

f
//Y

g
//Z
) ∼= 0B

if and only if X
f
//Y

g
//Z is semi-exact, cf. definition 1.6.3.

(b) Suppose given X,M ∈ Adel(B) such that x0 = 0, x1 = 0 and m1 = 0.

Suppose given [0, f, 0] : X →M in Adel(B) and a cokernel M1
d //D of m0 in B.

Then there exist isomorphisms HB(X) u //X1 and HB(M) v //D in B such that

HB([0, f, 0])v = ufd.
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In particular, HB([0, f, 0]) = 0 if and only if fd = 0.

X1

f

��

�
1

((
X1

f

��

�
1

((

•1
66

X1

fd

��

X1

fd

��

•
1

66

M1

�
d

((
M1

�
d

((

•1
66

D

D

•
1

66

Proof. Cf. [14, def. 53 and 55].

4.1.5 The universal property

Theorem 4.1.4. Recall that A is an additive category. Suppose given an abelian category B.

(a) Suppose given an additive functor F : A → B.

We set F̂ := HB ◦Adel(F ) : Adel(A)→ B.

The functor F̂ is exact with F̂ ◦ IA = F .

Suppose given exact functors G, G̃ : Adel(A)→ B and an isotransformation

σ : G ◦ IA ⇒ G̃ ◦ IA . Then there exists an isotransformation τ : G⇒ G̃ with τ ? IA = σ.

In particular, this holds for G ◦ IA = G̃ ◦ IA and σ = 1G◦IA .

A F //

IA
��

B

Adel(A)
F̂

;;

(b) Suppose given additive functors F,G : A → B and a transformation α : F ⇒ G.
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There exists a unique transformation α̂ : F̂ ⇒ Ĝ such that α̂ ? IA = α.

A

IA

��

F
++

G

33α �� B

Adel(A)

F̂

88

Ĝ

AA

α̂ ��

Proof. See [14, th. 62].

Lemma 4.1.5. Suppose given P ∈ ObA. Note that ZyA,P : A → Mod-Z is additive, cf.

definition 1.2.4.(b). Let ZŷA,P : Adel(A)→ Mod-Z be the exact functor with ZŷA,P ◦IA = ZyA,P

provided by theorem 4.1.4.(a).

Then ZŷA,P ∼= ZyAdel(A),IA(P ) in (Mod-Z)Adel(A) and, consequently, ZyAdel(A),IA(P ) is exact, i.e.

IA(P ) is projective in Adel(A), cf. [14, exa. 40].

Proof. By theorem 4.1.4.(a), it suffices to show that ZyAdel(A),IA(P ) ◦ IA ∼= ZyA,P in (Mod-Z)A.

For X ∈ ObA, let

IP,X : HomA(P,X)→ HomAdel(A)(IA(P ), IA(X)) : h 7→ IA(h)

denote the induced isomorphism in Mod-Z. It remains to show that
(

IP,X
)
X∈ObA is natural.

Suppose given X
f
//Y in A. For h ∈ HomA(P,X), we have

(h) IP,X ZyAdel(A),IA(P )(IA(f)) = IA(h) ZyAdel(A),IA(P )(IA(f)) = IA(h) IA(f) = IA(hf)

= (hf) IP,Y = (h) ZyA,P (f) IP,Y .

HomA(P,X)

ZyA,P (f)
��

IP,X
// HomAdel(A)(IA(P ), IA(X))

ZyAdel(A),IA(P )(IA(f))
��

HomA(P, Y )
IP,Y

// HomAdel(A)(IA(P ), IA(Y ))
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4.2 Construction of the universal abelian category

Suppose given an exact category A = (A, E).

4.2.1 E-homologies and exact functors

Definition 4.2.1. An object A ∈ Adel(A) is called an E-homology if there exists a pure short

exact sequence
(
X •

f
//Y �g //Z

)
∈ E such that

• A =
(
0 //X •

f
//Y
)

or

• A =
(
Y �g //Z //0

)
or

• A =
(
X •

f
//Y �g //Z

)
.

Definition 4.2.2. Let HA,E be the full subcategory of Adel(A) defined by

Ob(HA,E) := {A ∈ Ob(Adel(A)) : A is an E-homology}

We abbreviate H := HE := HA,E if unambiguous.

Lemma 4.2.3. Suppose given an abelian category B and an additive functor F : A → B. Let

F̂ : Adel(A)→ B be the exact functor with F̂ ◦ IA = F provided by theorem 4.1.4.(a).

Suppose given a sequence X
f
//Y

g
//Z in A. The sequence F (X)

F (f)
//F (Y )

F (g)
//F (Z) is

semi-exact in B if and only if F̂
(
X

f
//Y

g
//Z
) ∼= 0B in B.

Proof. The diagram

IA(X)
IA(f)

// IA(Y )

[0,1,0]

%%

IA(g)
// IA(Z)

[0,1,0]

%%(
0 // X

[0,1,0]

99

f
// Y
) (

0 // Y

[0,1,1]
��

g
//

[0,1,0]

99

Z
) (

X
f
// Y // 0

) (
Y g

// Z // 0
)

(
X

f
// Y

g
//

[1,1,0]

DD

Z
)

is a homology diagram of IA(X)
IA(f)

//IA(Y )
IA(g)

//IA(Z) in Adel(A) by lemma 4.1.2.

Thus the sequence

(
F (X)

F (f)
//F (Y )

F (g)
//F (Z)

)
=
(
(F̂ ◦ IA)(X)

(F̂◦IA)(f)
//(F̂ ◦ IA)(Y )

(F̂◦IA)(g)
//(F̂ ◦ IA)(Z)

)
is semi-exact in B if and only if F̂

(
X

f
//Y

g
//Z
) ∼= 0B in B by corollary 1.6.9.(a).
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Lemma 4.2.4. Suppose given an abelian category B and an additive functor F : A → B. Let

F̂ : Adel(A)→ B be the exact functor with F̂ ◦ IA = F provided by theorem 4.1.4.(a).

Suppose given a sequence X
f
//Y

g
//Z in A such that fg = 0. The following three state-

ments are equivalent.

(a) The sequence F (X)
F (f)

//F (Y )
F (g)

//F (Z) is short exact in B.

(b) There exists a homology diagram

F (X)
F (f)

// F (Y )

�
d

""

F (g)
// F (Z)

�c

""

K

•k
<<

L

�
p

""

•
`

<<

D C

H

•
j

;;

of F (X)
F (f)

//F (Y )
F (g)

//F (Z) in B such that K ∼= 0B , H ∼= 0B and C ∼= 0B .

(c) We have

F̂
(
0 //X

f
//Y
) ∼= 0B , F̂

(
Y

g
//Z //0

) ∼= 0B and F̂
(
X

f
//Y

g
//Z
) ∼= 0B

in B.

Proof. The statements (a) and (b) are equivalent by corollary 1.6.6.

Ad (a)⇔(c). The diagram

IA(X)
IA(f)

// IA(Y )

[0,1,0]

%%

IA(g)
// IA(Z)

[0,1,0]

%%(
0 // X

[0,1,0]

99

f
// Y
) (

0 // Y

[0,1,1]
��

g
//

[0,1,0]

99

Z
) (

X
f
// Y // 0

) (
Y g

// Z // 0
)

(
X

f
// Y

g
//

[1,1,0]

DD

Z
)

is a homology diagram of IA(X)
IA(f)

//IA(Y )
IA(g)

//IA(Z) in Adel(A) by lemma 4.1.2.

Thus the sequence(
F (X)

F (f)
//F (Y )

F (g)
//F (Z)

)
=
(
(F̂ ◦ IA)(X)

(F̂◦IA)(f)
//(F̂ ◦ IA)(Y )

(F̂◦IA)(g)
//(F̂ ◦ IA)(Z)

)
is short exact in B if and only if

F̂
(
0 //X

f
//Y
) ∼= 0B , F̂

(
Y

g
//Z //0

) ∼= 0B and F̂
(
X

f
//Y

g
//Z
) ∼= 0B

in B by corollary 1.6.9.(b).
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Proposition 4.2.5. Suppose given an abelian category B and an additive functor F : A → B.

Let F̂ : Adel(A)→ B be the exact functor with F̂ ◦ IA = F provided by theorem 4.1.4.(a).

The functor F is exact if and only if H ⊆ Ker(F̂ ).

Proof.

The functor F is exact if and only if for each pure short exact sequence
(
X •

f
//Y �g //Z

)
∈ E ,

the sequence F (X)
F (f)

//F (Y )
F (g)

//F (Z) is short exact in B. By lemma 4.2.4, this is true if and

only if H ⊆ Ker(F̂ ). Cf. definition 4.2.2.

Lemma 4.2.6. Suppose given a thick subcategory N of Adel(A).

Recall that LAdel(A),N : Adel(A) → Adel(A)//N is the localisation functor of Adel(A) by N .

Cf. definition 3.2.6. We abbreviate L := LAdel(A),N . Let L̂ ◦ IA : Adel(A) → Adel(A)//N be

the exact functor with L̂ ◦ IA ◦ IA = L ◦ IA provided by theorem 4.1.4.(a).

We have L̂ ◦ IA ∼= L in (Adel(A)//N )Adel(A) and Ker(L̂ ◦ IA) = Ker(L) = N .

The functor L ◦ IA is exact if and only if H ⊆ N .

Proof. The functor L ◦ IA is additive since it is a composite of additive functors, cf. section 4.1.2

and proposition 3.2.12. Moreover, L is exact by theorem 3.2.18. Since L̂ ◦ IA ◦ IA = L ◦ IA , we

have L̂ ◦ IA ∼= L in (Adel(A)//N )Adel(A) by theorem 4.1.4.(a).

A
IA
��

L ◦ IA // Adel(A)//N

Adel(A)

L

55

Thus Ker(L̂ ◦ IA) = Ker L = N by lemma 1.1.5 and theorem 3.2.18.

We conclude that L ◦ IA is exact if and only if H ⊆ N by proposition 4.2.5.

4.2.2 Characterisations of the thick subcategory generated by H

Lemma 4.2.7. Recall that Adel(A)〈HA,E〉 = 〈H〉 denotes the thick subcategory of Adel(A)

generated by H. Cf. definitions 3.1.10 and 4.2.2.

For an abelian category B and an additive functor F : A → B, let F̂ : Adel(A) → B be the

exact functor with F̂ ◦ IA = F provided by theorem 4.1.4.(a).

Then we have

〈H〉 = Ker(LAdel(A),〈H〉)

=
⋂
{Ker(F̂ ) : B is an abelian category, F : A → B is an exact functor}.

Cf. definition 4.2.9 below.
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Proof. We have 〈H〉 = Ker(LAdel(A),〈H〉) by theorem 3.2.18. Since LAdel(A),〈H〉 is exact by

lemma 4.2.6, we have⋂
{Ker(F̂ ) : B is an abelian category, F : A → B is an exact functor} ⊆ Ker(LAdel(A),〈H〉).

By proposition 4.2.5, we have

H ⊆
⋂
{Ker(F̂ ) : B is an abelian category, F : A → B is an exact functor}.

Note that
⋂
{Ker(F̂ ) : B is an abelian category, F : A → B is an exact functor} is a thick sub-

category of Adel(A) by remark 3.1.9 and corollary 3.1.8. Thus

〈H〉 ⊆
⋂
{Ker(F̂ ) : B is an abelian category, F : A → B is an exact functor}.

Altogether, we obtain

〈H〉 =
⋂
{Ker(F̂ ) : B is an abelian category, F : A → B is an exact functor}.

Remark 4.2.8. Let PA,E be the full subcategory of Adel(A) defined by

Ob(PA,E) :=
{(
X

f
//Y

g
//Z
)
∈ Ob(Adel(A)) : X

f
//Y

g
//Z is E-pure exact in A

}
.

Cf. definition 1.6.10. We abbreviate P = PA,E if unambiguous.

We have H ⊆ P ⊆ 〈H〉 and thus 〈H〉 = 〈P〉.

Proof. Suppose given a pure short exact sequence
(
X •

f
//Y �g //Z

)
∈ E .

The following E-purity diagrams show that H ⊆ P.

0 //

��

X •
f

//

1   

Y

�
g

��

0

@@

0

??

X

•
f

>>

Z

Y �g //

�
g
��

Z //

��

0

��

X

•
f

>>

Z
1

??

0

@@

0

X •
f

//

1   

Y �g //

�
g
��

Z

��

0

??

X

•
f

>>

Z
1

??

0

Suppose given an E-pure exact sequence X
f
//Y

g
//Z in A.
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Suppose given an abelian category B and an exact functor F : A → B. Let F̂ : Adel(A) → B
be the exact functor with F̂ ◦ IA = F provided by theorem 4.1.4.(a). So F̂ = HB ◦Adel(F ).

Note that Adel(F )
(
X

f
//Y

g
//Z
)

=
(
F (X)

F (f)
//F (Y )

F (g)
//F (Z)

)
.

We have
(
X

f
//Y

g
//Z
)
∈ Ob(Ker(F̂ )) by lemmata 4.2.3, 1.6.11 and 1.6.4.

We conclude that

P ⊆
⋂
{Ker(F̂ ) : B is an abelian category, F : A → B is an exact functor} = 〈H〉,

cf. lemma 4.2.7.

4.2.3 Definition of the universal abelian category

Definition 4.2.9. The universal abelian category U(A, E) of (A, E) is defined as the quotient

category of Adel(A) by Adel(A)〈HA,E〉, i.e.

U(A, E) = Adel(A)//Adel(A)〈HA,E〉 = Adel(A)//〈H〉.

Cf. definition 3.2.3.

We write L(A,E) := LAdel(A),〈H〉 for the localisation functor of Adel(A) by 〈H〉, cf. definition 3.2.6.

The universal functor I(A,E) : A → U(A, E) of (A, E) is defined as the composite of the inclusion

functor IA : A → Adel(A) of A and the localisation functor L(A,E) : Adel(A) → U(A, E) of

Adel(A) by 〈H〉, i.e.

I(A,E) = L(A,E) ◦ IA .

Cf. section 4.1.2.

The functor I(A,E) is exact by lemma 4.2.6.

We will show in theorem 4.4.4 below that it is also full and faithful and that it detects exactness.

We abbreviate U(A) = U(A, E), L = L(A,E), I = IA and I = I(A,E) if unambiguous.

A I //

I

::
Adel(A) L // U(A)

Remark 4.2.10. We have Ob(U(A)) = Ob(Adel(A)) = Ob(A∆2), so an object A ∈ Ob(U(A))

is of the form A =
(
A0

a0 //A1
a1 //A2

)
.

Morphisms in U(A) are of the form A
[f ]/[s]

//B , where the diagram A
[f ]
//S B

[s]
oo is in Adel(A)

such that [s] is an 〈H〉-quasi-isomorphism.
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4.3 The universal property

Suppose given an exact category A = (A, E).

Theorem 4.3.1. Recall that Adel(A) is the Adelman category of A and I : A → Adel(A) is

the inclusion functor. Cf. section 4.1.

Recall that U(A) is the universal abelian category of A = (A, E), that L: Adel(A) → U(A)

is the localisation functor of Adel(A) by the thick subcategory 〈H〉, which is generated by the

category of E-homologies, and that I : A → U(A) is the universal functor. Cf. definition 4.2.9.

Suppose given an abelian category B.

(a) Suppose given an exact functor F : A → B.

Let F̂ : Adel(A)→ B be the exact functor with F̂ ◦IA = F provided by theorem 4.1.4.(a).

We have H ⊆ Ker(F̂ ), so theorem 3.3.1.(a) yields an exact functor F̃ : U(A) → B such

that F̃ ◦ I = F .

Suppose given exact functors G, Ḡ : U(A)→ B and an isotransformation σ : G◦I ⇒ Ḡ◦I.

Then there exists an isotransformation τ : G⇒ Ḡ with τ ?I = σ. In particular, this holds

for G ◦ I = Ḡ ◦ I and σ = 1G◦I .

A

I

!!

F //

I
��

B

Adel(A)

L
��

F̂

;;

U(A)

F̃

KK

(b) Suppose given exact functors F,G : A → B and a transformation α : F ⇒ G.

There exists a unique transformation α̃ : F̃ ⇒ G̃ such that α̃ ? I = α.

A

I

��

F
++

G

33α �� B

U(A)

F̃

99

G̃

CC

α̃
�!

Proof. Ad (a). We have H ⊆ Ker(F̂ ) by proposition 4.2.5. This implies 〈H〉 ⊆ Ker(F̂ ) since

Ker(F̂ ) is a thick subcategory of Adel(A) by corollary 3.1.8.

Suppose given exact functors G, Ḡ : U(A) → B and an isotransformation σ : G ◦ I ⇒ Ḡ ◦ I.

So σ : (G ◦ L) ◦ I ⇒ (Ḡ ◦ L) ◦ I. By theorem 4.1.4.(a), there exists an isotransformation

ρ : G ◦ L ⇒ Ḡ ◦ L such that ρ ? I = σ. By theorem 3.3.1.(b), there exists a transformation
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τ : G⇒ Ḡ with τ ? L = ρ. So τ ? I = τ ? (L ◦ I) = (τ ? L) ? I = ρ ? I = σ. The transformation τ

is an isotransformation by remark 3.3.2.

Ad (b). By theorem 4.1.4.(b), there exists a unique transformation α̂ : F̂ ⇒ Ĝ such that

α̂ ? I = α. By theorem 3.3.1.(b), there exists a unique transformation α̃ : F̃ ⇒ G̃ such that

α̃ ? L = α̂. So α̃ ? I = (α̃ ? L) ? I = α̂ ? I = α.

Suppose given another transformation β : F̃ ⇒ G̃ with β ? I = α. So (β ? L) ? I = α. Thus

β ? L = α̂. We conclude that indeed β = α̃.

Remark 4.3.2. Suppose that A is abelian, equipped with the natural exact structure E = Eall
A .

Then I : A → U(A) is an equivalence of categories.

Cf. definition 1.5.6.

Proof. Let 1̃A : U(A)→ A be the exact functor with 1̃A◦I = 1A provided by theorem 4.3.1.(a).

We have (I ◦ 1̃A) ◦ I = I ◦ (1̃A ◦ I) = I = 1U(A) ◦ I. Thus I ◦ 1̃A ∼= 1U(A) by loc. cit.

We conclude that I is an equivalence of categories.

Remark 4.3.3. Suppose that A is equipped with the split exact structure E = E split
A . Then

L: Adel(A)→ U(A) is an equivalence of categories.

Cf. definition 1.5.4.

Proof. Note that I is an exact functor in this case since it is additive, cf. remark 1.5.5.

Let Î : Adel(A) → Adel(A) be the exact functor with Î ◦ I = I provided by theorem 4.1.4.(a).

Thus Î ∼= 1Adel(A) in Adel(A)Adel(A).

Let Ĩ : U(A) → Adel(A) be the exact functor with Ĩ ◦ I = I provided by theorem 4.3.1.(a).

Thus Ĩ ◦ L = Î ∼= 1Adel(A) .

We have (L ◦Ĩ) ◦ I = L ◦(̃I ◦ I) = L ◦ I = I = 1U(A) ◦ I. Thus L ◦Ĩ ∼= 1U(A) in U(A)U(A) by loc.

cit.

We conclude that L is an equivalence of categories.

Remark 4.3.4. The universal functor is self-dual in the following sense.

Note that (I(Aop,Eop))
op : A → U(Aop, Eop)op is E-exact and that (I(A,E))

op : Aop → U(A, E)op is

Eop-exact.

Let Ĩ : U(A, E)→ U(Aop, Eop)op be the functor provided by theorem 4.3.1.(a).

So Ĩ ◦ I(A,E) = (I(Aop,Eop))
op.

Let Ĩ◦ : U(Aop, Eop)op → U(A, E) be the opposite functor of the one provided by theo-

rem 4.3.1.(a) for the exact category (Aop, Eop). So Ĩ◦ ◦ (I(Aop,Eop))
op = I(A,E).
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Then Ĩ ◦ Ĩ◦ ∼= 1U(Aop,Eop)op and Ĩ◦ ◦ Ĩ ∼= 1U(A,E). In particular, Ĩ is an equivalence of categories.

A

I(A,E)

��

(I(Aop,Eop))
op

// U(Aop, Eop)op

Ĩ◦

}}

U(A, E)

Ĩ

==

4.4 Further properties

Suppose given an exact category A = (A, E).

Recall that Y(A,E) : A → GQL(A, E) is the closed immersion of the exact category (A, E) into

its Gabriel-Quillen-Laumon category. Cf. definition 2.5.6 and theorem 2.5.8.

Let Ŷ(A,E) : Adel(A) → GQL(A, E) be the exact functor with Ŷ(A,E) ◦ IA = Y(A,E) provided by

theorem 4.1.4.(a).

Let Ỹ(A,E) : U(A, E)→ GQL(A, E) be the exact functor with Ỹ(A,E) ◦ I(A,E) = Y(A,E) provided by

theorem 4.3.1.(a).

Thus the following diagram commutes.

A
IA
��I(A,E)

��

Y(A,E)
// GQL(A, E)

Adel(A)

L(A,E)

��

Ŷ(A,E)

77

U(A, E)

Ỹ(A,E)

KK

Dually, Y(Aop,Eop) : Aop → GQL(Aop, Eop) is the closed immersion of the exact category

(Aop, Eop) into its Gabriel-Quillen-Laumon category.

Thus we obtain a closed immersion (Y(Aop,Eop))
op : A → GQL(Aop, Eop)op of the exact category

(A, E) into GQL(Aop, Eop)op. This immersion is essentially different from Y(A,E) in general, cf.

remark 4.5.5 below.

Abbreviate Y = Y(A,E), Ŷ = Ŷ(A,E), Ỹ = Ỹ(A,E) and Y◦ = (Y(Aop,Eop))
op.

Moreover, abbreviate GQL(A) = GQL(A, E) and GQL(Aop) = GQL(Aop, Eop).

Let Ŷ◦ : Adel(A) → GQL(A) be the exact functor with Ŷ◦ ◦ IA = Y◦ provided by theo-

rem 4.1.4.(a).

Let Ỹ◦ : U(A, E) → GQL(A) be the exact functor with Ỹ◦ ◦ I = Y◦ provided by theo-
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rem 4.3.1.(a).

A

I
��

I

��

Y // GQL(A)

Adel(A)

L
��

Ŷ

88

U(A)

Ỹ

LL
A

I
��

I

��

Y◦ // GQL(Aop)op

Adel(A)

L
��

Ŷ◦

77

U(A)

Ỹ◦

KK

Remark 4.4.1. Recall the duality functor Dop
A : Adel(A)→ Adel(Aop)op from section 4.1.2.

We have Ŷ◦ ∼= (Ŷ(Aop,Eop))
op ◦Dop

A in (GQL(Aop)op)Adel(A) and thus

Ker(Ŷ◦) = Ker((Ŷ(Aop,Eop))
op ◦Dop

A ) as subcategories of Adel(A).

Proof. We have Dop
A ◦ IA = (IAop)op and thus

(Ŷ(Aop,Eop))
op ◦Dop

A ◦ IA = (Ŷ(Aop,Eop))
op ◦ (IAop)op = (Y(Aop,Eop))

op = Y◦ = Ŷ◦ ◦ IA .

So Ŷ◦ ∼= (Ŷ(Aop,Eop))
op ◦Dop

A by theorem 4.1.4.(a).

We conclude that Ker(Ŷ◦) = Ker((Ŷ(Aop,Eop))
op ◦Dop

A ) by lemma 1.1.5.

4.4.1 The induced functor from Adel(A) to GQL(A)

Lemma 4.4.2. Suppose given
(
X

f
// Y

g
// Z
)
∈ Ob(Adel(A)).

(a) We have
(
X

f
// Y

g
// Z
)
∈ Ker(Ŷ) if and only if for all A ∈ ObA and all A h // Y

in A with hg = 0, there exists a pure epimorphism P �p // A and a morphism P
u // X

in A such that ph = uf .

In symbols:(
X

f
// Y

g
// Z
)
∈ Ker(Ŷ)⇐⇒

∀A ∈ ObA ∀ A h // Y with hg = 0 ∃ P �p // A ∃ P u // X : ph = uf

X
f

// Y
g

// Z

P

u

>>

�
p

// A

h

??

0

55

(b) We have
(
X

f
// Y

g
// Z
)
∈ Ker(Ŷ◦) if and only if for all A ∈ ObA and all Y h //A

with fh = 0 inA, there exists a pure monomorphism A •m //M and a morphism Z
u //M
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in A such that hm = gu.

X

0
))

f
// Y

h

��

g
// Z

u

  

A •m //M

Proof. Ad (a). We have

Adel(Ŷ)
(
X

f
//Y

g
//Z
)

=
(
Y(X)

Y(f)
//Y(Y )

Y(g)
//Y(Z)

)
.

Choose an image Kg
� //H • //Cf of kg cf , cf. definition 2.5.4. The diagram

Y(X)
Y(f)

// Y(Y )

cf
""

Y(g)
// Y(Z)

cg

""

Kf

kf
<<

Kg

�
""

kg

<<

Cf Cg

H

•

<<

is a homology diagram of Y(X)
Y(f)

//Y(Y )
Y(g)

//Y(Z) in GQL(A), cf. remark 2.5.5. Note that

in ZÂ, we have cf = c◦f eC◦f
e(C◦f )+ by loc. cit. and that e(C◦f )+ is monomorphic there by

remark 2.3.18.(b).

We have H ∼= Ŷ
(
X

f
//Y

g
//Z
)
, cf. lemma 4.1.3.(a).

Thus the following five statements are equivalent.

•
(
X

f
// Y

g
// Z
)
∈ Ker(Ŷ)

• H ∼= 0GQL(A)

• kg c◦f eC◦f
e(C◦f )+ = 0

• kg c◦f eC◦f
= 0

• For A ∈ ObA and h ∈ Kg(A), we have (h)(kg)A (c◦f )A (eC◦f
)A = 0.

Suppose given A ∈ ObA and h ∈ Kg(A). So h ∈ HomA(A, Y ) with hg = 0. We have

(h)(kg)A (c◦f )A (eC◦f
)A = (h)(c◦f )A (eC◦f

)A

= (h+ HomA(A,X)f) (eC◦f
)A

=
[
β(h+HomA(A,X)f),max(A)

]
,



172

cf. definition 2.3.16.

By lemma 2.4.3, we have
[
β(h+HomA(A,X)f),max(A)

]
= 0 if and only if there exists a pure

epimorphism P �p //A in A such that

ph+ HomA(P,X)f = (h+ HomA(A,X)f) C◦f (p
op) = (p)β

(h+HomA(A,X)f)
P = 0,

cf. definition 2.3.14.

This is true if and only if there exists P u //X in A such that ph = uf .

Ad (b). This is dual to (a) using remark 4.4.1.

Lemma 4.4.3. Suppose given X ∈ ObA and M ∈ Adel(A) with m1 = 0.

Suppose given [0, f, 0] : IA(X)→M in Adel(A).

Then Ŷ([0, f, 0]) = 0 if and only if there exist P u //M0 and a pure epimorphism P �p //X in

A such that pf = um0 .

P

p
��

u

��

X

f
��

M0
m0 //M1

0 //M2

Proof. We have Adel(Y)([0, f, 0]) = [0,Y(f), 0]. The morphism Y(M1)
cm0 //Cm0 is a cokernel

of Y(m0) in GQL(A) by remark 2.5.5.

Moreover, cm0 = c◦m0
eC◦m0

e(C◦m0
)+ and e(C◦m0

)+ is monomorphic by remark 2.3.18.(b).

By lemma 4.1.3.(b), we have Ŷ([0, f, 0]) = 0 if and only if Y(f) cm0 = 0. This is true if and

only if Y(f) c◦m0
eC◦m0

= 0. This in turn is equivalent to (1X) (Y(f))X
(

c◦m0

)
X

(
eC◦m0

)
X

= 0 by

the Yoneda lemma 1.2.2.(b).

We calculate

(1X) (Y(f))X
(

c◦m0

)
X

(
eC◦m0

)
X

= (f)
(

c◦m0

)
X

(
eC◦m0

)
X

= (f + HomA(X,M0)m0)
(

eC◦m0

)
X

=
[
β(f+HomA(X,M0)m0),max(X)

]
,

cf. definition 2.3.16.

By lemma 2.4.3, we have
[
β(f+HomA(X,M0)m0),max(X)

]
= 0 if and only if there exists a pure

epimorphism P �p //X such that (p) β
(f+HomA(X,M0)m0)
P = 0. We calculate

(p) β
(f+HomA(X,M0)m0)
P = (f + HomA(X,M0)m0) C◦m0

(pop) = pf + HomA(P,M0)m0 .

Note that pf + HomA(P,M0)m0 = 0 if and only if there exists P
u //M0 in A such that

pf = um0 .
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4.4.2 Properties of the universal functor

Theorem 4.4.4. The universal functor I : A → U(A) is an immersion, i.e. it is full, faithful,

exact and detects exactness, cf. definition 1.5.8.

Proof. The functor I is exact, cf. definition 4.2.9.

We want to show that it detects exactness.

Suppose given a sequence X
f
//Y

g
//Z in A such that I(X)

I(f)
//I(Y )

I(g)
//I(Z) is short

exact in U(A). Since Ỹ : U(A)→ GQL(A) is exact, the sequence

(
(Ỹ ◦ I)(X)

(Ỹ◦I)(f)
//(Ỹ ◦ I)(Y )

(Ỹ◦I)(g)
//(Ỹ ◦ I)(Z)

)
=
(
Y(X)

Y(f)
//Y(Y )

Y(g)
//Y(Z)

)
is short exact in GQL(A). Now Y detects exactness by theorem 2.5.8 and thus X

f
//Y

g
//Z

is pure short exact in A. We conclude that I detects exactness as well.

For an additive functor F : C → D between preadditive categories C and D and objects

X, Y ∈ Ob C, let

FX,Y : HomC(X, Y )→ HomD(F (X), F (Y )) : f 7→ F (f)

denote the induced Z-linear map.

We want to show that I is full and faithful.

Suppose given X,Z ∈ ObA. We obtain the following commutative diagram in Mod-Z.

HomA(X,Z)

IX,Z
��

YX,Z
// HomGQL(A)(Y(X),Y(Z))

HomAdel(A)(I(X), I(Z))
ŶI(X),I(Z)

33

LI(X),I(Z)

��

HomU(A)(I(X), I(Z))
ỸI(X),I(Z)

??

The functors I and Y are full and faithful, cf. section 4.1.2 and theorem 2.5.8. Thus IX,Z
and YX,Z are isomorphisms in Mod-Z. We conclude that ŶI(X),I(Z) is an isomorphism as well,

that LI(X),I(Z) is injective and that ỸI(X),I(Z) is surjective. We want to show that ỸI(X),I(Z) is

injective since then all morphisms in the diagram above are isomorphisms.

Suppose given I(X)
f
//M I(Z)sks in Adel(A), representing I(X)

f/s
//I(Z) in U(A). Sup-

pose further that Ŷ(f) · Ŷ(s)−1 = Ỹ(f/s) = 0. So Ŷ(f) = 0.

Let m := [1, 1, 0] : M →
(
M0

m0 //M1
//0
)

in Adel(A). This is a monomorphism in Adel(A),

cf. [14, th. 42.(b)]. Since L is exact by theorem 3.2.18, we conclude that L(m) is monomorphic

in U(A).
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We have Ŷ(fm) = Ŷ(f) · Ŷ(m) = 0. Lemma 4.4.3 yields P u //M0 and a pure epimorphism

P �p //X in A such that pf1 = um0 . Note that I(p) is epimorphic in U(A) since I is exact.

Moreover, I(p) · fm = 0 in Adel(A) since we have P
u //M0 and 0 //M1 in A such that

um0 + 0 = f1 .

0 //

��

P

u

��

//

p
��

0

��

��

0 //

��

X //

f1

��

0

��

M0
m0 //M1

// 0

So I(p) · L(f) · L(m) = L(I(p) · fm) = 0 in U(A) and thus L(f) = 0 since I(p) is epimorphic

and L(m) is monomorphic.

We obtain f/s = f/1 · 1/s = L(f) · 1/s = 0.

This shows that ỸI(X),I(Z) is indeed injective. So IX,Z = IX,Z LI(X),I(Z) is an isomorphism in

Mod-Z.

We conclude that I is full and faithful.

Proposition 4.4.5.

Suppose given a relative projective object P ∈ ObA. Then I(P ) is projective in U(A).

Proof. By remark 1.2.5, it suffices to show that the functor ZyU(A),I(P ) is exact.

Let ZŷA,P : Adel(A) → Mod-Z be the exact functor with ZŷA,P ◦ I = ZyA,P provided by theo-

rem 4.1.4.(a).

Then ZŷA,P ∼= ZyAdel(A),I(P ) in (Mod-Z)Adel(A) by lemma 4.1.5. We have 〈H〉 ⊆ Ker(ZŷA,P ) =

Ker(ZyAdel(A),I(P )) since P is relative projective, i.e. since ZyA,P is exact, cf. definition 1.5.9 and

lemmata 1.1.5 and 4.2.7.

Let ZỹA,P : U(A) → Mod-Z be the exact functor with ZỹA,P ◦ L = ZŷA,P provided by theo-

rem 3.3.1.(a) and let ZŷAdel(A),I(P ) be the exact functor with ZŷAdel(A),I(P ) ◦ L = ZyAdel(A),I(P )

provided by loc. cit.

We have ZỹA,P ∼= ZŷAdel(A),I(P ) ∼= ZyU(A),I(P ) in (Mod-Z)U(A) by remark 3.3.2 and lemma 3.3.3.

Proposition 4.4.6. Recall the notion of a closed immersion from definition 1.5.8.

(a) Suppose that A has enough relative projectives. Then the immersion I : A → U(A) is

closed, cf. definition 1.5.8.

(b) Suppose that A has enough relative injectives. Then the immersion I : A → U(A) is

closed.
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Proof. Ad (a).

Suppose given X ′, X ′′ ∈ ObA and a short exact sequence I(X ′) •
f
//Z �g //I(X ′′) in U(A).

We have to find C ∈ ObA such that Z ∼= I(C) in U(A).

Since A has enough relative projectives, we may choose pure short exact sequences

K ′ •k
′
//P ′ �p

′
//X ′ , K ′′ •

k′′ //P ′′ �p
′′
//X ′′ , L′ •

`′ //Q′ �q
′
//K ′ and L′′ •

`′′ //Q′′ �q
′′
//K ′′

in A. Since I maps relative projectives to projectives by proposition 4.4.5, the proof of the

horseshoe lemma (cf. [16, lem. 2.2.8] and [2, th. 12.8]) yields the commutative diagram

I(L′)

•f ′′
��

•
I(`′)

// I(Q′)

•I( 1 0 )
��

�I(q′)
// I(K ′)

•f ′
��

•
I(k′)

// I(P ′)

•I( 1 0 )
��

�I(p′)
// I(X ′)

•f
��

N

_g′′
��

•n // I(Q′ ⊕Q′′)
_I( 0

1 )
��

�s //M

_g′
��

•m // I(P ′ ⊕ P ′′)
_I( 0

1 )
��

�r // Z

_g
��

I(L′′) •
I(`′′)

// I(Q′′) �I(q′′)
// I(K ′′) •

I(k′′)
// I(P ′′) �I(p′′)

// I(X ′′)

in U(A) such that that the sequences (f ′′, g′′), (f ′, g′), (n, s) and (m, r) are short exact.

Moreover, since I is full and faithful, we may write sm = I(a) for a uniquely determined

Q′ ⊕Q′′ a //P ′ ⊕ P ′′ in A. Note that Z is a cokernel of I(a) in U(A).

We want to use that we know that the essential image of Y is closed under extensions. Therefore

we apply the exact functor Ỹ to the diagram above and obtain the commutative diagram

Y(L′)

•Ỹ(f ′′)
��

•
Y(`′)

// Y(Q′)

•Y( 1 0 )

��

�Y(q′)
// Y(K ′)

•Ỹ(f)
��

•
Y(k′)

// Y(P ′)

•Y( 1 0 )

��

�Y(p′)
// Y(X ′)

Ỹ(f)
��

Ỹ(N)

_Ỹ(g′′)
��

•
Ỹ(n)

// Y(Q′ ⊕Q′′)
_Y( 0

1 )
��

�Ỹ(s)
// Ỹ(M)

_Ỹ(g′)
��

•
Ỹ(m)

// Y(P ′ ⊕ P ′′)
_Y( 0

1 )
��

�Ỹ(r)
// Ỹ(Z)

_Ỹ(g)
��

Y(L′′) •
Y(`′′)

// Y(Q′′) �Y(q′′)
// Y(K ′′) •

Y(k′′)
// Y(P ′′) �Y(p′′)

// Y(X ′′)

in GQL(A).

Since the sequences (Ỹ(f ′′), Ỹ(g′′)), (Ỹ(f ′), Ỹ(g′)) and (Ỹ(f), Ỹ(g)) are short exact, we may

replace Ỹ(N), Ỹ(M) and Ỹ(Z) isomorphically with the images of objects in A under Y and

obtain the following commutative diagram in GQL(A).

Y(L′)

•
��

•
Y(`′)

// Y(Q′)

•Y( 1 0 )
��

�Y(q′)
// Y(K ′)

•
��

•
Y(k′)

// Y(P ′)

•Y( 1 0 )
��

�Y(p′)
// Y(X ′)

•
��

Y(L)

_
��

•
Y(`)

// Y(Q′ ⊕Q′′)
_Y( 0

1 )
��

�Y(q)
// Y(K)

_
��

•
Y(k)

// Y(P ′ ⊕ P ′′)
_Y( 0

1 )
��

�Y(p)
// Y(C)

_
��

Y(L′′) •
Y(`′′)

// Y(Q′′) �Y(q′′)
// Y(K ′′) •

Y(k′′)
// Y(P ′′) �Y(p′′)

// Y(X ′′)
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Since Y is full, faithful and detects exactness and since we have Y(a) = Ỹ(sm) = Y(qk), we

obtain the commutative diagram

L •` // Q′ ⊕Q′′ a //

�
q

$$

P ′ ⊕ P ′′ �p // C

K

•
k

::

in A such that the sequences (`, q) and (k, p) are pure short exact. Thus a cokernel of I(a) in

U(A) is given by I(C). We conclude that indeed Z ∼= I(C) in U(A).

Ad (b). This is dual to (a) using that I is self-dual, cf. remark 4.3.4.

Remark 4.4.7. I do not know whether the immersion I is closed in general. This question

remains open, cf. section 4.6.

More precisely, for a short exact sequence I(X ′) •
f
//Z �g //I(X ′′) in U(A), the sequence

Y(X ′)
Ỹ(f)

//Ỹ(Z)
Ỹ(g)

//Y(X ′′) is short exact in GQL(A). Thus Ỹ(Z) ∼= Y(X) = Ỹ(I(X)) in

GQL(A) for some X ∈ ObA since Y is a closed immersion. However, we would need Z ∼= I(X)

in U(A) but I do not know if this is true in general, cf. proposition 4.5.4.(c).

4.5 A counterexample to some assertions

Let A = mod-Z be the abelian category whose objects are the finitely generated Z-modules.

Note that A has kernels and cokernels since it is abelian.

We will use two different exact structures on A, namely the split exact structure E split
A and the

natural exact structure Eall
A , cf. definitions 1.5.4 and 1.5.6.

We keep the notation from section 4.4.

4.5.1 Natural exact structure

Let A be equipped with the natural exact structure E = Eall
A .

Proposition 4.5.1. The functor I : A → Adel(A) is not left-exact.

Proof. Assume that I is left-exact. For each additive functor F : A → B, where B is an

abelian category, the induced functor F̂ : Adel(A) → B provided by theorem 4.1.4 is exact

with F̂ ◦ I = F . So F has to be left-exact as composite of a left-exact and an exact functor.

So to arrive at a contradiction, it suffices to show that there is an additive functor from

A = mod-Z to an abelian category that is not left-exact.
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The tensor functor −⊗ Z/2: mod-Z → Mod-Z is additive and
(
Z 2 //Z 1 //Z/2

)
∈ E . Now

Z⊗ Z/2
2⊗1
//Z⊗ Z/2 is not injective since it is isomorphic to Z/2 0 //Z/2 in (Mod-Z)∆1 . We

conclude that −⊗ Z/2 is not left-exact.

4.5.2 Split exact structure

Let A be equipped with the split exact structure E = E split
A .

Let X :=
(
0 //Z 2 //Z

)
∈ Adel(A).

Lemma 4.5.2. We have X ∈ Ob(Ker(Ŷ)) but X /∈ Ob(Ker(Ŷ◦)).

Proof. We show that X ∈ Ob(Ker(Ŷ)) using lemma 4.4.2.(a).

Suppose given A
h //Z in A such that h · 2 = 0. Since 2 is monomorphic in A, we obtain

h = 0. Thus the following diagram commutes.

0 // Z 2 // Z

A

0

??

1
// A

h

??

0

55

We conclude that X ∈ Ob(Ker(Ŷ)).

We show that X /∈ Ob(Ker(Ŷ◦)) using lemma 4.4.2.(b). Suppose that X ∈ Ob(Ker(Ŷ◦)). For

Z 1 //Z in A, we obtain Z u //M and a split monomorphism Z m //M in A such that the

following diagram commutes.

0

0
))

0 // Z
1

��

2 // Z
u

  

Z •m //M

Since m is split monomorphic, there exists M n //Z in A such that mn = 1. Thus 2 · un =

1 ·mn = 1. So 2 would be split monomorphic as well, which is not true.

We conclude that X /∈ Ob(Ker(Ŷ◦)).

Lemma 4.5.3. Suppose given additive categories C and D, an additive functor F : C → D and

C ∈ Ob C. Suppose that C is not a zero object in C and that C ∈ Ob(Ker(F )). Then F is not

faithful.

Proof. Since C is not a zero object in C, we have 1C 6= 0C . But C ∈ Ob(Ker(F )) implies that

F (1C) = 1F (C) = 0F (C) = F (0C). So F is not faithful.
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Proposition 4.5.4.

(a) We have 〈H〉 ( Ker(Ŷ).

(b) The functor Ŷ : Adel(A)→ GQL(A) is not faithful.

(c) The functor Ỹ : U(A) → GQL(A) is not faithful. In particular, Ỹ is not an equivalence

and thus the construction of Gabriel-Quillen-Laumon is not universal.

Proof. We use lemma 4.5.2 repeatedly.

Ad (a). By lemma 4.2.7, we have 〈H〉 ⊆ Ker(Ŷ) and 〈H〉 ⊆ Ker(Ŷ◦). Thus X ∈ Ob(Ker(Ŷ))

but X /∈ Ob(〈H〉). We conclude that indeed 〈H〉 ( Ker(Ŷ).

Ad (b). Note that X is not a zero object in Adel(A) since X /∈ Ob(Ker(Ŷ◦)). So Ŷ is not

faithful by lemma 4.5.3.

Ad (c). Note that L(X) is not a zero object in U(A) since X /∈ Ob(〈H〉), cf. remark 3.2.14.

Moreover, we have L(X) ∈ Ob(Ker(Ỹ)) since Ỹ◦L = Ŷ. Thus Ỹ is not faithful by lemma 4.5.3.

Remark 4.5.5.

So for this exact category (A, E), we have Ker(Ŷ) 6= Ker(Ŷ◦) and 〈H〉 ( Ker(Ŷ).

I do not know whether Ker(Ŷ) ∩ Ker(Ŷ◦) = 〈H〉 in this case and in the case of an arbitrary

exact category. This question remains open, cf. section 4.6.

In general, we have 〈H〉 ⊆ Ker(Ŷ) ∩Ker(Ŷ◦).

4.6 Open questions

We keep the notation from section 4.4.

• When does U(A) have enough projectives/injectives? If A is abelian and equipped with

the natural exact structure, then I is an equivalence. So in this case U(A) has enough

projectives/injectives if and only if A does.

• Is I a closed immersion, i.e. is the image of I always closed under extensions?

Cf. remark 4.4.7.

• Does Ker(Ŷ) ∩Ker(Ŷ◦) equal 〈H〉? Cf. remark 4.5.5.

• Are there objects in 〈H〉 that are not isomorphic to a pure exact sequence?

Cf. remark 4.2.8.
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