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Introduction

The category Z-free of finitely generated free abelian groups has as objects the groups of the

form Z⊕k, where k ∈ N0, and as morphisms matrices with entries in Z. We can add morphisms

with same source and target by addition of matrices. Moreover, we have direct sums of objects.

So Z-free is an example of an additive category. In additive categories the morphisms with

same source and target form an abelian group under addition, which is bilinear with respect to

the composition, and finite direct sums of objects exist.

Abelian categories are additive categories in which there exist kernels and cokernels such that a

kernel-cokernel-factorisation property is fulfilled. They form the classical setting for homological

algebra. The category Z-mod of finitely generated abelian groups and group homomorphisms

is the archetypical example for an abelian category. In contrast, the category Z-free mentioned

above is additive but not abelian.

In [1], Adelman gives a construction that extends a given additive category A such that the

resulting category Adel(A) is abelian and satisfies the following universal property.

For every additive functor F : A → B with B abelian, there exists an exact functor

F̂ : Adel(A) → B, unique up to isotransformation, such that F = F̂ ◦ IA, where IA is the

inclusion functor from A to Adel(A).

A F //

IA
��

B

Adel(A)
F̂

;;

For example, the (additive) inclusion functor E from Z-free to Z-mod yields an exact functor

Ê : Adel(Z-free) → Z-mod. This functor cannot be an equivalence since there exist non-

kernel-preserving functors from Z-free to abelian categories or, alternatively, since Z-mod has

not enough injectives. Cf. example 65.

Already in [3, th 4.1], Freyd shows the existence of such a universal abelian category. To this

end, he embeds the additive category A into a product of abelian categories and then finds the

desired abelian category as a subcategory of this product.

He also constructs a category Freyd(A) which is abelian if and only if A has weak kernels [3,

th 3.2]. Beligiannis shows in [2, th 6.1] that the category Freydop(Freyd(A)) has this univer-

sal property, where Freydop denotes the dual version. An equivalent two-step construction is
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described by Krause in [4, universal property 2.10].

We follow the construction given by Adelman in [1], calling our resulting abelian category the

Adelman category Adel(A) of A. It is obtained as a factor category of the functor category

A∆2 . So the objects of Adel(A) are given as diagrams of the form
(
X0

x0 // X1
x1 // X2

)
, and

the morphisms from
(
X0

x0 // X1
x1 // X2

)
to
(
Y0

y0 // Y1
y1 // Y2

)
are equivalence classes of

commutative diagrams of the following form.

X0
x0 //

f0

��

X1
x1 //

f1

��

X2

f2

��
Y0

y0 // Y1
y1 // Y2

Such a diagram morphism represents the zero morphism if and only if there exist morphisms

s : X1 → Y0 and t : X2 → Y1 in A satisfying sy0 + x1t = f1.

We give an alternative description of the ideal in A∆2 that is factored out to obtain the Adelman

category: the diagram morphisms representing zero are precisely those that factor through

direct sums of objects of the forms
(
X X // Y

)
and

(
X // Y Y

)
in A∆2 . Cf.

remark 28.

Adelman gives explicit formulas for kernels and cokernels using only direct sums [1, th 1.1].

He introduces full subcategories of certain projective objects and certain injective objects to

show that Adel(A) is abelian [1, p. 101, l. 10], that it has enough projectives and injectives [1,

p. 108, l. 6], and that its projective and injective dimensions are at most two [1, prop 1.3].

These subcategories are also essential in his proof of the uniqueness in the universal property.

To construct the induced morphism in the universal property, he extends the given additive

functor F to an exact functor Adel(F ) between the corresponding Adelman categories and then

composes with a (generalised) homology functor [1, below def 1.13].

We construct a kernel-cokernel-factorisation for an arbitrary morphism in Adel(A) and give an

explicit formula for the induced morphism and its inverse. Cf. corollary 35.

We extend Adelman’s construction, including the universal property, such that it also applies

to transformations between additive functors. Cf. definition 45 and theorem 62.

Outline of the thesis

We summarise the required preliminaries in chapter 1. Most of them are basic facts from

homological algebra.

In chapter 2, we define ideals in additive categories and give the definition and properties of

factor categories. At the end of this chapter, we formulate the universal property of a factor

category.
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We study Adelman’s construction in detail in chapter 3. In section 3.1, we define the Adelman

category of an additive categoryA and give two descriptions of the ideal that is factored out. We

see that the dual of the Adelman category of A is isomorphic to the Adelman category of Aop,

which allows us to use duality arguments. We construct kernels and cokernels in section 3.2 and

obtain a criteria for a morphism being a mono- or epimorphism. In section 3.3, we give explicit

formulas for the induced morphism of a kernel-cokernel-factorisation and its inverse and we

conclude that the Adelman category is in fact abelian. We define subcategories of projective

and injective objects in section 3.4 and use them to prove that the Adelman category has

enough projectives and injectives and that its projective and injective dimensions are at most

two. Moreover, we see that the elements of A become both projective and injective in Adel(A).

In section 3.5, we extend Adelman’s construction to additive functors and transformations

between them.

The aim of chapter 4 is to prove the universal property of the Adelman category. At first, in

section 4.1, we prove some rather technical lemmata to construct the homology functor from

Adel(B) to B in the particular case of an abelian category B. We formulate the universal

property of the Adelman category in the last section 4.2 and give some direct applications.

I would like to thank my advisor Matthias Künzer for an uncountable amount of very useful

suggestions and for his continual support.

I also thank Theo Bühler for pointing out Adelman’s construction.

Conventions

We assume the reader to be familiar with elementary category theory. An introduction to

category theory can be found in [5]. Some basic definitions and notations are given in the

conventions below.

Suppose given categories A, B and C.

1. All categories are supposed to be small with respect to a sufficiently big universe, cf. [5,

§3.2 and §3.3].

2. The set of objects in A is denoted by ObA. The set of morphisms in A is denoted by

MorA. Given A,B ∈ ObA, the set of morphisms from A to B is denoted by HomA(A,B)

and the set of isomorphisms from A to B is denoted by Homiso
A (A,B). The identity

morphism of A ∈ ObA is denoted by 1A. We write 1 := 1A if unambiguous. Given

f ∈ Homiso
A (A,B), we denote its inverse by f−1 ∈ Homiso

A (B,A).

3. The composition of morphisms is written naturally:(
A

f // B
g // C

)
=
(
A

fg // C
)

=
(
A

f ·g // C
)

in A.
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4. The composition of functors is written traditionally:
(
A F // B G // C

)
=
(
A G◦F // C

)
.

5. In diagrams, we sometimes denote monomorphisms by • // and epimorphisms by � // .

6. Given A,B ∈ ObA, we write A ∼= B if A and B are isomorphic in A.

7. The opposite category (or dual category) of A is denoted by Aop. Given f ∈ MorA, the

corresponding morphism in Aop is denoted by f op. Cf. remark 1.

8. We call A preadditive if HomA(A,B) carries the structure of an abelian group for

A,B ∈ ObA, written additively, and if f(g + g′)h = fgh+ fg′h holds for

A
f // B

g //
g′
// C

h // D in A.

The zero morphisms in a preadditive category A are denoted by 0A,B ∈ HomA(A,B) for

A,B ∈ ObA. We write 0A := 0A,A and 0 := 0A,B if unambiguous.

9. The set of integers is denoted by Z. The set of non-negative integers is denoted by N0.

10. Given a, b ∈ Z, we write [a, b] := {z ∈ Z : a ≤ z ≤ b}.

11. For n ∈ N0, let ∆n be the poset category of [0, n] with the partial order inherited from

Z. This category has n + 1 objects 0, 1, 2, . . . , n and morphisms i // j for i, j ∈ Z with

i ≤ j.

12. Suppose A to be preadditive and suppose given A,B ∈ ObA. A direct sum of A and B is

an object C ∈ ObA together with morphisms A
i // C
p

oo
q
// B

joo in A satisfying ip = 1A,

jq = 1B and pi+ qj = 1C .

This is generalized to an arbitrary finite number of objects as follows.

Suppose given n ∈ N0 and Ak ∈ ObA for k ∈ [1, n]. A direct sum of A1, . . . , An is a

tuple
(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
with C ∈ ObA and morphisms Ak

ik // C
pk
oo in A satisfying

ikpk = 1Ak
, ikp` = 0Ak,A`

and
∑n

m=1 pmim = 1C for k, ` ∈ [1, n] with k 6= `. Cf. remark 2.

Sometimes we abbreviate C :=
(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
for such a direct sum.

We often use the following matrix notation for morphisms between direct sums.

Suppose given n,m ∈ N0, a direct sum
(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
of A1, . . . , An in A and

a direct sum
(
D, (jk)k∈[1,m], (qk)k∈[1,m]

)
of B1, . . . , Bm in A.

Any morphism f : C → D in A can be written as f =
∑n

k=1

∑m
`=1 pkfk`j` with unique

morphisms fk` = ikfq` : Ak → B` for k ∈ [1, n] and ` ∈ [1,m]. We write

f =
(
fk`
)
k∈[1,n],
`∈[1,m]

=

(
f11 · · · f1m

...
...

...
fn1 · · · fnm

)
.

Omitted matrix entries are zero.
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13. An object A ∈ ObA is called a zero object if for every B ∈ ObA, there exists a single

morphism from A to B and there exists a single morphism from B to A.

If A is preadditive, then A ∈ ObA is a zero object if and only if 1A = 0A holds.

14. We call A additive if A is preadditive, if A has a zero object and if for A,B ∈ ObA, there

exists a direct sum of A and B in A. In an additive category direct sums of arbitrary

finite length exist.

15. Suppose A to be additive. We choose a zero object 0A and write 0 := 0A if unambiguous.

We choose 0Aop = 0A, cf. remark 1 (c).

For n ∈ N0 and A1, . . . , An ∈ ObA, we choose a direct sum(
n⊕
k=1

Ak,
(
i
(Ak)k∈[1,n]

`

)
`∈[1,n]

,
(
p

(Ak)k∈[1,n]

`

)
`∈[1,n]

)
.

We sometimes write A1 ⊕ · · · ⊕ An :=
⊕n

k=1Ak.

Note that p
(Ak)k∈[1,n]

` =


0
...
0
1
0
...
0

 and i
(Ak)k∈[1,n]

` = ( 0 · · · 0 1 0 · · · 0 ) in matrix notation, where

the ones are in the `th row resp. column for ` ∈ [1, n].

In functor categories we use the direct sums of the target category to choose the direct

sums, cf. remark 5 (f).

16. Suppose A to be additive. Suppose given M ⊆ ObA. The full subcategory 〈M〉 of A
defined by

Ob〈M〉 :=

{
Y ∈ ObA : Y ∼=

⊕̀
i=1

Xi for some ` ∈ N0 and some Xi ∈M for i ∈ [1, `]

}

shall be the full additive subcategory of A generated by M .

17. Suppose A to be preadditive. Suppose given f : A→ B in A. A kernel of f is a morphism

k : K → A in A with kf = 0 such that the following factorisation property holds.

Given g : X → A with gf = 0, there exists a unique morphism u : X → K such that

uk = g holds.

Sometimes we refer to K as the kernel of f .

The dual of a kernel is called a cokernel.

Note that kernels are monomorphic and that cokernels are epimorphic.
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18. Suppose A to be preadditive. Suppose given f : A→ B in A, a kernel k : K → A of f , a

cokernel c : B → C of f , a cokernel p : A→ J of k and a kernel i : I → B of c.

There exists a unique morphism f̂ : J → I such that the following diagram commutes.

K •k // A

�
p
��

f // B �c // C

J
f̂ // I

•
i

??

We call such a diagram a kernel-cokernel-factorisation of f , and we call f̂ the induced

morphism of the kernel-cokernel-factorisation. Cf. remark 8.

19. We call A abelian if A is additive, if each morphism in A has a kernel and a cokernel and

if for each morphism f in A, the induced morphism f̂ of each kernel-cokernel-factorisation

of f is an isomorphism.

20. Suppose A and B to be preadditive. A functor F : A → B is called additive if F (f + g) =

F (f) + F (g) holds for X
f //
g
// Y in A, cf. proposition 4.

21. Suppose given functors F,G : A → B.

A tuple α = (αX)X∈ObA, where αX : F (X) → G(X) is a morphism in B for X ∈ ObA,

is called natural if F (f)αY = αXG(f) holds for X
f // Y in A. A natural tuple is also

called a transformation. We write α : F → G, α : F ⇒ G or A
F
((

G

66 Bα �� .

A transformation α : F ⇒ G is called an isotransformation if and only if αX is an isomor-

phism in B for X ∈ ObA. The isotransformations from F to G are precisely the elements

of Homiso
BA(F,G), cf. convention 22.

Suppose given A
F

$$
G //

H

;;B
K
((

L

66 C
α ��

β ��
γ �� .

We have the transformation αβ : F ⇒ H with (αβ)X := αXβX for X ∈ ObA.

We have the transformation γ ? α : K ◦ F ⇒ L ◦ G with (γ ? α)X := K(αX)γG(X) =

γF (X)L(αX) for X ∈ ObA.

(K ◦ F )(X)
γF (X) //

K(αX)
��

(L ◦ F )(X)

L(αX)
��

(K ◦G)(X) γG(X)

// (L ◦G)(X)

We have the transformation 1F : F ⇒ F with (1F )X := 1F (X) for X ∈ ObA.

We set γ ? F := γ ? 1F .

Cf. lemma 6.
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22. Let AC denote the functor category whose objects are the functors from C to A and whose

morphisms are the transformations between such functors. Cf. remark 5.

23. The identity functor of A shall be denoted by 1A : A → A.

24. A functor F : A → B is called an isomorphism of categories if there exists a functor

G : B → A with F ◦G = 1B and G ◦ F = 1A. In this case, we write F−1 := G.

25. Suppose given A
f // B in A. The morphism f is called a retraction if there exists a

morphism g : B → A with gf = 1Y . The dual of a retraction is called a coretraction.

26. An object P ∈ ObA is called projective if for each morphism g : P → Y and each

epimorphism f : X → Y , there exists h : P → X with hf = g.

P
h

~~
g
��

X �
f
// Y

The dual of a projective object is called an injective object.

27. Suppose A to be abelian. Suppose given X
f // Y in A. A diagram X �p // I •i // Y

is called an image of f if p is epimorphic, if i is monomorphic and if pi = f holds.

28. Suppose A to be abelian. A sequence X
f // Y

g // Z in A is called left-exact if f is a

kernel of g and right-exact if g is a cokernel of f . Such a sequence is called short exact if

it is left-exact and right-exact.

Suppose given n ∈ N0 and a sequence A0
a0 // A1

a1 // A2
a2 // · · · an−2 // An−1

an−1 // An
in A. The sequence is called exact if for each choice of images(

Ak
ak // Ak+1

)
=
(
Ak

�pk // Ik •
ik // Ak+1

)
for k ∈ [0, n− 1], the sequences Ik

ik // Ak+1

pk+1 // Ik+1 are short exact for k ∈ [0, n− 2].

Cf. remark 12.

29. Suppose A and B to be abelian.

An additive functor F : A → B is called left-exact if for each left-exact sequence

X •
f // Y

g // Z in A, the sequence F (X)
F (f) // F (Y )

F (g) // F (Z) is also left-exact.

An additive functor F : A → B is called right-exact if for each right-exact sequence

X
f // Y �g // Z in A, the sequence F (X)

F (f) // F (Y )
F (g) // F (Z) is also right-exact.

An additive functor F : A → B is called exact if it is left-exact and right-exact.
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30. Suppose given a subcategory A′ ⊆ A and a subcategory B′ ⊆ B. Suppose given a functor

F : A → B with F (f) ∈ MorB′ for f ∈ MorA′.

Let F |B′A′ : A′ → B′ be defined by F |B′A′(A) = F (A) for A ∈ ObA′ and F |B′A′(f) = F (f) for

f ∈ MorA′.

Let F |A′ := F |BA′ and let F |B′ := F |B′A .



Chapter 1

Preliminaries

1.1 A remark on duality

Remark 1. Suppose given a category A. Some facts about the opposite category Aop are

listed below.

(a) We have (Aop)op = A.

(b) If A is preadditive, then Aop is preadditive with addition f op + gop = (f + g)op for

A
f //
g
// B in A.

(c) An object A ∈ ObA is a zero object in A if and only if it is a zero object in Aop.

(d) Suppose A to be preadditive. Suppose given n ∈ N0, Ak ∈ ObA for k ∈ [1, n] and a tuple(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
with C ∈ ObA and morphisms Ak

ik // C
pk
oo in A for k ∈ [1, n].

The tuple
(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
is a direct sum of A1, . . . , An in A if and only if the

tuple
(
C, (pop

k )k∈[1,n], (i
op
k )k∈[1,n]

)
is a direct sum of A1, . . . , An in Aop.

(e) If A is additive, then Aop is additive.

(f) If A is abelian, then Aop is abelian.

(g) Suppose given a category B and a functor F : A → B. The opposite functor

F op : Aop → Bop is defined by F op(A) = F (A) for A ∈ ObA and F op(f op) = F (f)op

for f ∈ MorA. We have (F op)op = F .

Suppose A and B to be preadditive. The functor F is additive if and only if F op is

additive.
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Suppose A and B to be abelian. The functor F is left-exact if and only if F op is right-

exact.

The functor F is exact if and only if F op is exact.

1.2 Additive lemmata

Remark 2. Suppose given a preadditive category A.

The two definitions of direct sums given in the conventions are compatible:

Given a diagram A
i // C
p

oo
q
// B

joo in A satisfying ip = 1A, jq = 1B and pi+ qj = 1C , we have

iq = 0 and jp = 0. Cf. convention 12.

Proof. Indeed we have

0 = iq − iq = i(pi+ qj)q − iq = ipiq + iqjq − iq = iq + iq − iq = iq

and similarly

0 = jp− jp = j(pi+ qj)p− jp = jpip+ jqjp− jp = jp+ jp− jp = jp.

Proposition 3. Suppose given a preadditive category A.

Suppose given n ∈ N0 and a direct sum C =
(
C, (ik)k∈[1,n], (pk)k∈[1,n]

)
of A1, . . . , An in A, cf.

convention 12.

Then C satisfies the universal properties of a product and a coproduct:

(a) Given morphisms fk : X → Ak for k ∈ [1, n], there exists a unique morphism g : X → C

satisfying fk = gpk for k ∈ [1, n].

Ak

X

fk
>>

g
// C

pk

OO

(b) Given morphisms fk : Ak → X for k ∈ [1, n], there exists a unique morphism g : C → X

satisfying fk = ikg for k ∈ [1, n].

Ak
fk

  
ik
��
C g

// X
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Proof. Ad (a). If g : X → C is a morphism with fk = gpk for k ∈ [1, n], we necessarily have

g = g(
∑n

`=1 p`i`) =
∑n

`=1 gp`i` =
∑n

`=1 f`i`, so g is completely determined and therefore unique.

Let g :=
∑n

`=1 f`i`. We have gpk = (
∑n

`=1 f`i`)pk =
∑n

`=1 f`i`pk = fk for k ∈ [1, n].

Ad (b). This is dual to (a).

Proposition 4. Suppose given additive categories A and B. Suppose given an additive functor

F : A → B.

We have F (0A) ∼= 0B in B.

Suppose given A,B ∈ ObA. Let p := p
(A,B)
1 , q := p

(A,B)
2 , i := i

(A,B)
1 and j := i

(A,B)
2 , cf.

convention 15. So A
i // A⊕B
p
oo

q
// B

joo is a direct sum of A and B in A.

The morphism ( F (p) F (q) ) : F (A ⊕ B) → F (A) ⊕ F (B) is an isomorphism in B with inverse(
F (i)
F (j)

)
.

Proof. For A ∈ ObA and 0 = 0A, we have F (0) = F (0) + F (0) − F (0) = F (0 + 0) − F (0) =

F (0)−F (0) = 0. In particular, we have 1F (0A) = F (10A) = F (0) = 0 and therefore F (0A) ∼= 0B
holds.

Calculating

( F (p) F (q) )
(
F (i)
F (j)

)
= F (p)F (i) + F (q)F (j) = F (pi+ qj) = F (1) = 1

and (
F (i)
F (j)

)
( F (p) F (q) ) =

(
F (i)F (p) F (i)F (q)
F (j)F (p) F (j)F (q)

)
=
(
F (ip) F (iq)
F (jp) F (jq)

)
=
(
F (1) F (0)
F (0) F (1)

)
= ( 1 0

0 1 )

proves the second claim, cf. remark 2.

Remark 5. Suppose given a category C and an additive category A. Some facts about the

functor category AC are listed below. Cf. convention 22.

(a) The category AC is additive.

(b) Suppose given F α // G
β // H in AC.

The composite αβ is given by αβ = (αXβX)X∈Ob C.

(c) Suppose given F ∈ Ob(AC). The identity morphism 1F is given by 1F = (1F (X))X∈Ob C.

(d) Suppose given F
α //
β
// G in AC. The sum α + β is given by α + β = (αX + βX)X∈Ob C.

(e) Suppose given F,G ∈ Ob(AC).
The zero morphism 0F,G is given by 0F,G = (0F (X),G(X))X∈Ob C.
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(f) Suppose given n ∈ N0 and Fk ∈ Ob(AC) for k ∈ [1, n]. We choose the direct sum(
n⊕
k=1

Fk,
(
i
(Fk)k∈[1,n]

`

)
`∈[1,n]

,
(
p

(Fk)k∈[1,n]

`

)
`∈[1,n]

)
of F1, . . . , Fn, where

(
n⊕
k=1

Fk

)(
X

f // Y
)

=

 n⊕
k=1

Fk(X)


F1(f)

F2(f)

...
Fn(f)


//
n⊕
k=1

Fk(Y )


for X

f // Y in C,

i
(Fk)k∈[1,n]

` =
(
i
(Fk(X))k∈[1,n]

`

)
X∈Ob C

for ` ∈ [1, n] and

p
(Fk)k∈[1,n]

` =
(
p

(Fk(X))k∈[1,n]

`

)
X∈Ob C

for ` ∈ [1, n].

Cf. conventions 12 and 15.

Lemma 6. Suppose given A
F

$$
G //

H

;;B
K

$$
L //

M

;;C
N ((

P

66 D
α ��

β ��

γ ��

δ ��
ε �� .

The equations ε ? (γ ? α) = (ε ? γ) ? α, 1K◦F = 1K ? 1F and (γδ) ? (αβ) = (γ ? α)(δ ? β) hold.

Proof. Suppose given X ∈ ObA. We have

(ε ? (γ ? α))X = N((γ ? α)X)ε(L◦G)(X) = N(K(αX)γG(X))εL(G(X))

= N(K(αX))N(γG(X))εL(G(X)) = (N ◦K)(αX)(ε ? γ)G(X)

= ((ε ? γ) ? α)X ,

(1K◦F )X = 1(K◦F )(X) = K(1F (X))(1K)F (X) = (1K ? 1F )X

and

((γδ) ? (αβ))X = K((αβ)X)(γδ)H(X) = K(αX)K(βX)γH(X)δH(X)

= K(αX)γG(X)L(βX)δH(X) = (γ ? α)X(δ ? β)X

= ((γ ? α)(δ ? β))X .
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1.3 Abelian lemmata

Lemma 7. Suppose given a preadditive category A and the following commutative diagram

in A.

A
f //

g
��

B

h
��

A′
f ′ // B′

(a) Suppose given a kernel k : K → A of f and a kernel k′ : K ′ → A′ of f ′.

There exists a unique morphism u : K → K ′ such that kg = uk′ holds. The morphism u

is called the induced morphism between the kernels.

K •k //

u
��

A
f //

g
��

B

h
��

K ′ •k
′
// A′

f ′ // B′

If g and h are isomorphisms, then u is an isomorphism too.

(b) Suppose given a cokernel c : B → C of f and cokernel c′ : B′ → C ′ of f ′.

There exists a unique morphism u : C → C ′ such that cu = hc′ holds. The morphism u

is called the induced morphism between the cokernels.

A
f //

g
��

B

h
��

�c // C

u
��

A′
f ′ // B′ �c′ // C ′

If g and h are isomorphisms, then u is an isomorphism too.

Proof. Ad (a). We have kgf ′ = kfh = 0. Since k′ is a kernel of f ′, there exists a morphism

u : K → K ′ such that kg = uk′ holds. The morphism u is unique because k′ is a monomorphism.

Now suppose g and h to be isomorphisms. Consider the following diagram.

A′
f ′ //

g−1

��

B′

h−1

��
A

f // B

This diagram commutes, since we have g−1f = g−1fhh−1 = g−1gf ′h−1 = f ′h−1.

As seen above, there exists a morphism u′ : K ′ → K such that k′g−1 = u′k holds.

We have uu′k = uk′g−1 = kgg−1 = k and u′uk′ = u′kg = k′g−1g = k′. Since k and k′ are

monomorphic, we conclude that uu′ = 1 and u′u = 1 hold.

Ad (b). This is dual to (a).
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Remark 8. Suppose given a preadditive category A and f ∈ MorA. Suppose given the

following kernel-cokernel-factorisations of f , cf. convention 18.

K •k // A

�
p
��

f // B �c // C

J
f̂ // I

•
i

?? K ′ •k
′
// A

�
p′ ��

f // B �c′ // C ′

J ′
f̂ ′ // I ′

•
i′

??

By adding the induced morphisms between the kernels resp. cokernels, we obtain the following

diagram.

K •k //

u

��

A

1A

��


p

&&

f // B

1B

��

�c // C

v

��

J
f̂ //

x

��

I

•
i

88

y

��

K ′ •k
′

// A


p′

&&

f // B �c′ // C ′

J ′
f̂ ′ // I ′

•
i′

88

This diagram commutes, in particular we have f̂y = xf̂ ′. Since u, v, x and y are isomorphisms,

the morphism f̂ is an isomorphism if and only if f̂ ′ is an isomorphism. Cf. lemma 7.

Proof. We have pf̂yi′ = pf̂ i = f = p′f̂ ′i′ = pxf̂ ′i′. Since p is epimorphic and i′ is monomorphic,

we obtain f̂y = xf̂ ′.

Remark 9. Suppose given an abelian category A.

(a) Suppose given an epimorphism f : A → B and a kernel k : K → A of f . Then f is a

cokernel of k.

(b) Suppose given a monomorphism f : A → B and a cokernel c : B → C of f . Then f is a

kernel of c.

Proof. Ad (a). We have a kernel-cokernel-factorisation of f as follows.

K •k // A

�
p
��

�f // B �0 // 0

J
f̂ // B

•
1

>>

Since f̂ is an isomorphism and p is a cokernel of k, we conclude that f is a cokernel of k too.

Ad (b). This is dual to (a).
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Lemma 10. Suppose given an abelian category A. Suppose given A
f // B in A, a kernel k

of f , a cokernel c of f and an image A �p // I •i // B of f .

(a) The morphism p is a cokernel of k.

(b) The morphism i is a kernel of c.

Proof. Ad (a). The morphism k is also a kernel of p since i is monomorphic. Therefore p is a

cokernel of k, cf. remark 9 (a).

Ad (b). This is dual to (a).

Lemma 11. Suppose given an abelian category A and the following commutative diagram in

A.

A
f //

x
��

B

y
��

C
g // D

Suppose given an image A �p // I •i // B of f and an image C �q // J •
j // D of g.

There exists a unique morphism u : I → J such that the following diagram commutes.

A �p //

x
��

I

u
��

•i // B

y
��

C �q // J •
j // D

The morphism u is called the induced morphism between the images.

If x and y are isomorphisms, then u is an isomorphism too.

Proof. Let k : K → A be a kernel of f and let ` : L→ C be a kernel of g. Let v : K → L be the

induced morphism between the kernels, cf. lemma 7. Lemma 10 says that p is a cokernel of k

and that q is a cokernel of `. Let u : I → J be the induced morphism between the cokernels.

K

v
��

•k // A �p //

x
��

I

u
��

•i // B

y
��

L •` // C �q // J •
j // D

It remains to show that uj = iy holds. We have puj = xqj = xg = fy = piy, so uj = iy is true

since p is epimorphic.

The morphism u is unique because p is epimorphic and we necessarily have pu = xq.

If x and y are isomorphisms, then v is an isomorphism too. In this case v and x are isomor-

phisms, so u is an isomorphism too. Cf. lemma 7.
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Remark 12. Suppose given an abelian category A and the following commutative diagram in

A.

A
f //

~
p
��

B
g //

�
q
��

C

I

•
i

??

J

•
j

??

The following statements are equivalent.

(a) The sequence A
f // B

g // C is exact.

(b) The sequence I •i // B �q // J is short exact.

(c) The sequence I •i // B �q // J is left-exact.

(d) The sequence I •i // B �q // J is right-exact.

(e) The sequence I •i // B
g // C is left-exact.

(f) The sequence A
f // B �q // J is right-exact.

Lemma 13. Suppose given abelian categories A and B and an additive functor F : A → B.

(a) Suppose that for X
f // Y in A, there exists a kernel k : K → X of f such that the

sequence F (K)
F (k) // F (X)

F (f) // F (Y ) is left-exact in B. Then F is left-exact.

(b) Suppose that for X
f // Y in A, there exists a cokernel c : Y → C of f such that the

sequence F (X)
F (f) // F (Y )

F (c) // F (C) is right-exact in B. Then F is right-exact.

Proof. Ad (a). Suppose given a left-exact sequence L ` // X
f // Y in A. There exists a

kernel k : K → X of f such that the sequence F (K)
F (k) // F (X)

F (f) // F (Y ) is left-exact. There

exists an isomorphism u : K → L such that u` = k, cf. lemma 7 (a). Since F (u) is also

an isomorphism and F (u)F (`) = F (k) holds, we conclude that F (`) is a kernel of F (f), so

F (L)
F (`) // F (X)

F (f) // F (Y ) is left-exact too.

Ad (b). This is dual to (a).
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Factor categories

Suppose given an additive category A.

Definition 14 (Ideal). Suppose given J ⊆ MorA. We set HomA,J(A,B) := HomA(A,B) ∩ J
for A,B ∈ ObA.

We say that J is an ideal in A if it satisfies the following two conditions.

(I1) Given A
a // B

j // C
c // D in A with j ∈ J , we have ajc ∈ J .

(I2) HomA,J(A,B) is a subgroup of HomA(A,B) for A,B ∈ ObA.

Remark 15. Suppose given J ⊆ MorA satisfying condition (I1) from the previous defini-

tion 14. Then condition (I2) is equivalent to the following two conditions.

(I2′) HomA,J(A,B) 6= ∅ for A,B ∈ ObA.

(I2′′) Given A
j //
k
// B in A with j, k ∈ J , we have

(
j 0
0 k

)
∈ HomA,J(A⊕ A,B ⊕B).

Proof. Suppose that J satisfies the conditions (I2′) and (I2′′). Given A
j //
k
// B in A with

j, k ∈ J , conditions (I1) and (I2′′) imply j−k = ( 1 1 )
(
j 0
0 k

)
( 1
−1 ) ∈ J . Condition (I2′) says that

HomA,J(A,B) 6= ∅. Therefore HomA,J(A,B) is a subgroup of HomA(A,B). We conclude that

condition (I2) holds.

Suppose that J satisfies the condition (I2). Then condition (I2′) holds. Given A
j //
k
// B in

A with j, k ∈ J , condition (I1) implies
(
j 0
0 0

)
= ( 1

0 ) j ( 1 0 ) ∈ HomA,J(A ⊕ A,B ⊕ B) and

( 0 0
0 k ) = ( 0

1 ) k ( 0 1 ) ∈ HomA,J(A⊕ A,B ⊕B).

Therefore we have
(
j 0
0 k

)
=
(
j 0
0 0

)
+ ( 0 0

0 k ) ∈ HomA,J(A ⊕ A,B ⊕ B) according to (I2). So

condition (I2′′) holds.
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Suppose given an ideal J in A throughout the rest of this chapter 2.

Lemma/Definition 16 (Factor category). The factor category A/J shall be defined as follows.

• Let Ob(A/J) := ObA.

• Let HomA/J(A,B) := HomA(A,B)/HomA,J(A,B) for A,B ∈ Ob(A/J), cf. definition 14.

We write [a] := a+ HomA,J(A,B) for a ∈ HomA(A,B).

• Composites and identities are defined via representatives:

Let [a][b] := [ab] for A a // B
b // C in A.

Let 1A := [1A] for A ∈ Ob(A/J) = ObA.

This in fact defines a category.

Proof. First, we show the well-definedness of the composition:

Given A
a //
a′
// B

b //
b′
// C in A with [a] = [a′] and [b] = [b′], we have

ab− a′b′ = ab− ab′ + ab′ − a′b′ = a(b− b′)1C + 1A(a− a′)b′ ∈ J

because of b− b′ ∈ J , a−a′ ∈ J and the conditions (I1) and (I2). We conclude that [ab] = [a′b′]

holds.

Associativity and properties of the identities are inherited from A:

Given A
a // B b // C c // D in A, we obtain ([a][b])[c] = [(ab)c] = [a(bc)] = [a]([b][c]) and

1A[a] = [1Aa] = [a] = [a1B] = [a]1B.

Notation 17. When writing [a] ∈ Mor(A/J), we always suppose a ∈ MorA.

Remark 18. Suppose given a full additive subcategory N of A. Let FN be the set of all

f ∈ MorA such that there exists a factorisation
(
A

f // B
)

=
(
A

g // N
h // B

)
with

N ∈ ObN . The set FN is an ideal in A. We shortly write A/N := A/FN .

Proof. We use remark 15 to show that FN is an ideal in A.

Given A
a // B

j // C
c // D in A with j ∈ FN , there exists a factorisation

(
B

j // C
)

=(
B

g // N h // C
)

with N ∈ ObN .

We have(
A a // B

j // C c // D
)

=
(
A a // B

g // N h // C c // D
)

=
(
A

ag // N hc // D
)
.

Therefore ajc ∈ FN is true, so condition (I1) holds.
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There exists a zero object 0 ∈ ObN since N is a full additive subcategory of A. We conclude

that HomA,N (A,B) 6= ∅ holds for A,B ∈ ObA since we have the factorisation
(
A 0 // B

)
=(

A
0 // 0 0 // B

)
with 0 ∈ ObN , so condition (I2′) holds.

Suppose given A
j //
k
// B in A with j, k ∈ FN . There exist factorisations

(
A

j // B
)

=(
A

g // N h // B
)

and
(
A k // B

)
=
(
A u // S v // B

)
with N,S ∈ ObN . A direct sum

C ∼= N ⊕ S of N and S exists in N since N is a full additive subcategory of A.

Finally, we have

(
A⊕ A

(
j 0
0 k

)
// B ⊕B

)
=
(
A⊕ A

(
g 0
0 u

)
// C

(h 0
0 v )
// B ⊕B

)
with C ∈ ObN , so condition (I2′′) holds.

Proposition 19. The factor category A/J is additive.

Proof. First of all HomA/J(A,B) is an abelian group for A,B ∈ ObA/J as a factor group of

the abelian group HomA(A,B). The compatibility with the composition is seen as follows.

Given A
[a] // B

[b] //
[b′]
// C

[c] // D in A/J , we have

[a]([b] + [b′])[c] = [a(b+ b′)c] = [abc+ ab′c] = [a][b][c] + [a][b′][c].

The zero object 0 of A is also a zero object in A/J since factors of one-element hom-groups

contain precisely one element.

For any two objects A,B ∈ ObA/J = ObA, we have a direct sum A
i // C
p

oo
q
// B

joo in A with

ip = 1A, jq = 1B and pi+ qj = 1C .

We claim that A
[i] // C
[p]
oo

[q]
// B

[j]oo defines a direct sum in A/J as well. Indeed we have [i][p] =

[ip] = 1A, [j][q] = [jq] = 1B and [p][i] + [q][j] = [pi+ qj] = 1C . This proves the claim.

Lemma/Definition 20 (Residue class functor). The residue class functor RA,J : A → A/J
of J in A is defined by RA,J(A) := A for A ∈ ObA and RA,J(a) := [a] for a ∈ MorA. The

residue class functor is additive. We write R := RA,J if unambiguous.

Proof. We have R(ab) = [ab] = [a][b] = R(a) R(b), R(1A) = [1A] = 1R(A) and R(a + a′) =

[a+ a′] = [a] + [a′] = R(a) + R(a′) for A
[a] //
[a′]
// B

[b] // C in in A.

Theorem 21 (Universal property of the factor category). Recall that A is an additive category

and J is an ideal in A. Suppose given an additive category B.
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(a) Suppose given an additive functor F : A → B with F (j) = 0 for j ∈ J .

There exists a unique additive functor F̂ : A/J → B satisfying F̂ ◦ R = F .

A F //

R
��

B

A/J
F̂

==

The equations F̂ (X) = F (X) and F̂ ([f ]) = F (f) hold for X ∈ ObA and f ∈ MorA .

(b) Suppose given additive functors F,G : A → B with F (j) = 0 and G(j) = 0 for j ∈ J and

a transformation α : F ⇒ G.

There exists a unique transformation α̂ : F̂ ⇒ Ĝ satisfying α̂ ? R = α.

A
F

++

G

33α ��

R

��

B

A/J

F̂

99

Ĝ

CC

α̂
�!

The equation α̂X = αX holds for X ∈ ObA.

Proof. Ad (a). Given a functor F̃ : A/J → B with F̃ ◦ R = F , we necessarily have F̃ (X) =

F̃ (R(X)) = F (X) for X ∈ ObA and F̃ ([f ]) = F̃ (R(f)) = F (f) for f ∈ MorA, so F̃ is

determined by F and therefore unique.

Now we show the existence of such a functor.

Let F̂ (X) := F (X) for X ∈ ObA and F̂ ([f ]) := F (f) for f ∈ MorA.

F̂ is well-defined since in case [f ] = [g] for f, g ∈ MorA, we have f − g ∈ J and therefore

F (f − g) = 0. The additivity of F then implies F (f) = F (g).

We verify that F̂ is an additive functor:

Given X
[f ] //
[f ′]
// Y

[g] // Z in A/J , we have

F̂ ([f ][g]) = F̂ ([fg]) = F (fg) = F (f)F (g) = F̂ ([f ])F̂ ([g]), F̂ (1X) = F (1X) = 1F̂ (X)

and

F̂ ([f ] + [f ′]) = F̂ ([f + f ′]) = F (f + f ′) = F (f) + F (f ′) = F̂ ([f ]) + F̂ ([f ′]).
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Ad (b). Given a transformation α̃ : F̂ → Ĝ with α̃ ?R = α, we necessarily have α̃X = α̃R(X) =

α̃R(X)Ĝ(1R(X)) = (α̃ ? R)X = αX for X ∈ ObA, so α̃ is determined by α and therefore unique.

Now we show the existence of such a transformation.

Let α̂X = αX for X ∈ ObA. This defines a transformation since

α̂XĜ([f ]) = αXG(f) = F (f)αY = F̂ ([f ])α̂Y

holds for X
[f ] // Y in A/J .

We have (α̂ ? R)X = α̂R(X)Ĝ(1R(X)) = αX for X ∈ ObA, so α̂ ? R = α holds.



Chapter 3

Adelman’s construction

Suppose given an additive category A.

Recall that ∆2 denotes the poset category of [0, 2] ⊆ Z. This category has three objects 0, 1,

2 and three non-identical morphisms 0 // 1, 1 // 2, 0 // 2. Cf. convention 11.

Recall that A∆2 denotes the functor category of all functors from ∆2 to A, cf. convention 22.

3.1 Definitions, notations and duality

Notation 22. Given a diagram A0
a0 // A1

a1 // A2 in A, we obtain a functor A ∈ Ob(A∆2)

by setting A(0) := A0, A(1) := A1, A(2) := A2, A(0 // 1) := a0, A(1 //2) := a1, A(0 // 2) :=

a0a1, A(0 1 // 0) := 1A0 , A(1 1 // 1) := 1A1 and A(2 1 // 2) := 1A2 .

For A ∈ Ob(A∆2), we therefore set A0 := A(0), A1 := A(1), A2 := A(2), a0 := A(0 // 1),

a1 := A(1 // 2) and write A =
(
A0

a0 // A1
a1 // A2

)
.

For a transformation f ∈ HomA∆2 (A,B), we write f = (f0, f1, f2) instead of f = (fi)i∈Ob(∆2).

We also write  A

f
��
B

 =


A0

f0

��

a0 // A1

f1

��

a1 // A2

f2

��
B0

b0 // B1
b1 // B2

 .

Given A,B ∈ Ob(A∆2) and morphisms f0 : A0 → B0, f1 : A1 → B1, f2 : A2 → B2 inA satisfying

a0f1 = f0b0 and a1f2 = f1b1, we obtain a transformation f = (f0, f1, f2) ∈ HomA∆2 (A,B).

Definition 23 (null-homotopic). Suppose given A,B ∈ Ob(A∆2).

A transformation f ∈ HomA∆2 (A,B) is said to be null-homotopic if there exist morphisms
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s : A1 → B0 and t : A2 → B1 in A satisfying sb0 + a1t = f1.

Lemma/Definition 24 (Adelman category). The functor categoryA∆2 is an additive category

and JA := {f ∈ Mor(A∆2) : f is null-homotopic} is an ideal in A∆2 , cf. definition 14. We call

Adel(A) := A∆2/ JA

the Adelman category of A, cf. definition 16. The category Adel(A) is additive.

We abbreviate RA := RA∆2 ,JA , cf. definition 20.

Proof. The additivity of A∆2 is inherited from A, cf. remark 5.

We show that JA is an ideal in A∆2 . Suppose given A
f // B

j // C
g // D in A∆2 . Since j

is null-homotopic, there exist morphisms s : B1 → C0 and t : B2 → C1 in A with sc0 + b1t = j1.

Using f1sg0 : A1 → D0 and f2tg1 : A2 → D1, we obtain

f1sg0d0 + a1f2tg1 = f1sc0g1 + f1b1tg1

= f1(sc0 + b1t)g1

= f1j1g1

= (fjg)1.

Therefore fjg is null-homotopic, so condition (I1) holds.

A0

f0

��

a0 // A1

f1

��

a1 // A2

f2

��
B0

b0 //

j0
��

B1

j1
��

b1 //

s

xx

B2

j2
��

t

xx
C0

g0

��

c0
// C1

g1

��

c1
// C2

g2

��
D0

d0 // D1
d1 // D2

We have HomA∆2 ,JA(A,B) 6= ∅, since 0 = 0A,B is null-homotopic: 0A1,B0b0 +a10A2,B1 = 0A1,B1 =

01.

Suppose given x, y ∈ HomA∆2 ,J(A,B). Since x and y are null-homotopic, there exist morphisms

s, u : A1 → B0 and t, v : A2 → B1 in A with sb0 + a1t = x1 and ub0 + a1v = y1.

Using s− u : A1 → B0 and t− v : A2 → B1 in A, we obtain

(s− u)b0 + a1(t− v) = (sb0 + a1t)− (ub0 + a1v) = x1 − y1 = (x− y)1.

Therefore x− y is null-homotopic, so condition (I2) holds.

We conclude that JA is in fact an ideal in A∆2 .

Proposition 19 now implies that Adel(A) is additive.



26

Notation 25. Since every morphism in Adel(A) is of the form [f ] with f ∈ Mor(A∆2), we will

always suppose f ∈ Mor(A∆2) when writing [f ] in Adel(A), cf. notation 17. Often we shortly

write [f ] = [f0, f1, f2] instead of [f ] = [(f0, f1, f2)] for A
[f ] // B in Adel(A).

Remark 26.

(a) By applying the previous notation 25, we have

1A = [1A0 , 1A1 , 1A2 ], 0A,B = [0A0,B0 , 0A1,B1 , 0A2,B2 ],

[f1, f2, f3] · [g1, g2, g3] = [f1g1, f2g2, f3g3] and

[f1, f2, f3] + [h1, h2, h3] = [f1 + h1, f2 + h2, f3 + h3]

for A
[f ] //
[h]
// B

[g] // C in Adel(A).

(b) A morphism A
[f ] // B in Adel(A) is equal to 0 if and only if there exist morphisms

s : A1 → B0 and t : A2 → B1 in A with sb0 + a1t = f1.

A0
a0 //

f0

��

A1

s

~~

a1 //

f1

��

A2

t

~~
f2

��
B0 b0

// B1 b1
// B2

Consequently, [f ] = [h] is true for A
[f ] //
[h]
// B in Adel(A) if and only if there exist mor-

phisms s : A1 → B0 and t : A2 → B1 in A with sb0 + a1t = f1 − h1.

(c) An object A ∈ Ob(Adel(A)) is a zero object if and only if 1A is equal to 0A. Consequently,

A ∈ Ob(Adel(A)) is a zero object if and only if there exists morphism s : A1 → A0 and

t : A2 → A1 with sa0 + a1t = 1.

A0

a0 // A1s
oo

a1 // A2
t

oo

Lemma/Definition 27 (Inclusion functor). The functor ĨA : A → A∆2 shall be defined by

ĨA(A) :=
(
0 0 // A

0 // 0
)

for A ∈ ObA and ĨA(f) := (0, f, 0) ∈ HomA∆2 (̃IA(A), ĨA(B)) for

A
f // B in A. The functor ĨA is additive.

Let IA := RA ◦ĨA. We call IA the inclusion functor of A.

The inclusion functor IA is a full and faithful additive functor.

Let IA(A) be the full subcategory of Adel(A) defined by Ob(IA(A)) := {IA(A) : A ∈ ObA}.
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Proof. We have 00,A · f = 00,B = 00,0 · 00,B, 0A,0 · 00,0 = 0A,0 = f · 0B,0,

ĨA(fg) = (0, fg, 0) = (0, f, 0)(0, g, 0) = ĨA(f )̃IA(g),

ĨA(1A) = (0, 1A, 0) = (10, 1A, 10) = 1ĨA(A)

and

ĨA(f + h) = (0, f + h, 0) = (0, f, 0) + (0, h, 0) = ĨA(f) + ĨA(h)

for A
f //
h
// B

g // C in A, therefore ĨA is a well-defined additive functor.

We conclude that IA is an additive functor as well.

Now suppose given A,B ∈ ObA. Any morphism from IA(A) to IA(B) in Adel(A) is necessarily

of the form [0, f, 0] = IA(f) with f ∈ HomA(A,B), which shows that IA is full.

Suppose IA(f) = IA(g) for f, g ∈ HomA(A,B). We necessarily have 0A,0 and 00,B with

0A,0 · 00,B + 0A,0 · 00,B = f − g, cf. notation 25 (b). We conclude that f = g holds, so IA
is faithful.

Remark 28. Let

SA :=
{(

X
1 // X

s // Y
)
∈ Ob(A∆2) :

(
X

s // Y
)
∈ MorA

}
∪
{(

X
s // Y

1 // Y
)
∈ Ob(A∆2) :

(
X

s // Y
)
∈ MorA

}
.

Recall that 〈SA〉 denotes the full additive subcategory of A∆2 generated by SA, cf convention 16.

The equation

F〈SA〉 = JA

holds and therefore

Adel(A) = A∆2/〈SA〉

is true, cf. remark 18.

Proof. Suppose given
(
X

s // Y
)
∈ MorA. Then

(
X 1 // X s // Y

)
is a zero object in

Adel(A) since we have 1: X → X and 0: Y → X with 1 · 1 + s · 0 = 1, cf. remark 26 (c).

Similarly, we have 0: Y → X and 1: Y → Y with 0 · s + 1 · 1 = 1, so
(
X

s // Y
1 // Y

)
is

also a zero object in Adel(A).

Therefore objects in SA are zero objects in Adel(A) and since direct sums of zero objects are

again zero objects, all objects in 〈SA〉 are zero objects in Adel(A).
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Suppose given
(
A

f // B
)
∈ F〈SA〉.

There exists a factorisation
(
A

f // B
)

=
(
A

g // N
h // B

)
in A∆2 with N ∈ Ob(〈SA〉). In

Adel(A) we have [f ] = [g][h], so [f ] factors through a zero object in Adel(A). We conclude

that [f ] = 0 holds, so f ∈ JA is true.

Conversely, suppose given
(
A

f // B
)
∈ JA. We have a diagram

A0
a0 //

f0

��

A1

s

~~

a1 //

f1

��

A2

t

~~
f2

��
B0 b0

// B1 b1
// B2

in A with sb0 + a1t = f1.

Consider the objects N :=
(
A0

a0a1 // A2
1 // A2

)
and S :=

(
A1

1 // A1
a1 // A2

)
in SA.

We get a factorisation of f through N ⊕ S ∈ Ob(〈SA〉) in A∆2 as follows.

A0

( 1 a0 )
��

a0 // A1

( a1 1 )
��

a1 // A2

( 1 1 )
��

A0 ⊕ A1

( a0a1 0
0 1 )

//

( f0−a0s
s )

��

A2 ⊕ A1

( t
sb0 )
��

( 1 0
0 a1

)
// A2 ⊕ A2(

tb1
f2−tb1

)
��

B0
b0 // B1

b1 // B2

This is a well-defined factorisation, since the following equations hold.

( 1 a0 ) ( a0a1 0
0 1 ) = ( a0a1 a0 ) = a0 ( a1 1 )

( a1 1 ) ( 1 0
0 a1

) = ( a1 a1 ) = a1 ( 1 1 )

( f0−a0s
s ) b0 =

(
f0b0−a0sb0

sb0

)
=
(
a0f1−a0sb0

sb0

)
=
(
a0(sb0+a1t)−a0sb0

sb0

)
=
(
a0a1t
sb0

)
= ( a0a1 0

0 1 ) ( t
sb0 )

( t
sb0 ) b1 =

(
tb1
sb0b1

)
=
(

tb1
(sb0+a1t)b1−a1tb1

)
=
(

tb1
f1b1−a1tb1

)
=
(

tb1
a1f2−a1tb1

)
= ( 1 0

0 a1
)
(

tb1
f2−tb1

)
( 1 a0 ) ( f0−a0s

s ) = f0 − a0s+ a0s = f0

( a1 1 ) ( t
sb0 ) = a1t+ sb0 = f1

( 1 1 )
(

tb1
f2−tb1

)
= tb1 + f2 − tb1 = f2

We conclude that f ∈ F〈SA〉 is true.

Lemma 29. Suppose given A ∈ Ob(Adel(A)) and isomorphisms ϕi : Ai → Bi inA for i ∈ [0, 2].

Let B :=
(
B0

ϕ−1
0 a0ϕ1 // B1

ϕ−1
1 a1ϕ2 // B2

)
∈ Ob(Adel(A)). Then [ϕ0, ϕ1, ϕ2] : A → B is an

isomorphism in Adel(A) with inverse
[
ϕ−1

0 , ϕ−1
1 , ϕ−1

2

]
.

Proof. We have ϕ0(ϕ−1
0 a0ϕ1) = a0ϕ1 and ϕ1(ϕ−1

1 a1ϕ2) = a1ϕ2. Therefore [ϕ0, ϕ1, ϕ2] and,

consequently, [ϕ−1
0 , ϕ−1

1 , ϕ−1
2 ] are in fact morphisms in Adel(A), mutually inverse.
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Theorem/Definition 30. Recall that A is an additive category. We have an isomorphism of

categories DA : Adel(A)op → Adel(Aop) with DA(A) =
(
A2

aop
1 // A1

aop
0 // A0

)
and DA([f ]op) =[

f op
2 , f op

1 , f op
0

]
for A

[f ] // B in Adel(A).

Note that DA is additive, as follows from DA being an isomorphism between additive categories

or from the construction given in the proof.

Proof. The functor D : A∆2 → Adel(Aop)op shall be defined by D(A) =
(
A2

aop
1 // A1

aop
0 // A0

)
and D(f) =

[
f op

2 , f op
1 , f op

0

]op
for A

f // B in A∆2 .

This is a well-defined additive functor because we have bop
1 f

op
1 = (f1b1)op = (a1f2)op = f op

2 aop
1 ,

bop
0 f

op
0 = (f0b0)op = (a0f1)op = f op

1 aop
0 ,

D(fg) =
[
(f2g2)op, (f1g1)op, (f0g0)op

]op

=
[
gop

2 f
op
2 , gop

1 f
op
1 , gop

0 f
op
0

]op

=
([
gop

2 , g
op
1 , g

op
0

][
f op

2 , f op
1 , f op

0

])op

=
[
f op

2 , f op
1 , f op

0

]op[
gop

2 , g
op
1 , g

op
0

]op

= D(f)D(g),

D(1A) = [1op, 1op, 1op]op = 1D(A) and

D(f + h) =
[
(f2+h2)op, (f1+h1)op, (f0+h0)op

]op

=
[
f op

2 +hop
2 , f

op
1 +hop

1 , f
op
0 +hop

0

]op

=
([
f op

2 , f op
1 , f op

0

]
+
[
hop

2 , h
op
1 , h

op
0

])op

=
[
f op

2 , f op
1 , f op

0

]op
+
[
hop

2 , h
op
1 , h

op
0

]op

= D(f) +D(h)

for A
f //
h
// B

g // C in A∆2 .

Suppose given A
f // B in A∆2 such that f is null-homotopic with morphisms s : A1 → B0

and t : A2 → B1 satisfying sb0 + a1t = f1.

Using top : B1 → A2 and sop : B0 → A1, we obtain topaop
1 + bop

0 s
op = (a1t + sb0)op = f op

1 .

Therefore
[
f op

2 , f op
1 , f op

0

]
= 0 and D(f) =

[
f op

2 , f op
1 , f op

0

]op
= 0 hold.

Theorem 21 gives the additive functor D̂ : Adel(A)→ Adel(Aop)op with D̂ ◦ RA = D. We set

DA :=
(
D̂
)op

: Adel(A)op → Adel(Aop).

It is now sufficient to show that DA and (DAop)op are mutually inverse.
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Suppose given A
[f ] // B in Adel(A). We have

((DAop)op ◦DA)(A) = (DAop)op
(
A2

aop
1 // A1

aop
0 // A0

)
=
(
A0

a0 // A1
a1 // A2

)
= A

and

((DAop)op ◦DA)([f ]op) = (DAop)op([f op
2 , f op

1 , f op
0 ]) = [f0, f1, f2]op = [f ]op.

Suppose given

A2

fop
2
��

aop
1 // A1

fop
1
��

aop
0 // A0

fop
0
��

B2

bop
1 // B1

bop
0 // B0

in (Aop)∆2 .

We have

(DA ◦(DAop)op)
(
A2

aop
1 // A1

aop
0 // A0

)
= DA

(
A0

a0 // A1
a1 // A2

)
=
(
A2

aop
1 // A1

aop
0 // A0

)
and

(DA ◦(DAop)op)([f op
2 , f op

1 , f op
0 ]) = DA([f0, f1, f2]op) = [f op

2 , f op
1 , f op

0 ].

3.2 Kernels and cokernels

Theorem/Definition 31. Recall that A is an additive category. Suppose given A
f // B in

A∆2 .

(a) We set, using notation 22,

K(f) :=

(
A0 ⊕B0

( a0 0
0 1 )

// A1 ⊕B0

(
a1 f1

0 −b0

)
// A2 ⊕B1

)
∈ Ob(Adel(A)) = Ob(A∆2)

and k(f) :=
(

( 1
0 ) , ( 1

0 ) , ( 1
0 )
)
∈ HomA∆2 (K(f), A).

The morphism [k(f)] ∈ HomAdel(A)(K(f), A) is a kernel of [f ] ∈ HomAdel(A)(A,B).
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(b) We set

C(f) :=

(
B0 ⊕ A1

(
b0 0
f1 −a1

)
// B1 ⊕ A2

(
b1 0
0 1

)
// B2 ⊕ A2

)
∈ Ob(Adel(A)) = Ob(A∆2)

and c(f) := (( 1 0 ) , ( 1 0 ) , ( 1 0 )) ∈ HomA∆2 (B,C(f)).

The morphism [c(f)] ∈ HomAdel(A)(B,C(f)) is a cokernel of [f ] ∈ HomAdel(A)(A,B).

A0 ⊕B0

( 1
0 )
��

( a0 0
0 1 )

// A1 ⊕B0

( 1
0 )
��

(
a1 f1

0 −b0

)
// A2 ⊕B1

( 1
0 )
��

A0

f0

��

a0 // A1

f1

��

a1 // A2

f2

��
B0

( 1 0 )
��

b0 // B1

( 1 0 )
��

b1 // B2

( 1 0 )
��

B0 ⊕ A1 (
b0 0
f1 −a1

) // B1 ⊕ A2 (
b1 0
0 1

) // B2 ⊕ A2

Proof. Ad (a). We have k(f) ∈ Mor(A∆2), since the equations ( 1
0 ) a0 = ( a0

0 ) = ( a0 0
0 1 ) ( 1

0 ) and

( 1
0 ) a1 = ( a1

0 ) =
(
a1 f1

0 −b0

)
( 1

0 ) hold.

Next, we show that [k(f)][f ] is equal to 0.

Using ( 0
1 ) : A1 ⊕B0 → B0 and ( 0

1 ) : A2 ⊕B1 → B1 in A, we obtain

( 0
1 ) b0 +

(
a1 f1

0 −b0

)
( 0

1 ) =
(

0
b0

)
+
(
f1

−b0

)
=
(
f1
0

)
= ( 1

0 ) f1 =
((

( 1
0 ) , ( 1

0 ) , ( 1
0 )
)
f
)

1
= (k(f)f)1

and therefore [k(f)][f ] = [k(f)f ] = 0.

A0 ⊕B0

( 1
0 )
��

( a0 0
0 1 )
// A1 ⊕B0

( 0
1 )

��

( 1
0 )
��

(
a1 f1

0 −b0

)
// A2 ⊕B1

( 0
1 )

��

( 1
0 )
��

A0

f0

��

a0 // A1

f1

��

a1 // A2

f2

��
B0 b0

// B1 b1
// B2

We show that [k(f)] is a monomorphism:

Suppose given [g] = [( g0
0 g1

0 ) , ( g0
1 g1

1 ) , ( g0
2 g1

2 )] : C → K(f) in Adel(A) with [g][k(f)] = 0.

There exist morphisms s : C1 → A0 and t : C2 → A1 in A satisfying sa0 + c1t = (g k(f))1 =

( g0
1 g1

1 ) ( 1
0 ) = g0

1.
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Using ( s g1
1 ) : C1 → A0 ⊕B0 and ( t 0 ) : C2 → A1 ⊕B0 in A, we obtain

( s g1
1 ) ( a0 0

0 1 ) + c1 ( t 0 ) = ( sa0 g1
1 ) + ( c1t 0 ) = ( sa0+c1t g1

1 ) = ( g0
1 g1

1 ) .

We conclude that [g] = 0.

C0

( g0
0 g1

0 )
��

c0 // C1

s

��

( g0
1 g1

1 )
��

c1 // C2

t

��

( g0
2 g1

2 )
��

A0 ⊕B0

( 1
0 )
��

( a0 0
0 1 )
// A1 ⊕B0

( 1
0 )
��

(
a1 f1

0 −b0

)// A2 ⊕B1

( 1
0 )
��

A0
a0 // A1

a1 // A2

The factorisation property is seen as follows.

Suppose given [g] : C → A in Adel(A) with [g][f ] = 0. There exist morphisms s : C1 → B0 and

t : C2 → B1 in A satisfying sb0 + c1t = (gf)1 = g1f1.

C0

g0

��

c0 // C1

s

��

g1

��

c1 // C2

t

��

g2

��
A0

f0

��

a0 // A1

f1

��

a1 // A2

f2

��
B0 b0

// B1 b1
// B2

Now we set [( g0 c0s ) , ( g1 s ) , ( g2 t )] : C → K(f). We get in fact a well-defined morphism in

Adel(A), since the equations

( g0 c0s ) ( a0 0
0 1 ) = ( g0a0 c0s ) = ( c0g1 c0s ) = c0 ( g1 s )

and

( g1 s )
(
a1 f1

0 −b0

)
= ( g1a1 g1f1−sb0 ) = ( c1g2 c1t ) = c1 ( g2 t )

hold.

Finally, we have

[( g0 c0s ) , ( g1 s ) , ( g2 t )] · [k(f)] = [( g0 c0s ) ( 1
0 ) , ( g1 s ) ( 1

0 ) , ( g2 t ) ( 1
0 )] = [g0, g1, g2] = [g].

C0

( g0 c0s )
��

c0 // C1

( g1 s )
��

c1 // C2

( g2 t )
��

A0 ⊕B0

( 1
0 )
��

( a0 0
0 1 )
// A1 ⊕B0

( 1
0 )
��

(
a1 f1

0 −b0

)// A2 ⊕B1

( 1
0 )
��

A0
a0 // A1

a1 // A2
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The uniqueness of the induced morphism from C to K(f) follows from [k(f)] being a monomor-

phism.

Ad (b). A kernel of DA([f ]op) is given by

[( 1
0 ) , ( 1

0 ) , ( 1
0 )] = [( 1 0 )op , ( 1 0 )op , ( 1 0 )op] :(

B2 ⊕ A2

(
bop
1 0
0 1

)
// B1 ⊕ A2

(
bop
0 fop

1

0 −aop
1

)
// B0 ⊕ A1

)
→ DA(B).

Therefore [( 1 0 ) , ( 1 0 ) , ( 1 0 )] : B → C(f) is a cokernel of [f ]. Cf. definition 30.

Corollary 32. Suppose given A
[f ] // B in Adel(A).

(a) The morphism [f ] is a monomorphism if and only if there exist morphisms s : A1 → A0,

t : B0 → A0, u : A2 → A1 and v : B1 → A1 in A satisfying sa0 + a1u + f1v = 1 and

ta0 = b0v.

A0

a0 //

f0

��

A1

a1 //
s

oo

f1

��

A2

f2

��

u
oo

B0

t

OO

b0 // B1

v

OO

b1 // B2

(b) The morphism [f ] is an epimorphism if and only if there exist morphisms s : B1 → B0,

t : B1 → A1, u : B2 → B1 and v : B2 → A2 in A satisfying sb0 + tf1 + b1u = 1 and

ta1 = b1v.

A0
a0 //

f0

��

A1
a1 //

f1

��

A2

f2

��
B0

b0 // B1s
oo

t

OO

b1 // B2u
oo

v

OO

Proof. Ad (a). The morphism [f ] is a monomorphism if and only if its kernel [k(f)] is zero.

This is the case if and only if there exist morphisms ( st ) : A1⊕B0 → A0 and ( uv ) : A2⊕B1 → A1

with ( st ) a0 +
(
a1 f1

0 −b0

)
( uv ) = ( 1

0 ), cf. remark 26 (b).

Ad (b). The morphism [f ] is an epimorphism if and only if its cokernel [c(f)] is zero. This is

the case if and only if there exist morphisms ( s t ) : B1 → B0 ⊕ A1 and ( u v ) : B2 → B1 ⊕ A2

with ( s t )
(
b0 0
f1 −a1

)
+ b1 ( u v ) = ( 1 0 ).

Example 33. Given A
f // B in A, the morphism IA(f) is monomorphic if and only if f is a

coretraction. Dually, IA(f) is epimorphic if and only if f is a retraction.
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3.3 The Adelman category is abelian

Theorem 34. Recall that A is an additive category. Suppose given A
[f ] // B in Adel(A). We

have an isomorphism

If :=

[(
f0 ( 0 a0 )

( 0
1 ) ( 0 1

0 0 )

)
,
(

f1 ( 0 1 )

( 0
1 ) 0

)
,

(
f2 ( 0 1 )(
0
b1

)
( 0 0

1 0 )

)]
: C(k(f))→ K(c(f))

with inverse

Jf :=

[(
0 ( 0 1 )

0 ( 0 −1
1 0 )

)
,

(
0 ( 0 1 )

( 0
1 )

(
0 −b0
−a1 −f1

)) ,( 0 0

( 0
1 ) ( 0 1

−1 0 )

)]
: K(c(f))→ C(k(f))

in Adel(A).

K(f) •
[k(f)] // A

�
[c(k(f))] ##

[f ] // B �[c(f)]
// C(f)

C(k(f))
If

∼
//
K(c(f))

•
[k(c(f))]

;;

Jf

oo

Moreover, the equation [c(k(f))] If [k(c(f))] = [f ] holds, so If is the induced morphism of this

kernel-cokernel-factorisation of [f ], cf. convention 18.

Proof. By definition, we have

C(k(f)) = A0⊕(A1⊕B0)

(
a0 0

( 1
0 ) −

(
a1 f1

0 −b0

))
// A1⊕(A2⊕B1)

( a1 0
0 1 )
// A2⊕(A2⊕B1)

and

K(c(f)) = B0⊕(B0⊕A1)

(
b0 0
0 1

)
// B1⊕(B0⊕A1)

(
b1 ( 1 0 )

0 −
(
b0 0
f1 −a1

))
// B2⊕(B1⊕A2).

The morphism If is well-defined in Adel(A), since we have(
f0 ( 0 a0 )

( 0
1 ) ( 0 1

0 0 )

) (
b0 0
0 1

)
=

(
f0b0 ( 0 a0 )(

0
b0

)
( 0 1

0 0 )

)
=

(
a0f1 ( 0 a0 )(

f1
0

)
−
(
f1

−b0

)
( 0 1

0 0 )

)
=
( a0 0

( 1
0 ) −

(
a1 f1

0 −b0

))( f1 ( 0 1 )

( 0
1 ) 0

)
and(

f1 ( 0 1 )

( 0
1 ) 0

)( b1 ( 1 0 )

0 −
(
b0 0
f1 −a1

)) =

(
f1b1 ( f1 0 )+(−f1 a1 )(

0
b1

)
( 0 0

1 0 )

)
=

(
a1f2 ( 0 a1 )(

0
b1

)
( 0 0

1 0 )

)
= ( a1 0

0 1 )

(
f2 ( 0 1 )(
0
b1

)
( 0 0

1 0 )

)
.

The morphism Jf is well-defined in Adel(A), since we have(
0 ( 0 1 )

0 ( 0 −1
1 0 )

)( a0 0

( 1
0 ) −

(
a1 f1

0 −b0

)) =

(
0 ( 0 b0 )

( 0
1 ) −

(
0 b0
a1 f1

)) =
(
b0 0
0 1

)( 0 ( 0 1 )

( 0
1 )

(
0 −b0
−a1 −f1

))
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and (
0 ( 0 1 )

( 0
1 )

(
0 −b0
−a1 −f1

)) ( a1 0
0 1 ) =

(
0 ( 0 1 )

( 0
a1

)
(

0 −b0
−a1 −f1

)) =

(
b1 ( 1 0 )

0 −
(
b0 0
f1 −a1

))( 0 0

( 0
1 ) ( 0 1

−1 0 )

)
.

We have to show that the equations If · Jf = 1C(k(f)) and Jf · If = 1K(c(f)) hold.

• We have to show that If · Jf −1C(k(f)) is equal to 0.

Using 0: A1⊕(A2⊕B1)→ A0⊕(A1⊕B0) and
(

0 (−1 0 )

0 (−1 0
0 0 )

)
: A2⊕(A2⊕B1)→ A1⊕(A2⊕B1)

in A, we obtain

0 ·
( a0 0

( 1
0 ) −

(
a1 f1

0 −b0

))+ ( a1 0
0 1 )

(
0 (−1 0 )

0 (−1 0
0 0 )

)
=
(

0 (−a1 0 )

0 (−1 0
0 0 )

)
=
(

f1 ( 0 1 )

( 0
1 ) 0

)( 0 ( 0 1 )

( 0
1 )

(
0 −b0
−a1 −f1

))− ( 1 0
0 ( 1 0

0 1 )

)
.

This implies If · Jf −1C(k(f)) = 0.

• We have to show that Jf · If −1K(c(f)) is equal to 0.

Using
(

0 0

(−1
0 ) (−1 0

0 0 )

)
: B1 ⊕ (B0 ⊕ A1)→ B0 ⊕ (B0 ⊕ A1) and

0: B2 ⊕ (B1 ⊕ A2)→ B1 ⊕ (B0 ⊕ A1) in A, we obtain(
0 0

(−1
0 ) (−1 0

0 0 )

) (
b0 0
0 1

)
+

(
b1 ( 1 0 )

0 −
(
b0 0
f1 −a1

)) · 0 =
(

0 0(
−b0

0

)
(−1 0

0 0 )

)
=

(
0 ( 0 1 )

( 0
1 )

(
0 −b0
−a1 −f1

))( f1 ( 0 1 )

( 0
1 ) 0

)
−
(

1 0
0 ( 1 0

0 1 )

)
.

This implies Jf · If −1K(c(f)) = 0.

Finally, we verify [c(k(f))] If [k(c(f))] = [f ]:

[c(k(f))] If [k(c(f))]

= [( 1 0 ) , ( 1 0 ) , ( 1 0 )]

[(
f0 ( 0 a0 )

( 0
1 ) ( 0 1

0 0 )

)
,
(

f1 ( 0 1 )

( 0
1 ) 0

)
,

(
f2 ( 0 1 )(
0
b1

)
( 0 0

1 0 )

)]
[( 1

0 ) , ( 1
0 ) , ( 1

0 )]

= [( 1 0 ) , ( 1 0 ) , ( 1 0 )]
[(

f0

( 0
1 )

)
,
(

f1

( 0
1 )

)
,
(

f2(
0
b1

))]
= [f0, f1, f2]

= [f ]
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A0⊕B0

( 1
0 )

��

( a0 0
0 1 )

// A1⊕B0

( 1
0 )

��

(
a1 f1

0 −b0

)
// A2⊕B1

( 1
0 )

��
A0

f0

��

( 1 0 )

}}

a0 // A1

f1

��

( 1 0 )

}}

a1 // A2

( 1 0 )

}}

f2

��

A0⊕(A1⊕B0)

(
f0 ( 0 a0 )

( 0
1 ) ( 0 1

0 0 )

)

��

(
a0 0

( 1
0 ) −

(
a1 f1

0 −b0

))
// A1⊕(A2⊕B1)

(
f1 ( 0 1 )

( 0
1 ) 0

)

��

( a1 0
0 1 )

// A2⊕(A2⊕B1)

(
f2 ( 0 1 )(
0
b1

)
( 0 0

1 0 )

)

��
B0⊕(B0⊕A1)

( 1
0 )

!!

(
0 ( 0 1 )

0 ( 0 −1
1 0 )

)
OO

(
b0 0
0 1

) // B1⊕(B0⊕A1)

( 1
0 )

!!

(
0 ( 0 1 )

( 0
1 )

(
0 −b0
−a1 −f1

))
OO

(
b1 ( 1 0 )

0 −
(
b0 0
f1 −a1

)) // B2⊕(B1⊕A2)

( 1
0 )

!!

(
0 0

( 0
1 ) ( 0 1

−1 0 )

)
OO

B0

( 1 0 )

��

b0 // B1

( 1 0 )

��

b1 // B2

( 1 0 )

��
B0⊕A1

(
b0 0
f1 −a1

)
// B1⊕A2

(
b1 0
0 1

)
// B2⊕A2

Corollary 35 (Kernel-cokernel-factorisation).

We obtain a kernel-cokernel-factorisation of A
[f ] // B in Adel(A) by taking residue classes of
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the A∆2-morphisms in the following diagram.

A0⊕B0

( 1
0 )

��

( a0 0
0 1 )

// A1⊕B0

( 1
0 )

��

(
a1 f1

0 −b0

)
// A2⊕B1

( 1
0 )

��
A0

f0

��

( 1 0 0 )

}}

a0 // A1

f1

��

( 1 0 0 )

}}

a1 // A2

( 1 0 0 )

}}

f2

��

A0⊕A1⊕B0

(
f0 0 a0
0 0 1
1 0 0

)
��

(
a0 0 0
1 −a1 −f1

0 0 b0

)
// A1⊕A2⊕B1

(
f1 0 1
0 0 0
1 0 0

)
��

(
a1 0 0
0 1 0
0 0 1

)
// A2⊕A2⊕B1

(
f2 0 1
0 0 0
b1 1 0

)

��
B0⊕B0⊕A1

(
1
0
0

)
!!

(
0 0 1
0 0 −1
0 1 0

)
OO

(
b0 0 0
0 1 0
0 0 1

) // B1⊕B0⊕A1

(
1
0
0

)
!!

(
0 0 1
0 0 −b0
1 −a1 −f1

)
OO

(
b1 1 0
0 −b0 0
0 −f1 a1

) // B2⊕B1⊕A2

(
1
0
0

)
!!

(
0 0 0
0 0 1
1 −1 0

)
OO

B0

( 1 0 )

��

b0 // B1

( 1 0 )

��

b1 // B2

( 1 0 )

��
B0⊕A1

(
b0 0
f1 −a1

)
// B1⊕A2

(
b1 0
0 1

)
// B2⊕A2

Proof. We apply lemma 29 to the factorisation obtained in the proof of theorem 34 by using

isomorphisms of the form

X ⊕ (Y ⊕ Z)

(
1 0 0

( 0
0 ) ( 1

0 ) ( 0
1 )

)
// X ⊕ Y ⊕ Z

in A.

Theorem 36. Recall thatA is an additive category. The Adelman category Adel(A) is abelian.

Proof. The category Adel(A) is additive, cf. lemma 24. Each morphism in Adel(A) has a

kernel and a cokernel, cf. theorem 31. Given [f ] ∈ Mor(Adel(A)), the induced morphism If
of the kernel-cokernel-factorisation obtained in theorem 34 is an isomorphism. Therefore the

induced morphism of each kernel-cokernel-factorisation of [f ] is an isomorphism, cf. remark 8.

We conclude that Adel(A) is abelian.
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Corollary 37. Suppose given [f ] ∈ Mor(Adel(A)). The morphism [f ] is an isomorphism if and

only if it is a monomorphism and an epimorphism. Therefore the two criteria in corollary 32

may be used to check whether [f ] is an isomorpism.

3.4 Projectives and injectives

Definition 38. Let R(A) be the full subcategory defined by

Ob(R(A)) := {P ∈ Ob(Adel(A)) : P0 = 0}.

Let L(A) be the full subcategory defined by

Ob(L(A)) := {I ∈ Ob(Adel(A)) : I2 = 0}.

Consequently, objects in R(A) are of the form
(
0 0 // P1

p1 // P2

)
and objects in L(A) are of

the form
(
I0

i0 // I1
0 // 0

)
.

Proposition 39.

(a) The objects in R(A) are projective in Adel(A).

(b) The objects in L(A) are injective in Adel(A).

Proof. Ad (a). Suppose given the following diagram in Adel(A) with P ∈ R(A) and [f ]

epimorphic.

P

[g]
��

A �
[f ]

// B

Since [f ] is an epimorphism, we have [c(f)] = 0, whence [g c(f)] = [g][c(f)] = 0. Therefore

there exist morphisms ( s0 s1 ) : P1 → B0 ⊕ A1 and ( t0 t1 ) : P2 → B1 ⊕ A2 satisfying

( s0 s1 )
(
b0 0
f1 −a1

)
+ p1 ( t0 t1 ) = ( g1 0 ). So the equations s0b0 + s1f1 + p1t0 = g1 and s1a1 = p1t1

hold.

0

g0

��

0 // P1

( s0 s1 )��

g1

��

p1 // P2

( t0 t1 )

��

g2

��
B0

( 1 0 )
��

b0 // B1

( 1 0 )
��

b1 // B2

( 1 0 )
��

B0 ⊕ A1(
b0 0
f1 −a1

)// B1 ⊕ A2(
b1 0
0 1

)// B2 ⊕ A2
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Consider [0, s1, t1] : P → A. This is a well-defined morphism in Adel(A), since we have 0 · a0 =

0 = 0 · s1 and s1a1 = p1t1.

Finally, we show that [0, s1, t1][f ] = [g] holds.

Using s0 : P1 → B0 and t0 : P2 → B1, we obtain s0b0 + p1t0 = g1 − s1f1.

This implies [g]− [0, s1, t1][f ] = [g0, g1−s1f1, g2−t1f2] = 0, so the following diagram commutes.

P
[0,s1,t1]

��
[g]
��

A �
[f ]

// B

We conclude that P is projective.

Ad (b). This is dual to (a) using the isomorphism of categories DA : Adel(A)op → Adel(Aop).

Example 40. Given A ∈ ObA, we have IA(A) ∈ Ob(L(A)) ∩ Ob(R(A)). Therefore IA(A) is

injective and projective, cf. proposition 39.

Lemma 41. Suppose given P ∈ Ob(R(A)).

There exists a left-exact sequence P •k // IA(A)
IA(f) // IA(B) in Adel(A) with A,B ∈ ObA and

f ∈ HomA(A,B).

Proof. A kernel of IA(p1) : IA(P1) → IA(P2) is given by 0⊕ 0
( 0 0

0 0 )
// P1 ⊕ 0

(
0 p1
0 0

)
// 0⊕ P2 , cf.

theorem 31. Lemma 29 says that P is also a kernel of IA(p1) by using the isomorphisms

0: 0→ 0⊕ 0, ( 1 0 ) : P1 → P1 ⊕ 0 and ( 0 1 ) : P2 → 0⊕ P2.

Theorem 42. Recall that A is an additive category and that, by theorem 36, Adel(A) is

abelian. The Adelman category Adel(A) has enough projectives and injectives. More precisely,

we have the following statements.

(a) Suppose given A ∈ Ob(Adel(A)). We have an epimorphism

[0, 1, 1] :
(
0 0 // A1

a1 // A2

)
→ A in Adel(A) with

(
0 0 // A1

a1 // A2

)
∈ Ob(R(A)).

(b) Suppose given A ∈ Ob(Adel(A)). We have a monomorphism

[1, 1, 0] : A→
(
A0

a0 // A1
0 // 0

)
in Adel(A) with

(
A0

a0 // A1
0 // 0

)
∈ Ob(L(A)).

Proof. Ad (a). The morphism [0, 1, 1] :
(
0 0 // A1

a1 // A2

)
→ A is a well-defined morphism

in Adel(A) since we have 0 · a0 = 0 = 0 · 1 and 1 · a1 = a1 = a1 · 1. Using 0: A1 → A0,

1 : A1 → A1, 0 : A2 → A1 and 1: A2 → A2, we obtain 0 · a0 + 1 · 1 + a1 · 0 = 1 and 1 · a1 = a1 · 1.
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Corollary 32 (b) says that [0, 1, 1] is an epimorphism.

0

0
��

0 // A1
a1 //

1
��

A2

1
��

A0

a0 // A1
0
oo

a1 //

1

OO

A2
0
oo

1

OO

Ad (b). This is dual to (a) using the isomorphism of categories DA : Adel(A)op → Adel(Aop).

Lemma 43. Given A ∈ Ob(Adel(A)), there exists a right-exact sequence P
[f ] // Q �[c] // A in

Adel(A) with P,Q ∈ Ob(R(A)) such that a kernel of [f ] is projective.

Proof. We may choose an epimorphism [c] : Q → A with Q ∈ Ob(R(A)), cf. theorem 42.

Let [k] : K → Q be a kernel of [c]. Again, we may choose an epimorphism [e] : P → K with

P ∈ Ob(R(A)). Let [f ] := [e][k].

P

�
[e] ��

[f ] // Q �[c] // A

K

•
[k]

??

Remark 9 says that [c] is a cokernel of [k]. Since [e] is epimorphic, [c] is also a cokernel of [f ].

A kernel of [f ] is given by

K((0, f1, f2)) =
(

0⊕ 0 0 //P1 ⊕ 0

(
p1 f1
0 0

)
//P2 ⊕Q1

)
,

cf. theorem 31. Now K((0, f1, f2)) is isomorphic to
(
0 0 // P1

( p1 f1 )// P2 ⊕Q1

)
∈ Ob(R(A))

in Adel(A), cf. lemma 29, and therefore projective.

Corollary 44. The projective dimension of Adel(A) is at most two due to the previ-

ous lemma 43. Dually, the injective dimension of Adel(A) is also at most two since

DA : Adel(A)op → Adel(Aop) is an isomorphism of categories.

3.5 Additive functors and transformations

Theorem/Definition 45. Recall that A is an additive category.

Suppose given an additive category B.

(a) Suppose given an additive functor F : A → B.

By setting

(Adel(F ))(X) :=
(
F (X0)

F (x0) // F (X1)
F (x1) // F (X2)

)
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for X ∈ Ob(Adel(A)) and

(Adel(F ))([f ]) := [F (f0), F (f1), F (f2)]

for [f ] ∈ Mor(Adel(A)), we obtain an exact functor Adel(F ) : Adel(A)→ Adel(B).

The equation Adel(F )op = D−1
B ◦Adel(F op) ◦DA holds, cf. definition 30.

The transformation εF : IB ◦F → Adel(F ) ◦ IA defined by

(εF )S := [0, 1, 0] :
(

0 0 // F (S) 0 // 0
)
→
(
F (0) 0 // F (S) 0 // F (0)

)
for S ∈ ObA is an isotransformation.

In particular, we have IB ◦F = Adel(F ) ◦ IA if F (0A) = 0B holds.

A F //

IA
��

B
IB
��

Adel(A)
Adel(F ) // Adel(B)

(b) Suppose given additive functors F,G : A → B and a transformation α : F ⇒ G.

By setting

(Adel(α))X := [αX0 , αX1 , αX2 ] : (Adel(F ))(X)→ (Adel(G))(X)

for X ∈ Ob(Adel(A)), we obtain a transformation Adel(α) : Adel(F )→ Adel(G).

If α is an isotransformation, then Adel(α) is also an isotransformation.

Cf. remark 64.

Proof. Ad (a).

Let F̃ : A∆2 → Adel(B) be defined by F̃ (X) :=
(
F (X0)

F (x0) // F (X1)
F (x1) // F (X2)

)
for

X ∈ Ob(A∆2) and F̃ (f) := [F (f0), F (f1), F (f2)] for f ∈ Mor(A∆2). This is a well-defined

additive functor because we have

F (x0)F (f1) = F (x0f1) = F (f0y0)F (f0)F (y0),

F (x1)F (f2) = F (x1f2) = F (f1y1) = F (f1)F (y1),

F̃ (fg) = [F (f0g0), F (f1g1), F (f2g2)]

= [F (f0)F (g0), F (f1)F (g1), F (f2)F (g2)]

= [F (f0), F (f1), F (f2)][F (g0), F (g1), F (g2)]

= F̃ (f)F̃ (g),
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F̃ (1X) = [F (1X0), F (1X1), F (1X2)] = [1F (X0), 1F (X1), 1F (X2)] = 1F̃ (X)

and

F (f + h) = [F (f0 + h0), F (f1 + h1), F (f2 + h2)]

= [F (f0) + F (h0), F (f1) + F (h1), F (f2) + F (h2)]

= [F (f0), F (f1), F (f2)] + [F (h0), F (h1), F (h2)]

= F̃ (f) + F̃ (h)

for A
f //
h
// B

g // C in A∆2 .

Suppose given X
f // Y inA∆2 with f null-homotopic. There exist morphisms s : X1 → Y0 and

t : X2 → Y1 in A with sy0 + x1t = f1. Using F (s) : F (X1)→ F (Y0) and F (t) : F (X2)→ F (Y1),

we obtain F (s)F (y0) + F (x1)F (t) = F (sy0 + x1t) = F (f1).

Theorem 21 now gives the additive functor Adel(F ) : Adel(A)→ Adel(B) with Adel(F )◦RA =

F̃ .

We want to show that Adel(F )op = D−1
B ◦Adel(F op) ◦DA holds.

Suppose given X
[f ] // Y in Adel(A). We have

(D−1
B ◦Adel(F op) ◦DA)(X) = (D−1

B ◦Adel(F op))
((

X2

xop
1 // X1

xop
0 // X0

))
= D−1

B

((
F (X2)

F (x1)op

// F (X1)
F (x0)op

// F (X0)
))

=
(
F (X0)

F (x0) // F (X1)
F (x1) // F (X2)

)
= (Adel(F )op)(X)

and

(D−1
B ◦Adel(F op) ◦DA)([f ]op) = (D−1

B ◦Adel(F op))([f op
2 , f op

1 , f op
0 ])

= D−1
B ([F (f2)op, F (f1)op, F (f0)op])

= [F (f0), F (f1), F (f2)]op

= (Adel(F )op)([f ]op).

Next, we show that Adel(F ) is an exact functor.

Suppose given X
[f ] // Y in Adel(A). A kernel of (Adel(F ))([f ]) is given by

[( 1
0 ) , ( 1

0 ) , ( 1
0 )] :(

F (X0)⊕F (Y0)

(
F (x0) 0

0 1

)
// F (X1)⊕F (Y0)

(
F (x1) F (f1)

0 −F (y0)

)
// F (X2)⊕F (Y1)

)
→ (Adel(F ))(A),
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cf. theorem 31.

By applying lemma 29 with isomorphisms of the form F (S) ⊕ F (T )
∼−→ F (S ⊕ T ) in B for

S, T ∈ ObA, we see that

(Adel(F ))([k(f)]) = [F (( 1
0 )), F (( 1

0 )), F (( 1
0 ))] :(

F (X0⊕Y0)
F((x0 0

0 1 ))
// F (X1⊕Y0)

F
((

x1 f1
0 −y0

))
// F (X2⊕Y1)

)
→ (Adel(F ))(A)

is a kernel of (Adel(F ))([f ]) as well, cf. proposition 4.

We conclude that Adel(F ) is left-exact, cf. lemma 13.

The functor Adel(F op) : Adel(Aop)→ Adel(Bop) is left-exact, so

Adel(F )op = D−1
B ◦Adel(F op) ◦DA : Adel(A)op → Adel(B)op is left-exact too.

We conclude that Adel(F ) is also right-exact and therefore exact.

Now we want to show that εF is an isotransformation.

The morphisms (εF )S are well-defined for S ∈ ObA since we have 0 · 1 = 0 = 0 · 0 and

0 · 0 = 0 = 1 · 0.

Note that F (0A) is a zero object in B, cf. proposition 4.

The inverse of (εF )S is given by

[0, 1, 0] :
(
F (0) 0 // F (S) 0 // F (0)

)
→
(

0 0 // F (S) 0 // 0
)
.

for S ∈ ObA.

We have

(IB ◦F )(u)(εF )T = [0, F (u), 0][0, 1, 0] = [0, 1, 0][F (0), F (u), F (0)] = (εF )S(Adel(F ) ◦ IA)(u)

for S u // T in A, which implies the naturality of εF .

Ad (b).

The transformation Adel(α) is well-defined since we have F (x0)αX1 = αX0G(x0), F (x1)αX2 =

αX1G(x1) and

(Adel(F ))([f ])(Adel(α))Y = [F (f0), F (f1), F (f2)][αY0 , αY1 , αY2 ]

= [F (f0)αY0 , F (f1)αY1 , F (f2)αY2 ]

= [αX0G(f0), αX1G(f1), αX2G(f2)]

= [αX0 , αX1 , αX2 ][G(f0), G(f1), G(f2)]

= (Adel(α))X(Adel(G))([f ])

for X
[f ] // Y in Adel(A).
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If α is an isotransformation, then the inverse of (Adel(α))X is given by

[(αX0)−1, (αX1)−1, (αX2)−1] for X ∈ Ob(Adel(A)).

Proposition 46. Suppose given A
F

$$
G //

H

;;B
K
((

L

66 C
α ��

β ��
γ �� with additive categories A, B and C

and additive functors F,G,H,K and L.

The following equations hold.

(a) Adel(K ◦ F ) = Adel(K) ◦ Adel(F )

(b) Adel(αβ) = Adel(α) Adel(β)

(c) Adel(γ ? α) = Adel(γ) ? Adel(α)

Proof. Ad (a). Suppose given X
[f ] // Y in Adel(A). We have

(Adel(K) ◦ Adel(F ))(X) = (Adel(K))
((

F (X0)
F (x0) // F (X1)

F (x1) // F (X2)
))

=
(

(K ◦ F )(X0)
(K◦F )(x0) // (K ◦ F )(X1)

(K◦F )(x1) // (K ◦ F )(X2)
)

= (Adel(K ◦ F ))(X)

and

(Adel(K) ◦ Adel(F ))([f ]) = (Adel(K))([F (f0), F (f1), F (f2)])

= [(K ◦ F )(f0), (K ◦ F )(f1), (K ◦ F )(f2)]

= (Adel(K ◦ F ))([f ]).

Ad (b). Suppose given X ∈ Ob(Adel(A)). We have

(Adel(α) Adel(β))X = (Adel(α))X(Adel(β))X

= [αX0 , αX1 , αX2 ][βX0 , βX1 , βX2 ]

= [αX0βX0 , αX1βX1 , αX2βX2 ]

= [(αβ)X0 , (αβ)X1 , (αβ)X2 ]

= (Adel(αβ))X .



45

Ad (c). Suppose given X ∈ Ob(Adel(A)). We have

(Adel(γ) ? Adel(α))X = (Adel(K))((Adel(α))X)(Adel(γ))(Adel(G))(X)

= [K(αX0), K(αX1), K(αX2)][γG(X0), γG(X1), γG(X2)]

= [K(αX0)γG(X0), K(αX1)γG(X1), K(αX2)γG(X2)]

= [(γ ? α)X0 , (γ ? α)X1 , (γ ? α)X2 ]

= (Adel(γ ? α))X .



Chapter 4

A universal property for the Adelman

category

4.1 The homology functor in the abelian case

Suppose given an abelian category B throughout this section 4.1.

Lemma 47. Suppose given A⊕B
(

1 f
0 −b

)
// A⊕ C in B.

If c : C → D is a cokernel of b, then
(
fc
−c
)

: A⊕ C → D is a cokernel of
(

1 f
0 −b

)
.

Proof. We have
(

1 f
0 −b

) (
fc
−c
)

= ( 0
bc ) = 0. Suppose given ( g1

g2 ) : A ⊕ C → X in B with(
1 f
0 −b

)
( g1
g2 ) = 0. We have g1 + fg2 = 0 and bg2 = 0. There exists u : D → X with (−c)(−u) =

cu = g2 since c is a cokernel of b. We conclude that
(
fc
−c
)

(−u) =
( −fg2

g2

)
= ( g1

g2 ) holds. The

induced morphism −u is unique because we necessarily have (−c)(−u) = cu = g2.

Lemma 48. Suppose given A⊕B
(
f 0
0 1

)
// C ⊕B in B.

(a) If c : C → D is a cokernel of f then ( c0 ) : C ⊕B → D is a cokernel of
(
f 0
0 1

)
.

(b) If k : K → A is a kernel of f , then ( k 0 ) : K → A⊕B is a kernel of
(
f 0
0 1

)
.

Proof. Ad (a). We have
(
f 0
0 1

)
( c0 ) =

(
fc
0

)
= 0. Suppose given ( g1

g2 ) : C ⊕ B → X in B with(
f 0
0 1

)
( g1
g2 ) = 0. We have fg1 = 0 and g2 = 0. There exists u : D → X with cu = g1 since c is a

cokernel of f . We conclude that ( c0 )u = ( cu0 ) = ( g1
0 ) = ( g1

g2 ) holds. The induced morphism u

is unique because we necessarily have cu = g1.

Ad (b). This is dual to (a).



47

Remark 49. To prove the previous lemmata 47 and 48, one may alternatively argue

that a sequence A′ ⊕B′
(
u uf
0 −b

)
// A⊕B

(
v fc
0 −c

)
// A′′ ⊕B′′ in B is left-(right-)exact if and only if

the sequence A′ ⊕B′
(u 0

0 b ) // A⊕B
( v 0

0 c ) // A′′ ⊕B′′ is left-(right-)exact using the isomorphism(
1 f
0 −1

)
: A⊕B → A⊕B.

A′ ⊕B′

1

��

(
u uf
0 −b

)
// A⊕B

(
1 f
0 −1

)
��

(
v fc
0 −c

)
// A′′ ⊕B′′

1

��
A′ ⊕B′

(u 0
0 b ) // A⊕B

(
1 f
0 −1

)
OO

( v 0
0 c ) // A′′ ⊕B′′

Lemma 50. Suppose given the following commutative diagram in B with a right-exact sequence

A1
a1 // A2

�a2 // A3 and a left-exact sequence B1 •
b1 // B2

b2 // B3 .

A1
a1 //

f1

��

A2
�a2 //

f2

��

A3

f3

��
B1 •

b1 // B2
b2 // B3

Suppose given kernels ki : Ki → Ai of fi for i ∈ [1, 3]. The induced morphisms between the

kernels shall be u : K1 → K2 and v : K2 → K3, cf. lemma 7 (a).

K1

•k1

��

u // K2

•k2

��

v // K3

•k3

��
A1

a1 //

f1

��

A2
�a2 //

f2

��

A3

f3

��
B1 •

b1 // B2
b2 // B3

The sequence K1
u // K2

v // K3 is exact.

Proof. See [5, prop 13.5.9 (a)].

The following lemma is a part of [5, prob 13.6.8].

Lemma 51. Suppose given A
f // B

g // C in B. Suppose that c : B → D is a cokernel of

f , k : K → A is a kernel of fg and ` : L→ B is a kernel of g.

K

•k
��

L

•`
��

A
f //

fg
��

B �c //

g
��

D

C
1C // C
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The induced morphism between the kernels shall be u : K → L.

The sequence K u // L
`c // D is exact.

Proof. We choose an image B �p // I •i // C of g. Let d : C → E be a cokernel of g. Note that

d is a cokernel of i as well since p is epimorphic.

Therefore we have the following commutative diagram in B with A
f // B �c // D right-exact

and I •i // C �d // E left-exact, cf. remark 9 (b).

A
f //

fp
��

B �c //

g
��

D

0
��

I •i // C �d // E

Note that k is a kernel of fp since i is monomorphic and that 1 : D → D is a kernel of 0 : D → E.

The following diagram commutes.

K

•k
��

u // L

•`
��

`c // D

1
��

A
f //

fp
��

B �c //

g
��

D

0
��

I •i // C �d // E

Lemma 50 says that the sequence K u // L `c // D is exact.

Lemma 52. Suppose given A
f //B �c // C �d // D in B with c and d epimorphisms. Suppose

cd to be a cokernel of f .

The morphism d is a cokernel of fc.

Proof. Suppose given g : C → T in B with fcg = 0. There exists u : D → T with cdu = cg.

Since c is epimorphic, we conclude that du = g holds. The induced morphism u is unique since

d is an epimorphism.

Lemma/Definition 53. Suppose given tuples k =
(
KA

kA // A1

)
A∈Ob(B∆2 )

,

c =
(
A1

cA // CA

)
A∈Ob(B∆2 )

, p =
(
KA

pA // ImA

)
A∈Ob(B∆2 )

and i =
(
ImA

iA // CA

)
A∈Ob(B∆2 )

of

morphisms in B such that for A ∈ Ob(B∆2), the morphism kA is a kernel of a1, the morphism

cA is a cokernel of a0 and the diagram KA
pA // ImA

iA // CA is an image of kA cA in B.
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A0
a0 // A1

�
cA ""

a1 // A2

KA

�
pA ""

•
kA

<<

CA

ImA

•
iA

<<

(a) The functor H̃B(k, c, p, i) : B∆2 → B shall be defined as follows.

Let (H̃B(k, c, p, i))(A) := ImA for A ∈ Ob(B∆2).

Suppose given A
f // B in B∆2 . We have uniquely induced morphisms fK : KA → KB,

fC : CA → CB and (H̃B(k, c, p, i))(f) : ImA → ImB such that the following diagram com-

mutes, cf. lemmata 7 and 11.

A1

f1

��

�
cA

''
KA

fK

��

�
pA

''

•
kA

77

CA

fC

��

ImA

(H̃B(k,c,p,i))(f)

��

•
iA

77

B1

�
cB

''
KB

�
pB

''

•
kB

77

CB

ImB

•
iB

77

Then H̃B(k, c, p, i) is a well-defined additive functor. We have (H̃B(k, c, p, i))(f) = 0 for

f ∈ Mor(B∆2) null-homotopic.

(b) There exists a unique additive functor HB(k, c, p, i) : Adel(B)→ B such that

HB(k, c, p, i) ◦ RB = H̃B(k, c, p, i) holds, cf. theorem 21.

The functor HB(k, c, p, i) is left-exact. (In fact it is exact, cf. theorem 56.)

Proof. We abbreviate H̃B := H̃B(k, c, p, i) and HB := HB(k, c, p, i).
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Ad (a). Note that the induced morphisms between kernels, cokernels and images are unique.

Therefore it is sufficient to check commutativity.

Suppose given A
f //
h
// B

g // C in B∆2 .

We have (fg)K = fKgK since fKgK · kC = fK kB g1 = kA ·f1g1 holds.

We have H̃B(fg) = H̃B(f)H̃B(g) since pA ·H̃B(f)H̃B(g) = fK pB H̃B(g) = fKgK pC = (fg)K pC =

pA ·H̃B(fg) holds and since pA is epimorphic.

We have (1A)K = 1KA
, since 1KA

kA = kA = kA 1A1 holds.

We have H̃B(1A) = 1H̃B(A) since pA 1H̃B(A) = pA = 1KA
pA = pA H̃B(1A) holds and since pA is

epimorphic.

We have (f + h)K = fK + hK since (fK + hK) kB = fK kB +hK kB = kA f1 + kA h1 = kA(f1 + h1)

holds.

We have H̃B(f + h) = H̃B(f) + H̃B(h) since pA(H̃B(f) + H̃B(h)) = pA H̃B(f) + pA H̃B(h) =

fK pB +hK pB = (fK + hK) pB = pA H̃B(f + h) holds and since pA is epimorphic.

So H̃B is a well-defined additive functor.

Now suppose given A
f // B in B∆2 with f null-homotopic. There exist morphisms s : A1 → B0

and t : A2 → B1 satisfying sb0 + a1t = f1.

We have

pA H̃B(f) iB = fK pB iB = fK kB cB = kA f1 cB = kA(sb0 + a1t) cB = kA s b0 cB︸︷︷︸
=0

+ kA a1︸ ︷︷ ︸
=0

t cB = 0.

This implies H̃B(f) = 0 since pA is an epimorphism and since iB is a monomorphism.

Ad (b). We want to show that HB is left-exact.

Suppose given A
[f ] // B in Adel(B). By theorem 31, the morphism [k(f)] is a kernel of [f ] in

Adel(B). Lemma 13 says that it is sufficient to show that HB([k(f)]) = H̃B(k(f)) is a kernel of

HB([f ]) = H̃B(f).

The morphism cK(f)(k(f))C = (k(f))1 cA = ( 1
0 ) cA = ( cA

0 ) is a cokernel of (K(f))(0 //1) =

( a0 0
0 1 ) : A0 ⊕B0 → A1 ⊕B0, cf. lemma 48 (a).

The morphism cK(f) is a cokernel of (K(f))(0 //1) = ( a0 0
0 1 ) by definition.

Therefore (k(f))C is an isomorphism, so H̃B(k(f)) iA = iK(f)(k(f))C is a monomorphism.

This implies that H̃B(k(f)) is a monomorphism and that, consequently, the diagram

KK(f)
�pK(f) // H̃B(K(f)) •

H̃B(k(f)) // H̃B(A) is an image of pK(f) H̃B(k(f)) = (k(f))K pA.

We choose an image H̃B(A) �p // I •i // H̃B(B) of the morphism H̃B(f).
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Then KA
�pA p // I •

i iB // CB is an image of pA pi iB = pA H̃B(f) iB = fK pB iB = fK kB cB =

kA f1 cB.

Consider the morphisms
(

1 f1

0 −b0

)
: A1 ⊕B0 → A1 ⊕B1 and ( a1 0

0 1 ) : A1 ⊕B1 → A2 ⊕B1.

A cokernel of
(

1 f1

0 −b0

)
is given by

(
f1 cB
− cB

)
: A1 ⊕ B1 → CB since cB is a cokernel of b0, cf.

lemma 47.

A kernel of ( a1 0
0 1 ) is given by ( kA 0 ) : KA → A1 ⊕B1, cf. lemma 48 (b).

A kernel of (K(f))(1 //2) =
(
a1 f1

0 −b0

)
=
(

1 f1

0 −b0

)
( a1 0

0 1 ) is given by

( x y ) := kK(f) : KK(f) → A1 ⊕B0. Consequently, we have xf1 − yb0 = 0.

KK(f)

(x y )

��

KA

( kA 0 )

��
A1 ⊕B0

(
1 f1

0 −b0

)
//

(
a1 f1

0 −b0

)
��

A1 ⊕B1

( a1 0
0 1 )

��

(
f1 cB
− cB

)
// CB

A2 ⊕B1

1A2⊕B1 // A2 ⊕B1

The induced morphism between the kernels is given by (k(f))K, since we have

(k(f))K kA = kK(f)(k(f))1 = ( x y ) ( 1
0 ) = x

and therefore

( x y )
(

1 f1

0 −b0

)
= ( x xf1−yb0 ) = ( (k(f))K kA 0 ) = (k(f))K ( kA 0 ) .

Lemma 51 now implies that the sequence KK(f)
(k(f))K // KA

kA f1 cB // CB is exact since

( kA 0 )
(
f1 cB
− cB

)
= kA f1 cB holds.

We conclude that pA p is a cokernel of (k(f))K, cf. remark 12. Lemma 52 says that p is a

cokernel of (k(f))K pA because pA and p are epimorphic.

Therefore the sequence KK(f)
(k(f))K pA // H̃B(A)

H̃B(f) // H̃B(B) is exact, so H̃B(k(f)) is a
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kernel of H̃B(f).

A1 ⊕B0

( 1
0 )

��

�
cK(f)

))
KK(f)

(k(f))K

��

�
pK(f)

((

•
kK(f)

66

CK(f)

(k(f))C

��

H̃B(K(f))

•
H̃B(k(f))

��

•
iK(f)

66

A1

f1

��

�
cA

))
KA

fK

��

�
pA ((

•
kA

55

CA

fC

��

H̃B(A)

up

��

•
iA

66

I

•i

��

B1

�
cB

''
KB

�
pB ((

•
kB

55

CB

H̃B(B)

•
iB

77

Remark 54. To show that null-homotopic morphisms are sent to 0 by H̃B(k, c, p, i) in the

previous lemma 53, one may also use remark 28 and check (H̃B(k, c, p, i))(S) = 0 for S ∈ SB.

Lemma/Definition 55 (Homology functor). Let ZB ⊆ ObB be the set of zero objects in B.

Suppose given A ∈ Ob(B∆2).

We choose a kernel kA : KA → A1 of a1. In case A2 ∈ ZB, we choose kA := 1A1 .

We choose a cokernel cA : A1 → CA of a0. In case A0 ∈ ZB, we choose cA := 1A1 .

We choose an image KA
pA // ImA

iA // CA of kA cA.

In case A0, A2 ∈ ZB, we choose
(
KA

pA // ImA
iA // CA

)
:=
(
A1

1 // A1
1 // A1

)
.
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By applying lemma 53 with the tuples k :=
(
KA

kA // A1

)
A∈Ob(B∆2 )

,

c :=
(
A1

cA // CA

)
A∈Ob(B∆2 )

, p :=
(
KA

pA // ImA

)
A∈Ob(B∆2 )

and

i :=
(
ImA

iA // CA

)
A∈Ob(B∆2 )

of morphisms in B, we obtain functors

H̃B := H̃B(k, c, p, i) : B∆2 → B and HB := HB(k, c, p, i) : Adel(B)→ B. We call HB the homology

functor of B.

For A
f // B in B∆2 with A0, A2, B0, B2 ∈ ZB, we have

HB(A) = H̃B(A) = A1 and HB([f ]) = H̃B(f) = f1.

In particular, we have H̃B ◦ ĨB = 1B and HB ◦ IB = 1B.

B ĨB //

IB

""

B∆2

R

��

H̃B

""
Adel(B)

HB
// B

Recall that DB : Adel(B)op → Adel(Bop) is an isomorphism of categories, cf. definition 30.

By applying lemma 53 with the tuples

c◦ :=

(
CD−1

B (A)

(
c
D−1
B (A)

)op

// A1

)
A∈Ob((Bop)∆2)

,

k◦ :=

(
A1

(
k

D−1
B (A)

)op

// KD−1
B (A)

)
A∈Ob((Bop)∆2)

,

i◦ :=

(
CD−1

B (A)

(
i
D−1
B (A)

)op

// ImD−1
B (A)

)
A∈Ob((Bop)∆2)

and

p◦ :=

(
ImD−1

B (A)

(
p

D−1
B (A)

)op

// KD−1
B (A)

)
A∈Ob((Bop)∆2)

of morphisms in Bop, we obtain functors

H̃
◦
B := H̃Bop(c◦, k◦, i◦, p◦) : (Bop)∆2 → B and H◦B := HBop(c◦, k◦, i◦, p◦) : Adel(Bop)→ B.
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The equation (HB)op = H◦B ◦DB holds.

Adel(B)op

DB

��

(HB)op

// Bop

Adel(Bop)

H◦B

;;

Proof. We want to show that (HB)op = H◦B ◦DB holds.

Suppose given A
f // B in B∆2 . Consider (f op

2 , f op
1 , f op

0 ) : DB(B)→ DB(A) in (Bop)∆2 .

We have (f op
2 , f op

1 , f op
0 )K = f op

C since f op
C cop

A = (cA fC)op = (f1 cB)op = cop
B f op

1 holds.

We have H̃
◦
B((f op

2 , f op
1 , f op

0 )) = H̃B(f)op since

iop
B H̃B(f)op = (H̃B(f) iB)op = (iA fC)op = f op

C iop
A = (f op

2 , f op
1 , f op

0 )K iop
A = iop

B H̃
◦
B((f op

2 , f op
1 , f op

0 ))

holds and since iop
B is epimorphic.

We conclude that

(H◦B ◦DB)(A) = H◦B(DB(A)) = ImA = (HB)op(A)

and that

(H◦B ◦DB)([f ]op) = H◦B([f op
2 , f op

1 , f op
0 ]) = H̃

◦
B((f op

2 , f op
1 , f op

0 )) = H̃B(f)op = HB([f ])op

= (HB)op([f ]op).

Theorem 56. Recall that B is an abelian category.

The functor HB : Adel(B)→ B is an exact functor.

Proof. We have left-exact functors HB : Adel(B)→ B and H◦B : Adel(Bop)→ Bop, cf. definition

55 and lemma 53. The functor (HB)op = H◦B ◦DB : Adel(B)op → Bop is also left-exact since DB
is an isomorphism of categories. We conclude that HB is exact.

4.2 The universal property

Proposition 57. Suppose given an abelian categoryA and full subcategories C andD satisfying

C ⊆ D ⊆ A. The embedding functor from C to D shall be denoted by E : C → D.

Suppose given an additive category B and additive functors F,G : A → B.
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(a) Suppose that F and G are left-exact.

Suppose that for D ∈ ObD, there exists a left-exact sequence D •d // C c //// C ′ in A
with C,C ′ ∈ Ob C.

Suppose that the objects in C are injective in A.

Then we have bijections

γ : HomBD(F |D, G|D)→HomBC(F |C, G|C) : τ 7→ τ ? E

and

γ′ : Homiso
BD(F |D, G|D)→Homiso

BC(F |C, G|C) : τ 7→ τ ? E.

(b) Suppose that F and G are right-exact.

Suppose that for D ∈ ObD, there exists a right-exact sequence C
c // C ′ �d // D in A

with C,C ′ ∈ Ob C.

Suppose that the objects in C are projective in A.

Then we have bijections

HomBD(F |D, G|D)→HomBC(F |C, G|C) : τ 7→ τ ? E

and

Homiso
BD(F |D, G|D)→Homiso

BC(F |C, G|C) : τ 7→ τ ? E.

Proof. Ad (a). The map γ is well-defined, cf. convention 21. Note that τγ = (τC)C∈Ob C holds

for τ ∈ HomBD(F |D, G|D).

The map γ′ is well-defined since τC is an isomorphism for τ ∈ Homiso
BD(F |D, G|D) and C ∈ Ob C.

We want to show the injectivity of γ.

Suppose given τ, σ ∈ HomBD(F |D, G|D) with τγ = σγ. Then τC = σC holds for C ∈ Ob C.
Suppose given D ∈ ObD. We have to show that τD = σD is true.

There exists a left-exact sequence D •d // C
c //// C ′ in A with C,C ′ ∈ Ob C.

We obtain the left-exact sequences F (D) •
F (d) // F (C)

F (c) //// F (C ′) and

G(D) •
G(d) // G(C)

G(c) //// G(C ′) in B by applying F resp. G.

Since τ and σ are transformations and since τC = σC holds, we get τDG(d) = F (d)τC =

F (d)σC = σDG(d).

Since G(d) is monomorphic, we conclude that τD = σD holds.

The injectivity of γ′ is inherited from γ.
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Now we want to show the surjectivity of γ.

Suppose given ρ ∈ HomBC(F |C, G|C). We have to show that there exists τ ∈ HomBD(F |D, G|D)

such that τ ? E = ρ.

For D ∈ ObD, we choose a left-exact sequence D •
dD // CD

cD // C ′D in A with CD, C
′
D ∈ Ob C.

In case D ∈ Ob C, we choose the left-exact sequence D •1 // D
0 // D .

Suppose given D ∈ ObD.

We obtain the following commutative diagram.

F (D) •
F (dD)// F (CD)

F (cD) //

ρCD

��

F (C ′D)

ρC′
D

��
G(D) •

G(dD)// G(CD)
G(cD) // G(C ′D)

The induced morphism between the kernels shall be denoted by τD : F (D) → G(D). Note

that τC = ρC holds for C ∈ Ob C. If ρ ∈ Homiso
BC(F |C, G|C) is true, then the map τD is an

isomorphism, cf. lemma 7 (a).

Next, we show the naturality of τ = (τD)D∈ObD.

Suppose given X
f // Y in D. Since dX is monomorphic and since CY is injective, there exists

g : CX → CY such that dXg = fdY holds.

X

fdy
��

•
dX // CX

g}}
CY

We have

τXG(f)G(dY ) = τXG(dX)G(g) = F (dX)ρCX
G(g)

= F (dX)F (g)ρCY
= F (f)F (dY )ρCY

= F (f)τYG(dY ).

Since G(dY ) is monomorphic, we conclude that τXG(f) = F (f)τY holds.

We have τγ = τ ? E = (ρC)C∈Ob C = ρ, so γ is surjective.

As seen above, the map τD is an isomorphism for ρ ∈ Homiso
BC(F |C, G|C) and D ∈ ObD, so γ′ is

surjective too.

Ad (b). This is dual to (a).

Notation 58. Given a diagram A0
a0 // A1 in A, we obtain a functor A ∈ Ob(A∆1) by setting

A(0) := A0, A(1) := A1, A(0 // 1) := a0, A(0 1 // 0) := 1A0 and A(1 1 // 1) := 1A1 .
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For A ∈ Ob(A∆1), we therefore set A0 := A(0), A1 := A(1), a0 := A(0 // 1) and write

A =
(
A0

a0 // A1

)
.

For a transformation f ∈ HomA∆1 (A,B), we write f = (f0, f1) instead of f = (fi)i∈Ob(∆1). We

also write  A

f
��
B

 =


A0

f0

��

a0 // A1

f1

��
B0

b0 // B1

 .

Given A,B ∈ Ob(A∆1) and morphisms f0 : A0 → B0, f1 : A1 → B1 in A satisfying a0f1 = f0b0,

we obtain a transformation f = (f0, f1) ∈ HomA∆1 (A,B).

Cf. notation 22.

Lemma 59. Suppose given an abelian category B. Suppose given A
f // B

g // C in B∆1 .

(a) The sequence A
f // B

g // C in B∆1 is left-exact in B∆1 if and only if the sequences

A0
f0 // B0

g0 // C0 and A1
f1 // B1

g1 // C1 are left-exact in B.

(b) The sequence A
f // B

g // C in B∆1 is right-exact in B∆1 if and only if the sequences

A0
f0 // B0

g0 // C0 and A1
f1 // B1

g1 // C1 are right-exact in B.

Proof. Ad (a). Suppose A
f // B

g // C to be left-exact.

We want to show that f0 is a kernel of g0.

Suppose given t : X → B0 in B with tg0 = 0. The morphism (t, tb0) :
(
X

1 // X
)
→ B is well-

defined with (t, tb0)g = 0 since we have t · b0 = 1 · tb0 and (t, tb0)g = (tg0, tb0g1) = (0, tg0c0) =

(0, 0) = 0.

X 1 //

t
��

X

tb0
��

B0
b0 //

g0

��

B1

g1

��
C0

c0 // C1

There exists u :
(
X

1 // X
)
→ A with uf = (t, tb0) since f is a kernel of g. So u0f0 = t.

Given v : X → A0 with vf0 = t, we have (v, va0) :
(
X

1 // X
)
→ A in B∆1 with (v, va0)f =

(t, tb0) since v · a0 = 1 · va0 and (v, va0)f = (vf0, va0f1) = (t, vf0b0) = (t, tb0) hold. So

(v, va0) = u and v = u0, again since f is a kernel of g.

We conclude that A0
f0 // B0

g0 // C0 is left-exact.
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We want to show that f1 is a kernel of g1.

Suppose given t : X → B1 in B with tg1 = 0. The morphism (0, t) :
(
0 0 // X

)
→ B is

well-defined with (0, t)g = 0 since we have 0 · t = 0 = 0 · b1 and (0, t)g = (0g0, tg1) = (0, 0) = 0.

0 0 //

0
��

X

t
��

B0
b0 //

g0

��

B1

g1

��
C0

c0 // C1

There exists u :
(
0 0 // X

)
→ A with uf = (0, t) since f is a kernel of g. So u1f1 = t.

Given v : X → A1 with vf1 = t, we have (0, v) :
(
0 0 // X

)
→ A with (0, v)f = (0, t) since

0 · v = 0 = 0 · a0 and (0, v)f = (0 · f0, v · f1) = (0, t) hold. So (0, v) = u and v = u1, again since

f is a kernel of g.

We conclude that A1
f1 // B1

g1 // C1 is left-exact.

Suppose A0
f0 // B0

g0 // C0 and A1
f1 // B1

g1 // C1 to be left-exact.

We want to show that f is a kernel of g.

Suppose given t : X → B in B∆1 with tg = 0. We have t0g0 = 0 and t1g1 = 0, so there exist

u0 : X0 → A0 and u1 : X1 → A1 in B such that u0f0 = t0 and u1f1 = t1 hold since f0 is a kernel

of g0 and f1 is a kernel of g1. The morphism u = (u0, u1) : X → A is well-defined since we have

x0u1f1 = x0t1 = t0b0 = u0f0b0 = u0a0f1, and therefore x0u1 = u0a0 because f1 is monomorphic.

The equation uf = t holds since we have uf = (u0f0, u1f1) = (t0, t1) = t.

Given v : X → A with vf = t, we have v0f0 = t0 and v1f1 = t1. So v0 = u0, v1 = u1 and

therefore v = u hold, again since f0 is a kernel of g0 and since f1 is a kernel of g1.

We conclude that A
f // B

g // C is left-exact.

Ad (b).

This is dual to (a) using the canonical isomorphism of categories (B∆1)op ∼−→ (Bop)∆1 . This

isomorphism sends A ∈ Ob((B∆1)op) to
(
A1

aop
0 // A0

)
∈ Ob((Bop)∆1) and f op ∈ Mor((B∆1)op)

to (f op
1 , f op

0 ) ∈ Mor((Bop)∆1).

Proposition 60. Suppose given categories A and B.

(a) Suppose that F,G : A → B are functors and α : F ⇒ G is a transformation. We obtain

a functor K : A → B∆1 by setting K(X) :=
(
F (X)

αA // G(X)
)

for X ∈ ObA and

K(f) := (F (f), G(f)) for f ∈ MorA.

Suppose that A and B are additive categories. Then F and G are additive if and only if

K is additive.
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Suppose that A and B are abelian categories. Then F and G are exact if and only if K

is exact.

(b) Conversely, given a functor K : A → B∆1 , we get functors F,G : A → B and a transfor-

mation α : F ⇒ G by setting F (X) := K(X)0, G(X) := K(X)1, αX := (K(X))(0 // 1)

for X ∈ ObA and F (f) := K(f)0, G(f) := K(f)1 for f ∈ MorA.

Therefore every functor K : A → B∆1 is of the form discussed in (a).

I learned this technique from Sebastian Thomas and Denis-Charles Cisinski.

Proof. Ad (a). The functor K : A → B∆1 is well-defined since we have αXG(f) = F (f)αY ,

K(fg) = (F (fg), G(fg)) = (F (f)F (g), G(f)G(g)) = (F (f), G(f))(F (g), G(g)) = K(f)K(g)

and

K(1X) = (F (1X), G(1X)) = (1F (X), 1G(X)) = 1K(X)

for X
f // Y

g // Z in A.

Suppose that A and B are additive.

If F and G are additive, then we have

K(f + h) = (F (f + h), G(f + h)) = (F (f) + F (h), G(f) +G(h))

= (F (f), G(f)) + (F (h), G(h)) = K(f) +K(h)

for X
f //
h
// Y in A, so K is additive.

If K is additive, then we have

(F (f + h), G(f + h)) = K(f + h) = K(f) +K(h) = (F (f), G(f)) + (F (h), G(h))

= (F (f) + F (h), G(f) +G(h))

for X
f //
h
// Y in A. Therefore F (f + h) = F (f) + F (h) and G(f + h) = G(f) +G(h) hold, so

F and G are additive.

The statement about the exactness of the functors follows from the previous lemma 59:

Suppose that A and B are abelian. For a left-(right-)exact sequence X
f // Y

g // Z in A, the

sequence K(X)
K(f) // K(Y )

K(g) // K(Z) is left-(right-)exact in B∆1 if and only if the sequences

F (X)
F (f) // F (Y )

F (g) // F (Z) and G(X)
G(f) // G(Y )

G(g) // G(Z) are left-(right-)exact in B.

Ad (b). We have

(F (1X), G(1X)) = K(1X) = 1K(X) = (1F (X), 1G(X)),



60

(F (fg), G(fg)) = K(fg) = K(f)K(g) = (F (f), G(f))(F (g), G(g)) = (F (f)F (g), G(f)G(g))

and therefore F (1X) = 1F (X), G(1X) = 1G(X), F (fg) = F (f)F (g) and G(fg) = G(f)G(g) for

X
f // Y

g // Z in A.

We have F (f)αY = K(f)0(K(Y ))(0 // 1) = (K(X))(0 // 1)K(f)1 = αXG(f) for X
f // Y in

A.

Remark 61. Without proof, the constructions in the previous proposition 60 yield an isomor-

phism of categories (BA)∆1
∼−→ (B∆1)A.

Theorem 62 (Universal property of the Adelman category). Suppose given an additive cate-

gory A and an abelian category B.

(a) Suppose given an additive functor F : A → B.

We set F̂ := HB ◦Adel(F ) : Adel(A)→ B, cf. definitions 45 and 55.

The functor F̂ is exact with F̂ ◦ IA = F .

If G, G̃ : Adel(A)→ B are exact functors and σ : G◦ IA ⇒ G̃◦ IA is an isotransformation,

then there exists an isotransformation τ : G ⇒ G̃ with τ ? IA = σ. In particular, this

holds for G ◦ IA = G̃ ◦ IA and σ = 1G◦IA .

A F //

IA
��

B

Adel(A)
F̂

;;

(b) Suppose given additive functors F,G : A → B and a transformation α : F ⇒ G.

There exists a unique transformation α̂ : F̂ ⇒ Ĝ satisfying α̂ ? IA = α.

A

IA

��

F
++

G

33α �� B

Adel(A)

F̂

88

Ĝ

AA

α̂ ��

Proof. Ad (a). The functors Adel(F ) : Adel(A) → Adel(B) and HB : Adel(B) → B are exact,

cf. theorems 45 and 56. Therefore F̂ is exact too.

Suppose given X
f // Y in A. Note that F (0A) ∈ ZB, cf. definition 55. We have

(F̂ ◦ IA)(X) = (HB ◦Adel(F ))(IA(X)) = HB
((
F (0) 0 //F (X) 0 //F (0)

))
= F (X)
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and

(F̂ ◦ IA)(f) = (HB ◦Adel(F ))(IA(f)) = HB([F (0), F (f), F (0)]) = F (f).

We conclude that F̂ ◦ IA = F holds.

We abbreviate A′ := IA(A), cf. definition 27.

Let σ′IA(X) := σX for X ∈ ObA. Then σ′ ∈ Homiso
BA′ (G|A′ , G̃|A′) since we have

σ′IA(X)G̃(IA(f)) = σX(G̃ ◦ IA)(f) = (G ◦ IA)(f)σY = G(IA(f))σ′IA(Y )

for X
f // Y in A and since σX is an isomorphism for X ∈ ObA.

Let I′A := IA |A
′
: A → A′.

We have σ′ ? I′A = σ since (σ′ ? I′A)X = σ′IA(X) = σX holds for X ∈ ObA.

Consider the subcategories A′ ⊆ R(A) ⊆ Adel(A). The embedding functor from A′ to R(A)

shall be denoted by E : A′ → R(A) and the embedding functor from R(A) to Adel(A) shall

be denoted by E ′ : R(A)→ Adel(A).

A
I′A // A′ E //R(A) E′ // Adel(A)

Note that E ′ ◦ E ◦ I′A = IA holds.

For P ∈ R(A), there exists a left-exact sequence P •k // IA(X)
IA(f) // IA(Y ) in Adel(A) with

X
f // Y in A, cf. lemma 41. The objects in A′ are injective, cf. remark 40.

Proposition 57 (a) now gives ρ ∈ Homiso
BR(A)(G|R(A), G̃|R(A)) with ρ ? E = σ′.

Consider the subcategories R(A) ⊆ Adel(A) ⊆ Adel(A). For A ∈ Ob(Adel(A)), there exists a

right-exact sequence P
f // Q �c // A with P,Q ∈ Ob(R(A)), cf. remark 43. The objects in

R(A) are projective, cf. proposition 39.

Proposition 57 (b) now gives τ ∈ Homiso
BAdel(A)(G, G̃) with τ ? E ′ = ρ.

We have

τ ? IA = τ ? (E ′ ◦ E ◦ I′A) = (τ ? E ′) ? (E ◦ I′A) = ρ ? (E ◦ I′A) = (ρ ? E) ? I′A = σ′ ? I′A = σ.

Ad (b). We get an additive functor K : A → B∆1 by setting K(A) :=
(
F (A)

αA // G(A)
)

for

A ∈ ObA and K(f) := (F (f), G(f)) for f ∈ MorA, cf. proposition 60.

Part (a) gives an exact functor K̂ : Adel(A) → B∆1 with K̂ ◦ IA = K. We obtain exact

functors F̃ , G̃ : Adel(A) → B and a transformation α̃ : F̃ ⇒ G̃ by setting F̃ (A) := K̂(A)0,

G̃(A) := K̂(A)1, α̃A := (K̂(A))(0 // 1) for A ∈ Ob(Adel(A)) and F̃ (q) := K̂(q)0, G̃(q) :=

K̂(q)1 for q ∈ Mor(Adel(A)), cf. proposition 60.
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Next, we show that the equations F̃ ◦ IA = F , G̃ ◦ IA = G and α̃ ? IA = α hold.

For X ∈ ObA, we have K̂(IA(X)) = K(X) =
(
F (X)

αX // G(X)
)
. This implies F̃ (IA(X)) =

K̂(IA(X))0 = F (X), G̃(IA(X)) = K̂(IA(X))1 = G(X) and α̃IA(X) = αX .

For f ∈ MorA, we have K̂(IA(f)) = K(f) = (F (f), G(f)). This implies F̃ (IA(f)) =

K̂(IA(f))0 = F (f) and G̃(IA(f)) = K̂(IA(f))1 = G(f).

Part (a) gives isotransformations τF : F̂ ⇒ F̃ and τG : G̃ ⇒ Ĝ satisfying τF ? IA = 1F and

τG ? IA = 1G.

We set α̂ := τF α̃τG : F̂ ⇒ Ĝ and obtain α̂ ? IA = (τF α̃τG) ? IA = (τF ? IA)(α̃ ? IA)(τG ? IA) =

1Fα1G = α.

We use the functors I′A, E and E ′ defined in (a).

Suppose given β, γ : F̂ ⇒ Ĝ with β ? IA = γ ? IA.

We have (β ? E ′) ? E = β ? (E ′ ◦ E) = γ ? (E ′ ◦ E) = (γ ? E ′) ? E since (β ? (E ′ ◦ E))I′A(X) =

βIA(X) = (β ? IA)X = (γ ? IA)X = γIA(X) = (γ ? (E ′ ◦ E))I′A(X) holds for X ∈ ObA.

Consider the subcategories A′ ⊆ R(A) ⊆ Adel(A). As seen above, we may apply proposi-

tion 57 (a). We conclude that β ? E ′ = γ ? E ′ holds because of the injectivity.

Consider the subcategories R(A) ⊆ Adel(A) ⊆ Adel(A). Again, we may apply proposi-

tion 57 (b). We conclude that β = γ holds because of the injectivity.

Remark 63. We give an overview of the construction of F̂ in the previous theorem 62.

A F //

IA

��

B

1B

��

IB

��
Adel(A)

F̂

$$

Adel(F ) // Adel(B)

HB

��
B

Note that IB ◦F = Adel(F )◦IA is not true in general, cf. theorem 45. However, HB ◦Adel(F ) =

F̂ , HB ◦ IB = 1B and F = 1B ◦ F = F̂ ◦ IA hold.

Remark 64. Suppose given an additive category A, an abelian category B and an additive

functor F : A → B. We saw in theorem 45 that Adel(F ) : Adel(A) → Adel(B) is an exact

functor and that there exists an isotransformation εF : IB ◦F → Adel(F ) ◦ IA. By apply-

ing theorem 62 (a) to the additive functor IB ◦F : A → Adel(B), we get an exact functor

ÎB ◦F : Adel(A)→ Adel(B) with ÎB ◦F ◦ IA = IB ◦F .
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We conclude that, by theorem 62 (a), Adel(F ) and ÎB ◦F are isomorphic in Adel(B)Adel(A).

Note that ÎB ◦F depends on the choices we make in definition 55, applied to the abelian category

Adel(B).

Example 65. Consider the (additive) inclusion functor E from Z-free to Z-mod. Theo-

rem 62 (a) gives an exact functor Ê : Adel(Z-free)→ Z-mod with Ê ◦ IZ-free = E.

(a) The functor Ê is dense:

Suppose given X ∈ Ob(Z-mod). We choose a free resolution F1
d // F0

�e // X of X.

Consider
(
F1

d // F0
0 // 0

)
∈ Ob(Adel(Z-free)). A kernel of 0 : F1 → 0 is given by 1F1 ,

a cokernel of d is given by e and an image of 1F1e is given by F1
e // X 1 // X .

F0
d // F1

//

�
e
  

0

F1

•
1

>>

�
e   

X

X

•
1

>>

Therefore we have Ê
((
F1

d // F0
0 // 0

)) ∼= X in Z-mod.

(b) The functor Ê is not full:

Let A :=
(

Z⊕ Z
( 4 0

0 1 )
// Z⊕ Z

( 1
2 )
// Z
)

and B :=
(
Z 2 // Z 0 // 0

)
in Adel(Z-free).

A kernel of ( 1
2 ) : Z⊕ Z→ Z is given by ( 2 −1 ) : Z→ Z⊕ Z, a cokernel of

( 4 0
0 1 ) : Z⊕Z→ Z⊕Z is given by ( 1

0 ) : Z⊕Z→ Z/4 and an image of ( 2 −1 ) ( 1
0 ) is given

by Z 1 // Z/2 2 // Z/4. So Ê(A) ∼= Z/2.

Z⊕ Z
( 4 0

0 1 )
// Z⊕ Z

�
( 1

0 ) ##

( 1
2 )

// Z

Z

•
( 2 −1 )

<<

�
1 !!

Z/4

Z/2

•
2

;;

A kernel of 0 : Z→ 0 is given by 1Z, a cokernel of 2 : Z→ Z is given by 1: Z→ Z/2 and
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an image of 1Z · 1 is given by Z 1 // Z/2 1 // Z/2. So Ê(B) ∼= Z/2.

Z 2 // Z //

�
1 ""

0

Z

•
1

>>

�
1   

Z/2

Z/2

•
1

<<

Consider 1 : Z/2→ Z/2. If Ê was full, there would exist g : Z/4→ Z/2 such that 2·g = 1,

which is impossible.

Z/4

g

��

Z/2

1

��

•2
<<

Z/2

Z/2

•1
<<

(c) The functor Ê is not faithful:

Let A :=
(
0 0 // Z 2 // Z

)
, B :=

(
0 0 // Z 0 // 0

)
and [0, 1, 0] : A → B in

Adel(Z-free). We have 0 6= [0, 1, 0] since there does not exist t : Z→ Z such that 2·t = 1Z.

0

��

// Z

1
����

2 // Z

t�� ��
0 // Z // 0

A kernel of 2 : Z→ Z is given by 0: 0→ Z, a cokernel of 0 : 0→ Z is given by 1Z and an

image of 0 · 1Z is given by 0 0 // 0 0 // Z .

0 // Z

�
1 ��

2 // Z

0

•
0

??

~
0 ��

Z

0

•
0

??

So Ê(A) ∼= 0 = Ê(B). We conclude that Ê([0, 1, 0]) = 0 = Ê(0).
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(d) The functor Ê is not an equivalence due to (b) or (c). This also follows from Z-mod having

not enough injectives or, alternatively, from the fact that (Z/2⊗
Z
−) : Z-mod→ Z/2-mod

is additive but not kernel-preserving:

A kernel of 2 : Z → Z is given by 0: 0 → Z in Z-free, but 0 : 0 → Z/2 is not a kernel of

0 : Z/2→ Z/2 in Z/2-mod.

Now if Ê was an equivalence, the category Z-mod would also satisfy the universal property

of the Adelman category and there would exist an exact functor

( ̂Z/2⊗
Z
−) : Z-mod→ Z/2-mod with ( ̂Z/2⊗

Z
−) ◦ E = (Z/2⊗

Z
−). But ( ̂Z/2⊗

Z
−) ◦ E is

kernel-preserving, whereas (Z/2⊗
Z
−) is not.
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